1
|
Price EJ, Benjamin S, Bombardieri M, Bowman S, Carty S, Ciurtin C, Crampton B, Dawson A, Fisher BA, Giles I, Glennon P, Gupta M, Hackett KL, Larkin G, Ng WF, Ramanan AV, Rassam S, Rauz S, Smith G, Sutcliffe N, Tappuni A, Walsh SB. British Society for Rheumatology guideline on management of adult and juvenile onset Sjögren disease. Rheumatology (Oxford) 2025; 64:409-439. [PMID: 38621708 DOI: 10.1093/rheumatology/keae152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/02/2024] [Indexed: 04/17/2024] Open
Abstract
Sjögren disease (SD) is a chronic, autoimmune disease of unknown aetiology with significant impact on quality of life. Although dryness (sicca) of the eyes and mouth are the classically described features, dryness of other mucosal surfaces and systemic manifestations are common. The key management aim should be to empower the individual to manage their condition-conserving, replacing and stimulating secretions; and preventing damage and suppressing systemic disease activity. This guideline builds on and widens the recommendations developed for the first guideline published in 2017. We have included advice on the management of children and adolescents where appropriate to provide a comprehensive guideline for UK-based rheumatology teams.
Collapse
Affiliation(s)
- Elizabeth J Price
- Department of Rheumatology, Great Western Hospital NHS Foundation Trust, Swindon, UK
| | - Stuart Benjamin
- The Academy Library and Information Service, Great Western Hospital NHS Foundation Trust, Swindon, UK
| | - Michele Bombardieri
- Department of Rheumatology, Barts and The London School of Medicine and Dentistry, Barts Health NHS Trust, London, UK
- Centre for Experimental Medicine and Rheumatology, The William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Simon Bowman
- Department of Rheumatology, Milton Keynes University Hospital, Milton Keynes, UK
- Department of Rheumatology, University Hospitals Birmingham NHSFT, Birmingham, UK
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Sara Carty
- Department of Rheumatology, Great Western Hospital NHS Foundation Trust, Swindon, UK
| | - Coziana Ciurtin
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Bridget Crampton
- Patient Representative, Sjogren's UK Helpline Lead, Sjogren's UK (British Sjögren's Syndrome Association), Birmingham, UK
| | - Annabel Dawson
- Patient Representative, Sjogren's UK (British Sjögren's Syndrome Association), Birmingham, UK
| | - Benjamin A Fisher
- Rheumatology Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- National Institute for Health Research (NIHR) Birmingham Biomedical Research Centre and Department of Rheumatology, University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK
| | - Ian Giles
- Centre for Rheumatology, Division of Medicine, University College London, London, UK
| | - Peter Glennon
- General Practice, NHS Staffordshire & Stoke on Trent ICB, Stafford, UK
| | - Monica Gupta
- Department of Rheumatology, Gartnavel General Hospital, Glasgow, UK
| | - Katie L Hackett
- Department of Social Work, Education and Community Wellbeing, Northumbria University, Newcastle upon Tyne, UK
| | | | - Wan-Fai Ng
- Translational and Clinical Research Institute & Newcastle NIHR Biomedical Research Centre, Newcastle University, Newcastle upon Tyne, UK
- Department of Rheumatology, Newcastle upon Tyne NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Athimalaipet V Ramanan
- Department of Paediatric Rheumatology, Bristol Royal Hospital for Children, Bristol, UK
- Translational Health Sciences, University of Bristol, Bristol, UK
| | - Saad Rassam
- Haematology and Haemato-Oncology, KIMS Hospital, Maidstone, Kent, UK
| | - Saaeha Rauz
- Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
- Birmingham and Midland Eye Centre, Sandwell and West Birmingham NHS Trust, Birmingham, UK
| | - Guy Smith
- Department of Ophthalmology, Great Western Hospital NHS Foundation Trust, Swindon, UK
| | | | - Anwar Tappuni
- Institute of Dentistry, Queen Mary University of London, London, UK
| | - Stephen B Walsh
- London Tubular Centre, University College London, London, UK
| |
Collapse
|
2
|
Zou D, Feng S, Hu B, Guo M, Lv Y, Ma R, Du Y, Feng J. Bromodomain proteins as potential therapeutic targets for B-cell non-Hodgkin lymphoma. Cell Biosci 2024; 14:143. [PMID: 39580422 PMCID: PMC11585172 DOI: 10.1186/s13578-024-01326-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND B-cell non-Hodgkin lymphoma (B-NHL) is the most common type of lymphoma and is significantly heterogeneous among various subtypes. Despite of considerable advancements in treatment strategies for B-NHL, the prognosis of relapsed/refractory patients remains poor. MAIN TEXT It has been indicated that epigenetic dysregulation is critically associated with the pathogenesis of most hematological malignancies, resulting in the clinical targeting of epigenetic modifications. Bromodomain (BRD) proteins are essential epigenetic regulators which contain eight subfamilies, including BRD and extra-terminal domain (BET) family, histone acetyltransferases (HATs) and HAT-related proteins, transcriptional coactivators, transcriptional mediators, methyltransferases, helicases, ATP-dependent chromatin-remodeling complexes, and nuclear-scaffolding proteins. Most pre-clinical and clinical studies on B-NHL have focused predominantly on the BET family and the use of BET inhibitors as mono-treatment or co-treatment with other anti-tumor drugs. Furthermore, preclinical models of B-NHL have revealed that BET degraders are more active than BET inhibitors. Moreover, with the development of BET inhibitors and degraders, non-BET BRD protein inhibitors have also been designed and have shown antitumor activities in B-NHL preclinical models. This review summarized the mechanism of BRD proteins and the recent progress of BRD protein-related drugs in B-NHL. This study aimed to collect the most recent evidences and summarize possibility on whether BRD proteins can serve as therapeutic targets for B-NHL. CONCLUSION In summary, BRD proteins are critical epigenetic regulatory factors and may be potential therapeutic targets for B-NHL.
Collapse
Affiliation(s)
- Dan Zou
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Sitong Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Bowen Hu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Mengya Guo
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yan Lv
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rong Ma
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- Research Center for Clinical Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, China.
| | - Jifeng Feng
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.
| |
Collapse
|
3
|
Guo YJ, Du TT, Yang YL, Zhao Y, Chen XL, Ma H, Sun LN, Wang YQ. Simultaneous Determination of Ibrutinib, Dihydroxydiol Ibrutinib, and Zanubrutinib in Human Plasma by Liquid Chromatography-Mass Spectrometry/Mass Spectrometry. Ther Drug Monit 2024; 46:634-641. [PMID: 38531816 DOI: 10.1097/ftd.0000000000001190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 10/23/2023] [Indexed: 03/28/2024]
Abstract
BACKGROUND Ibrutinib and zanubrutinib are Bruton tyrosine kinase inhibitors used to treat mantle cell lymphoma, chronic lymphocytic leukemia, and small lymphocytic lymphoma. Dihydroxydiol ibrutinib (DHI) is an active metabolite of the drug. A liquid chromatography-tandem mass spectrometry method was developed to detect ibrutinib, DHI, and zanubrutinib in human plasma. METHODS The method involved a protein precipitation step, followed by chromatographic separation using a gradient of 10 mM ammonium acetate (containing 0.1% formic acid)-acetonitrile. Ibrutinib-d5 was used as an internal standard. Analytes were separated within 6.5 minutes. The optimized multiple reaction monitoring transitions of m/z 441.1 → 304.2, 475.2 → 304.2, 472.2 → 455.2, and 446.2 → 309.2 were selected to inspect ibrutinib, DHI, zanubrutinib, and the internal standards in positive ion mode. RESULTS The validated curve ranges included 0.200-800, 0.500-500, and 1.00-1000 ng/mL for ibrutinib, DHI, and zanubrutinib, respectively. The precisions of the lower limit of quantification of samples were below 15.5%, the precisions of the other level samples were below 11.4%, and the accuracies were between -8.6% and 8.4%. The matrix effect and extraction recovery of all compounds ranged between 97.6%-109.0% and 93.9%-105.2%, respectively. The selectivity, accuracy, precision, matrix effect, and extraction recovery results were acceptable according to international method validation guidelines. CONCLUSIONS A simple and rapid method was developed and validated in this study. This method was used to analyze plasma concentrations of ibrutinib and zanubrutinib in patients with mantle cell lymphoma, chronic lymphocytic leukemia/small lymphocytic lymphoma, or diffuse large B-cell lymphoma. The selected patients were aged between 44 and 74 years.
Collapse
Affiliation(s)
- Yu-Jiao Guo
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yan-Ling Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Xiang-Long Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
| | - Hong Ma
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China ; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Jiao L, Tao Y, Ding H, Wu F, Liu Y, Li C, Li F. Bioinformatics analysis of BTK expression in lung adenocarcinoma: implications for immune infiltration, prognostic biomarkers, and therapeutic targeting. 3 Biotech 2024; 14:215. [PMID: 39220827 PMCID: PMC11358563 DOI: 10.1007/s13205-024-04053-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/11/2024] [Indexed: 09/04/2024] Open
Abstract
In recent years, as more and more lung-cancer patients have been treated with immunotherapeutic agents, their survival has been prolonged compared to before. It is well known that BTK (Bruton's tyrosine kinase) is predominantly found in cells of the hematopoietic system. However, there is a distinct lack of literature on BTK expression in lung adenocarcinoma (LUAD) patients and its effect on the immune microenvironment. Consequently, the main goal of this investigation was to analyze how BTK expression in lung adenocarcinoma affects its progression, along with its prognostic significance, through the utilization of bioinformatics online resources and publicly available databases. Data on the sequencing results and clinical records of lung adenocarcinoma patients were gathered from The Cancer Genome Atlas (TCGA) database. Based on the expression level of BKT, TCGA categorized lung adenocarcinoma patients into BTK high-expression and low-expression groups. We investigated the effects of BKT on clinicopathologic, genomic, and immunologic characteristics of lung adenocarcinoma patients. We analyzed BTK mRNA expression in tumors and normal tissues using two key resources: Tumor Immuno Estimation Resource 2.0 (TIMER 2.0) and Gene Expression Profiling Interactive Analysis 2 (GEPIA 2). We analyzed the prognosis of the patients using GEPIA2 and validated the results using univariate and multivariate analyses. In addition, we assessed BTK protein expression by Human Protein Atlas (HPA). We sought to elucidate the clinical prognostic significance of BTK in The TCGA using the online tool GEPIA 2. Furthermore, to clarify the biologic roles and pathways linked to BTK, we conducted a genomic enrichment analysis of the information. To predict the proportion of various immune cell infiltrations in the immune microenvironment of lung adenocarcinoma patients diagnosed in the TCGA database, we performed an analysis using the TIMER online tool. Using TIMER and CIBERSORT, the correlation between genes co-expressed with BTK and the corresponding tumor-infiltrating immune cells was explored; finally, the relationship between BTK expression and immune infiltration and immune checkpoints in the TMB group and the high and low groups was analyzed by R language analysis using the TCGA database. The expression of BTK provides some hints about the prognosis of the patients. The high expression of BTK is involved in immune response regulation signaling pathways, leukocyte-mediated immunity, leukocyte intercellular adhesion, graft rejection, and complement. Analysis of the GEPIA 2 database showed that BTK was co-expressed with the genes FGD2, SASH3, NCKAP1L, CD53, ARHGAP30 and LPXN. Increased expression of the above-mentioned genes resulted in increased proportions of CD8 + T cells, memory CD4 + T cells, B cells, macrophages, and dendritic cells, and decreased proportions of Treg cells and TH2 cells. In addition, our study revealed a strong positive correlation between various key immune checkpoints (e.g., PDCD1, CD274, PDCD1LG2, CTLA4, HAVCR2, LAG3, TIGIT, and SIGLEC15) and BTK expression. In conclusion, increased BTK expression in lung adenocarcinoma is closely associated with prolonged survival of lung-cancer patients. Moreover, the genes classified under the BTK high-expression group exhibit significant enrichment in immune-related pathways, suggesting a potential impact on the tumor microenvironment. We investigated the potential of BTK as a tumor suppressor gene in predicting prolonged patient survival. In addition, we further investigated the possibility that BTK further affects the immunotherapeutic response of patients by influencing the microenvironment of tumor immune infiltration, but the relevant mechanisms remain to be further studied.
Collapse
Affiliation(s)
- Lijun Jiao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yujian Tao
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Huizhen Ding
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Feng Wu
- Department of Respiratory and Critical Care Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, China
| | - Yantong Liu
- Department of Computer and Information Engineering, Kunsan National University, Gunsan, 54150 Republic of Korea
| | - Chuang Li
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906 USA
| | - Feifei Li
- Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905 USA
| |
Collapse
|
5
|
Cool A, Nong T, Montoya S, Taylor J. BTK inhibitors: past, present, and future. Trends Pharmacol Sci 2024; 45:691-707. [PMID: 39025681 DOI: 10.1016/j.tips.2024.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 07/20/2024]
Abstract
Bruton's tyrosine kinase (BTK) inhibitors have revolutionized the treatment landscape for B cell lymphomas such as chronic lymphocytic leukemia (CLL). The first-in-class BTK inhibitor ibrutinib has recently been succeeded by covalent BTK inhibitors that are safer but still face challenges of resistance mutations. The noncovalent BTK inhibitor pirtobrutinib was recently approved for relapsed and refractory CLL, and whether noncovalent BTK inhibitors will supplant covalent BTK inhibitors as upfront treatment options either alone or in combination will be determined. Meanwhile, newer BTK inhibitors and BTK degraders are vying for their place in the potential future landscape of B cell cancers as well as autoimmune diseases. This review will cover the latest progress in BTK inhibitor development and where the field is moving in light of these recent discoveries.
Collapse
Affiliation(s)
- Allison Cool
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Tiffany Nong
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Skye Montoya
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA
| | - Justin Taylor
- Sylvester Comprehensive Cancer Center at the University of Miami Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
6
|
Alsuhebany N, Pan C, Holovac E, Do B, McBride A. Zanubrutinib in Mantle Cell Lymphoma Management: A Comprehensive Review. Blood Lymphat Cancer 2023; 13:67-76. [PMID: 38034984 PMCID: PMC10683511 DOI: 10.2147/blctt.s426588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/10/2023] [Indexed: 12/02/2023]
Abstract
Purpose The pharmacology, pharmacokinetics, pharmacodynamics, clinical efficacy, and safety of zanbrutinib are described. Summary Mantle cell lymphoma (MCL) is a mature B-cell lymphoma that is typically associated with unfavorable outcomes, and virtually all patients with MCL have refractory or relapsed disease despite aggressive treatment. The treatment paradigm for MCL has transformed dramatically over the past decade owing to rapid advancements in immunotherapy and molecular-targeted therapies. Zanubrutinib, a second-generation Bruton's tyrosine kinase inhibitor (BTKI) designated for mature B-cell non-Hodgkin's lymphoma (NHL), has drastically improved the survival outcomes in relapsed/refractory (R/R) MCL patients. This selective BTKI is a small molecule that functions by forming a covalent bond in the active site of BTK. The inhibition of BTK activity is essential for the signaling of B-cell antigen receptor (BCR) and cytokine receptor pathways. In a preclinical study, zanubrutinib inhibited malignant B-cell proliferation and reduced tumor growth. Zanubrutinib was granted FDA-accelerated approval based on the results of Phase I and II trials. The investigator-assessed overall response rate was 83.7%, of which 78% of patients achieved complete response. The median duration of response was 19.5 months, and the median progression-free survival was 22.1 months. The most common (≥20%) all-grade adverse events were low neutrophil count (46.5%), upper respiratory tract infection (38.4%), rash (36.0%), low white blood cell count (33.7%), and low platelet count (32.6%). Conclusion Zanubrutinib is a selective, next-generation, orally active, irreversible BTK inhibitor. The selectivity of zanubrutinib and its superior efficacy, with a well-tolerated safety profile, have proven to be attractive options for other malignancies.
Collapse
Affiliation(s)
- Nada Alsuhebany
- College of Pharmacy, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
- King Abdulaziz Medical City, National Guard Health Affairs, Riyadh, Kingdom of Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Kingdom of Saudi Arabia
| | - Congshan Pan
- Department of Oncology Pharmacy, University of Arizona Cancer Center, Tucson, AZ, USA
| | - Eileen Holovac
- Department of Oncology Pharmacy, VA Loma Linda Healthcare System, Loma Linda, CA, USA
| | - Brian Do
- Department of Oncology Pharmacy, Southern Arizona VA Hlth Care, Tucson, AZ, USA
| | - Ali McBride
- WW HEOR Markets, Bristol-Myers Squibb, New York City, NY, USA
| |
Collapse
|
7
|
Zhao Y, Guo YJ, Chen XL, Yang YL, Ma H, Wang YQ, Sun LN. Determination of Orelabrutinib in Human Plasma Using LC-MS/MS. Ther Drug Monit 2023; 45:599-605. [PMID: 37199420 DOI: 10.1097/ftd.0000000000001106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023]
Abstract
BACKGROUND Orelabrutinib is a second-generation Bruton tyrosine kinase inhibitor that improves the management of B-cell malignancies. The objective of this study was to develop and validate an LC-MS/MS method for quantifying orelabrutinib in human plasma. METHODS Plasma samples were processed using acetonitrile to precipitate proteins. Ibrutinib-d5 was used as the internal standard. The mobile phase comprised 10 mM ammonium formate containing 0.1% formic acid and acetonitrile (62:38, vol/vol). The multiple reaction monitoring transitions at m / z = 428.1 → 411.2 and 446.2 → 309.2 were selected for orelabrutinib and ibrutinib-d5, respectively, after ionization in the positive mode. RESULTS Total runtime was 4.5 minutes. The validated curve ranges were 1.00-500 ng/mL. This method exhibited acceptable selectivity, dilution integrity, matrix effects, and recovery. Interrun and intrarun accuracy ranged from -3.4% to 6.5%, and interrun and intrarun precision was between 2.8% and 12.8%. Stability was studied under different conditions. The incurred sample reanalysis demonstrated good reproducibility. CONCLUSIONS The LC-MS/MS method provided a simple, specific, and rapid quantification of orelabrutinib in the plasma of patients with mantle cell lymphoma or chronic lymphocytic leukemia/small lymphocytic lymphoma. The results indicated that orelabrutinib exhibits large variability between individuals and should be prudently used in combination with CYP3A4 inhibitors.
Collapse
Affiliation(s)
- Yang Zhao
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yu-Jiao Guo
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Xiang-Long Chen
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Yan-Ling Yang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Hong Ma
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China; and
- School of Pharmacy, Nanjing Medical University, Nanjing, China
| |
Collapse
|
8
|
Yang J, Wang L, Zhong X, Yang C, Wu Y. Zanubrutinib-induced aseptic meningitis: a case report and literature review. Front Pharmacol 2023; 14:1242491. [PMID: 37727390 PMCID: PMC10505928 DOI: 10.3389/fphar.2023.1242491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Zanubrutinib is a Bruton tyrosine kinase (BTK) inhibitor used in B cell malignancy treatment and is generally well tolerated in most patients. Zanubrutinib-induced aseptic meningitis is currently not reported. Herein, we present the first case of zanubrutinib-induced aseptic meningitis. A 33-year-old woman was diagnosed with relapsed/refractory follicular lymphoma and subsequently developed aseptic meningitis after receiving zanubrutinib treatment. We reviewed the literature and uncovered the lack of current reports on zanubrutinib or other BTK inhibitor-induced aseptic meningitis. Moreover, we summarized cases on aseptic meningitis induced by common chemotherapy and targeted drugs used for hematological diseases. Drug-induced aseptic meningitis (DIAM) is a drug-induced meningeal inflammation. The possible pathogenesis is the direct stimulation of the meninges via intrathecal injection of chemotherapy drugs and immune hypersensitivity response caused by immunosuppressive drugs. It is more common in women with immune deficiency and mainly manifests as persistent headache and fever. Cerebrospinal fluid examinations mainly demonstrate a significant increase in cells and proteins. DIAM diagnosis needs to exclude bacterial, fungal, viral, and tuberculosis infections; neoplastic meningitis; and systemic diseases involving the meninges. The prognosis of DIAM is usually favorable, and physicians should detect and stop the causative drug. In conclusion, zanubrutinib-induced aseptic meningitis is a rare but serious complication, and physicians should be promptly aware of this adverse event to avoid serious consequences.
Collapse
Affiliation(s)
- Jinjun Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Lian Wang
- Department of Dermatology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao Zhong
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Chenlu Yang
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Wu
- Department of Hematology and Institute of Hematology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
9
|
Ren W, Yue C, Liu L, Du L, Xu K, Zhou Y. Overexpression of Bruton Tyrosine Kinase Inhibits the Proliferation, Migration, and Invasion of Non-Small Cell Lung Cancer Cells. Anal Cell Pathol (Amst) 2023; 2023:3377316. [PMID: 37638060 PMCID: PMC10457169 DOI: 10.1155/2023/3377316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 07/07/2023] [Accepted: 07/22/2023] [Indexed: 08/29/2023] Open
Abstract
Lung cancer is one of the most lethal malignant tumors in the world. Non-small cell lung cancer (NSCLC) is the most common pathological subtype. However, the molecular mechanism of NSCLC progress is still unclear. We extracted the expression data of the Bruton's tyrosine kinase (BTK) gene in NSCLC tissues from the TCGA database. The results of paired t-test showed that the BTK gene was significantly underexpressed in NSCLC tissues. To further verify the above results, we detected the expression of the BTK gene in NSCLC cell lines A549, H1299, and H1650 at the RNA and protein levels by real-time fluorescent quantitative polymerase chain reaction and Western Blot analysis, respectively. The results showed that BTK was low expressed in NSCLC tissues and cells. More importantly, the expression of the BTK gene is also significantly related to the patient's age, gender, tumor range (T), lymph node invasion (N), tumor stage, and prognosis, and its expression level gradually decreases with the progress of the disease. It is speculated that BTK may be an independent prognostic factor of NSCLC. Our experimental results are consistent with the above clinical correlation analysis results. Overexpression of BTK can significantly inhibit the proliferation, migration, and invasion of NSCLC cells and can block the G0/G1 tumor cell cycle, indicating that overexpression of BTK can inhibit the growth, migration, and invasion of NSCLC cells.
Collapse
Affiliation(s)
- Wenjia Ren
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Cheng Yue
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Linjun Liu
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Licheng Du
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| | - Ke Xu
- NHC Key Laboratory of biosafety, National Institute for Viral Disease Control and Prevention, Changping, Beijing, China
| | - Yubai Zhou
- Department of Biotechnology, College of Life Science and Chemistry, Beijing University of Technology, Chaoyang, Beijing, China
| |
Collapse
|
10
|
Leu JH, Miao X, Shalayda K, Coe KJ, Kahnt A, Wu B, Schnarr M, Franks C, Devlin J, Yang TY, Palmer JA, Zhang M, Zhou H, Van Damme W, Smets S, Aguilar Z, Chaplan SR. A Phase 1 First-in-Human Pharmacokinetic and Pharmacodynamic Study of JNJ-64264681, a Covalent Inhibitor of Bruton's Tyrosine Kinase. Clin Pharmacol Drug Dev 2023; 12:611-624. [PMID: 37125450 DOI: 10.1002/cpdd.1253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 03/06/2023] [Indexed: 05/02/2023]
Abstract
JNJ-64264681 is an irreversible covalent inhibitor of Bruton's tyrosine kinase. This phase 1, first-in-human, 2-part (single-ascending dose [SAD]; multiple-ascending dose [MAD]) study evaluated the safety, tolerability, pharmacokinetics (PK), and pharmacodynamics (PD; Bruton's tyrosine kinase occupancy [BTKO]) of JNJ-64264681 oral solution in healthy participants. For SAD (N = 78), 6 increasing doses of JNJ-64264681 (4-400 mg) or placebo were evaluated in fasted males. The effects of sex, food, and a capsule formulation were evaluated in separate cohorts. For MAD (N = 27), sequential cohorts of male and female participants received 36/100/200 mg JNJ-64264681 once daily for 10 days. JNJ-64264681 exposure (peak concentration; area under the concentration-time curve) was less than dose proportional from 4 mg to 36 mg. Dose-normalized area under the concentration-time curves following the 36 mg and 100 mg doses were generally similar. The mean terminal half-life was 1.6-13.2 hours. With multiple doses, steady state was achieved by day 2. A semimechanistic PK/PD model was developed using the first 5 SAD cohorts' data to predict %BTKO in MAD cohorts. PK/PD model guided dose-escalation, and all participants in the 200/400 mg single-dose cohorts achieved ≥90% BTKO at 4 hours after dosing (peak) with prolonged occupancy. As BTKO data became available from MAD cohorts, it was found that observed BTKO data were consistent with model predictions. JNJ-64264681 showed no safety signals of concern. Overall, safety, tolerability, PK, BTKO, and PK/PD modeling guided the rationale for dose selection for the subsequent first-in-patient lymphoma studies.
Collapse
Affiliation(s)
- Jocelyn H Leu
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Xin Miao
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Kevin Shalayda
- Janssen Research & Development, LLC, Raritan, New Jersey, USA
| | - Kevin J Coe
- Janssen Research & Development, LLC, San Diego, California, USA
| | | | - Bonnie Wu
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Megan Schnarr
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Carol Franks
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - James Devlin
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - Tong-Yuan Yang
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
| | - James A Palmer
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Mai Zhang
- Janssen Research & Development, LLC, San Diego, California, USA
| | - Honghui Zhou
- Janssen Research & Development, LLC, Spring House, Pennsylvania, USA
- Present affiliation: Kira Pharmaceuticals, Cambridge, Massachusetts, USA
| | - Wim Van Damme
- Clinical Pharmacology Unit, Janssen Research & Development, Merksem, Belgium
| | - Sophie Smets
- Clinical Pharmacology Unit, Janssen Research & Development, Merksem, Belgium
| | - Zuleima Aguilar
- Janssen Research & Development, LLC, San Diego, California, USA
| | | |
Collapse
|
11
|
Zhang Y, Li S, Xing M, Yuan Q, He H, Sun S. Universal Approach to De Novo Drug Design for Target Proteins Using Deep Reinforcement Learning. ACS OMEGA 2023; 8:5464-5474. [PMID: 36816653 PMCID: PMC9933084 DOI: 10.1021/acsomega.2c06653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 01/05/2023] [Indexed: 05/28/2023]
Abstract
In drug design, the design and manufacture of safe and effective compounds is a long-term, complex, and complicated process. Therefore, developing a new rapid and generalizable drug design method is of great value. This study aimed to propose a general model based on reinforcement learning combined with drug-target interaction, which could be used to design new molecules according to different protein targets. The method adopted recurrent neural network molecular modeling and took the drug-target affinity model as the reward function of optimal molecular generation. It did not need to know the three-dimensional structure and active sites of protein targets but only required the information of a one-dimensional amino acid sequence. This approach was demonstrated to produce drugs highly similar to marketed drugs and design molecules with a better binding energy.
Collapse
Affiliation(s)
- Yunjiang Zhang
- Beijing
Key Laboratory for Green Catalysis and Separation, The Faculty of
Environment and Life, Beijing University
of Technology, Beijing100124, PR China
| | - Shuyuan Li
- Beijing
Key Laboratory for Green Catalysis and Separation, The Faculty of
Environment and Life, Beijing University
of Technology, Beijing100124, PR China
| | - Miaojuan Xing
- Beijing
Key Laboratory for Green Catalysis and Separation, The Faculty of
Environment and Life, Beijing University
of Technology, Beijing100124, PR China
| | - Qing Yuan
- Department
of Chemistry and Chemical Engineering, Beijing
University of Technology, Beijing100124, China
| | - Hong He
- Beijing
Key Laboratory for Green Catalysis and Separation, The Faculty of
Environment and Life, Beijing University
of Technology, Beijing100124, PR China
| | - Shaorui Sun
- Beijing
Key Laboratory for Green Catalysis and Separation, The Faculty of
Environment and Life, Beijing University
of Technology, Beijing100124, PR China
| |
Collapse
|
12
|
Song P, Bai G, Chan S, Zhang T, Tong L, Su Y, Shen Y, Chen Y, Liu Y, Lai M, Ning Y, Tang H, Fang Y, Chen Y, Ding K, Ding J, Xie H. ASK120067 potently suppresses B-cell or T-cell malignancies in vitro and in vivo by inhibiting BTK and ITK. Front Pharmacol 2022; 13:1071114. [PMID: 36588692 PMCID: PMC9799096 DOI: 10.3389/fphar.2022.1071114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Hyperactivation of Bruton's tyrosine kinase (BTK) or interleukin-2-inducible T cell kinase (ITK) has been attributed to the pathogenesis of B-cell lymphoma or T-cell leukemia, respectively, which suggests that Bruton's tyrosine kinase and interleukin-2-inducible T cell kinase are critical targets for the treatment of hematological malignancies. We identified a novel third-generation epidermal growth factor receptor (EGFR) inhibitor, ASK120067 (limertinib) in our previous research, which has been applied as a new drug application against non-small cell lung cancer in China. In this work, we found that ASK120067 displayed potent in vitro inhibitory efficacy against Bruton's tyrosine kinase protein and interleukin-2-inducible T cell kinase protein via covalent binding. In cell-based assays, ASK120067 dose-dependently suppressed Bruton's tyrosine kinase phosphorylation and exhibited anti-proliferation potency by inducing apoptosis in numerous B-lymphoma cells. Meanwhile, it caused growth arrest and induced the apoptosis of T-cell leukemia cells by attenuating interleukin-2-inducible T cell kinase activation. Oral administration of ASK120067 led to significant tumor regression in B-cell lymphoma and T-cell leukemia xenograft models by weakening Bruton's tyrosine kinase and interleukin-2-inducible T cell kinase signaling, respectively. Taken together, our studies demonstrated that ASK120067 exerted preclinical anti-tumor activities against B-/T-cell malignancy by targeting BTK/ITK.
Collapse
Affiliation(s)
- Peiran Song
- 1Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China,2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Gang Bai
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Shingpan Chan
- 3College of Pharmacy, Jinan University, Guangzhou, China
| | - Tao Zhang
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Linjiang Tong
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Su
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yanyan Shen
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yingqiang Liu
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Mengzhen Lai
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,4Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| | - Yi Ning
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Haotian Tang
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yan Fang
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yi Chen
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Ke Ding
- 3College of Pharmacy, Jinan University, Guangzhou, China
| | - Jian Ding
- 2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,*Correspondence: Jian Ding, ; Hua Xie,
| | - Hua Xie
- 1Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China,2Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China,5Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China,*Correspondence: Jian Ding, ; Hua Xie,
| |
Collapse
|
13
|
Garg N, Padron EJ, Rammohan KW, Goodman CF. Bruton's Tyrosine Kinase Inhibitors: The Next Frontier of B-Cell-Targeted Therapies for Cancer, Autoimmune Disorders, and Multiple Sclerosis. J Clin Med 2022; 11:6139. [PMID: 36294458 PMCID: PMC9604914 DOI: 10.3390/jcm11206139] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2022] [Accepted: 10/09/2022] [Indexed: 11/24/2022] Open
Abstract
Bruton's tyrosine kinase (BTK) is an important protein belonging to the tyrosine kinase family that plays a key role in the intracellular signaling and proliferation, migration, and survival of normal and malignant B-lymphocytes and myeloid cells. Understanding the role of BTK in the B-cell signaling pathway has led to the development of BTK inhibitors (BTKi) as effective therapies for malignancies of myeloid origin and exploration as a promising therapeutic option for other cancers. Given its central function in B-cell receptor signaling, inhibition of BTK is an attractive approach for the treatment of a wide variety of autoimmune diseases that involve aberrant B-cell function including systemic lupus erythematosus (SLE), rheumatoid arthritis (RA), and multiple sclerosis (MS). Here, we review the role of BTK in different cell signaling pathways, the development of BTKi in B-cell malignancies, and their emerging role in the treatment of MS and other autoimmune disorders.
Collapse
Affiliation(s)
- Neeta Garg
- Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| | | | | | | |
Collapse
|
14
|
Boutilier AJ, Huang L, Elsawa SF. Waldenström Macroglobulinemia: Mechanisms of Disease Progression and Current Therapies. Int J Mol Sci 2022; 23:11145. [PMID: 36232447 PMCID: PMC9569492 DOI: 10.3390/ijms231911145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022] Open
Abstract
Waldenström macroglobulinemia is an indolent, B-cell lymphoma without a known cure. The bone marrow microenvironment and cytokines both play key roles in Waldenström macroglobulinemia (WM) tumor progression. Only one FDA-approved drug exists for the treatment of WM, Ibrutinib, but treatment plans involve a variety of drugs and inhibitors. This review explores avenues of tumor progression and targeted drug therapy that have been investigated in WM and related B-cell lymphomas.
Collapse
Affiliation(s)
- Ava J. Boutilier
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| | - Lina Huang
- Phillips Exeter Academy, Exeter, NH 03833, USA
| | - Sherine F. Elsawa
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH 03824, USA
| |
Collapse
|
15
|
Shen P, Wang Y, Jia X, Xu P, Qin L, Feng X, Li Z, Qiu Z. Dual-target Janus kinase (JAK) inhibitors: Comprehensive review on the JAK-based strategies for treating solid or hematological malignancies and immune-related diseases. Eur J Med Chem 2022; 239:114551. [PMID: 35749986 DOI: 10.1016/j.ejmech.2022.114551] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 11/19/2022]
Abstract
Janus kinases (JAKs) are the non-receptor tyrosine kinases covering JAK1, JAK2, JAK3, and TYK2 which regulate signal transductions of hematopoietic cytokines and growth factors to play essential roles in cell growth, survival, and development. Dysregulated JAK activity leading to a constitutively activated signal transducers and activators of transcription (STAT) is strongly associated with immune-related diseases and cancers. Targeting JAK to interfere the signaling of JAK/STAT pathway has achieved quite success in the treatment of these diseases. However, inadequate clinical response and serious adverse events come along by the treatment of monotherapy of JAK inhibitors. With better and deeper understanding of JAK/STAT pathway in the pathogenesis of diseases, researchers start to show huge interest in combining inhibition of JAK and other oncogenic targets to realize a broader regulation on pathological processes to block disease development and progression, which has hastened extensive research of dual JAK inhibitors over the past decades. Until now, studies of dual JAK inhibitors have added BTK, SYK, FLT3, HDAC, Src, and Aurora kinases to the overall inhibitory profile and demonstrated significant advantage and superiority over single-target inhibitors. In this review, we elucidated the possible mechanism of synergic effects caused by dual JAK inhibitors and briefly describe the development of these agents.
Collapse
Affiliation(s)
- Pei Shen
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Yezhi Wang
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xiangxiang Jia
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Pengfei Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Lian Qin
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Xi Feng
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China
| | - Zhiyu Li
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| | - Zhixia Qiu
- Department of Medicinal Chemistry, China Pharmaceutical University, 24 Tongjiaxiang, Nanjing, 210009, PR China; Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing, 21009, PR China.
| |
Collapse
|
16
|
Alsagaby SA. Transcriptomics-Based Investigation of Molecular Mechanisms Underlying Apoptosis Induced by ZnO Nanoparticles in Human Diffuse Large B-Cell Lymphoma. Int J Nanomedicine 2022; 17:2261-2281. [PMID: 35611214 PMCID: PMC9124502 DOI: 10.2147/ijn.s355408] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Zinc oxide nanoparticles (ZnO NPs) show anti-cancer activity. Diffuse Large B-cell Lymphoma (DLBCL) is a type of B-cell malignancies with unsatisfying treatment outcomes. This study was set to assess the potential of ZnO NPs to selectively induce apoptosis in human DLBCL cells (OCI-LY3), and to describe possible molecular mechanisms of action. Methods The impact of ZnO NPs on DLBCL cells and normal peripheral blood mononuclear cells (PBMCs) was studied using cytotoxicity assay and flow-cytometry. Transcriptomics analysis was conducted to identify ZnO NPs-dependent changes in the transcriptomic profiles of DLBCL cells. Results ZnO NPs selectively induced apoptosis in DLBCL cells, and caused changes in their transcriptomes. Deferential gene expression (DGE) with fold change (FC) ≥3 and p ≤ 0.008 with corrected p ≤ 0.05 was identified for 528 genes; 125 genes were over-expressed and 403 genes were under-expressed in ZnO NPs-treated DLBCL cells. The over-expressed genes involved in biological processes and pathways like stress response to metal ion, cellular response to zinc ion, metallothioneins bind metals, oxidative stress, and negative regulation of growth. In contrast, the under-expressed genes were implicated in DNA packaging complex, signaling by NOTCH, negative regulation of gene expression by epigenetic, signaling by WNT, M phase of cell cycle, and telomere maintenance. Setting the FC to ≥1.5 with p ≤ 0.05 and corrected p ≤ 0.1 showed ZnO NPs to induce over-expression of anti-oxidant genes and under-expression of oncogenes; target B-cell receptor (BCR) signaling pathway and NF-κB pathway; and promote apoptosis by intrinsic and extrinsic pathways. Discussion Overall, ZnO NPs selectively induced apoptosis in DLBCL cells, and possible molecular mechanisms of action were described.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratories Sciences, College of Applied Medical Sciences, Majmaah University, AL-Majmaah, 11932, Saudi Arabia
- Correspondence: Suliman A Alsagaby, Email
| |
Collapse
|
17
|
Karel M, Tullemans B, D'Italia G, Lemmens T, Claushuis T, Kuijpers M, Cosemans J. The effect of Bruton's tyrosine kinase inhibitor ibrutinib on atherothrombus formation under stenotic flow conditions. Thromb Res 2022; 212:72-80. [DOI: 10.1016/j.thromres.2022.02.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/08/2022] [Accepted: 02/22/2022] [Indexed: 02/07/2023]
|
18
|
Wang J, Yang J, Kopeček J. Nanomedicines in B cell-targeting therapies. Acta Biomater 2022; 137:1-19. [PMID: 34687954 PMCID: PMC8678319 DOI: 10.1016/j.actbio.2021.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/29/2021] [Accepted: 10/14/2021] [Indexed: 02/08/2023]
Abstract
B cells play multiple roles in immune responses related to autoimmune diseases as well as different types of cancers. As such, strategies focused on B cell targeting attracted wide interest and developed intensively. There are several common mechanisms various B cell targeting therapies have relied on, including direct B cell depletion, modulation of B cell antigen receptor (BCR) signaling, targeting B cell survival factors, targeting the B cell and T cell costimulation, and immune checkpoint blockade. Nanocarriers, used as drug delivery vehicles, possess numerous advantages to low molecular weight drugs, reducing drug toxicity, enhancing blood circulation time, as well as augmenting targeting efficacy and improving therapeutic effect. Herein, we review the commonly used targets involved in B cell targeting approaches and the utilization of various nanocarriers as B cell-targeted delivery vehicles. STATEMENT OF SIGNIFICANCE: As B cells are engaged significantly in the development of many kinds of diseases, utilization of nanomedicines in B cell depletion therapies have been rapidly developed. Although numerous studies focused on B cell targeting have already been done, there are still various potential receptors awaiting further investigation. This review summarizes the most relevant studies that utilized nanotechnologies associated with different B cell depletion approaches, providing a useful tool for selection of receptors, agents and/or nanocarriers matching specific diseases. Along with uncovering new targets in the function map of B cells, there will be a growing number of candidates that can benefit from nanoscale drug delivery.
Collapse
Affiliation(s)
- Jiawei Wang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jiyuan Yang
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States
| | - Jindřich Kopeček
- Center for Controlled Chemical Delivery, University of Utah, Salt Lake City, UT, United States; Department of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, Salt Lake City, UT, United States; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, United States.
| |
Collapse
|
19
|
Butler M, van Ingen Schenau DS, Yu J, Jenni S, Dobay MP, Hagelaar R, Vervoort BMT, Tee TM, Hoff FW, Meijerink JP, Kornblau SM, Bornhauser B, Bourquin JP, Kuiper RP, van der Meer LT, van Leeuwen FN. BTK inhibition sensitizes acute lymphoblastic leukemia to asparaginase by suppressing the amino acid response pathway. Blood 2021; 138:2383-2395. [PMID: 34280258 PMCID: PMC8832462 DOI: 10.1182/blood.2021011787] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 07/02/2021] [Indexed: 11/20/2022] Open
Abstract
Asparaginase (ASNase) therapy has been a mainstay of acute lymphoblastic leukemia (ALL) protocols for decades and shows promise in the treatment of a variety of other cancers. To improve the efficacy of ASNase treatment, we used a CRISPR/Cas9-based screen to identify actionable signaling intermediates that improve the response to ASNase. Both genetic inactivation of Bruton's tyrosine kinase (BTK) and pharmacological inhibition by the BTK inhibitor ibrutinib strongly synergize with ASNase by inhibiting the amino acid response pathway, a mechanism involving c-Myc-mediated suppression of GCN2 activity. This synthetic lethal interaction was observed in 90% of patient-derived xenografts, regardless of the genomic subtype. Moreover, ibrutinib substantially improved ASNase treatment response in a murine PDX model. Hence, ibrutinib may be used to enhance the clinical efficacy of ASNase in ALL. This trial was registered at www.clinicaltrials.gov as # NCT02884453.
Collapse
Affiliation(s)
- Miriam Butler
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Laboratory of Pediatric Oncology, Department of Pediatrics, and
| | | | - Jiangyan Yu
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Human Genetics, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands Radboud University Medical Center, Nijmegen, The Netherlands
| | - Silvia Jenni
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Maria P Dobay
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Rico Hagelaar
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | | | - Trisha M Tee
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Fieke W Hoff
- Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
- Department of Pediatric Oncology/Hematology, Beatrix Children's Hospital University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Jules P Meijerink
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Steven M Kornblau
- Department of Leukemia and Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, TX
| | - Beat Bornhauser
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jean-Pierre Bourquin
- Department of Pediatric Oncology, Children's Research Centre, University Children's Hospital Zurich, Zurich, Switzerland
| | - Roland P Kuiper
- Princess Maxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Genetics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | |
Collapse
|
20
|
Ren S, Wang X, Song J, Jin G. Discovery of novel ibrutinib analogues to treat malignant melanoma. Bioorg Chem 2021; 117:105419. [PMID: 34689082 DOI: 10.1016/j.bioorg.2021.105419] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/28/2021] [Accepted: 10/07/2021] [Indexed: 12/14/2022]
Abstract
A series of novel ibrutinib analogues was synthesized, and their proliferation inhibitory activities against various B lymphoma cell lines (DaudiB and Raji) and solid tumor cells (B16, CT26, HepG2 and 4T1) were evaluated. The most potent compound, YL7, exhibited strong antiproliferative activity in all cell lines, and its IC50 value in B16 cells was almost 9-fold better than that of ibrutinib. Mechanism of action studies showed that YL7 inhibited proliferation and migration and induced G1 cell cycle arrest, apoptosis and autophagy in B16 cells. Further assessment of in vivo antitumor efficacies demonstrated that YL7 significantly inhibited the growth of B16 melanoma. These preliminary studies suggest that it is reasonable to modify the structure of ibrutinib for antimelanoma treatment.
Collapse
Affiliation(s)
- Sumei Ren
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China; Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaodong Wang
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Jun Song
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guangyi Jin
- School of Pharmaceutical Sciences, Nation-Regional Engineering Lab for Synthetic Biology of Medicine, International Cancer Center, Shenzhen University Health Science Center, Shenzhen University, Shenzhen 518060, Guangdong, China.
| |
Collapse
|
21
|
Wu J, Zhou J, Xu Q, Foley R, Guo J, Zhang X, Tian C, Mu M, Xing Y, Liu Y, Wang X, Hu D. Identification of Key Genes Driving Tumor Associated Macrophage Migration and Polarization Based on Immune Fingerprints of Lung Adenocarcinoma. Front Cell Dev Biol 2021; 9:751800. [PMID: 34805160 PMCID: PMC8600368 DOI: 10.3389/fcell.2021.751800] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 09/09/2021] [Indexed: 01/17/2023] Open
Abstract
The identification of reliable indicators in the tumor microenvironment (TME) is critical for tumor prognosis. Tumor associated macrophages (TAMs) are the major component of non-tumor stromal cells in TME and have increasingly been recognized as a predictive biomarker for lung adenocarcinoma (LUAD) prognosis. Here, we report the development of a prognosis model for LUAD using three immune-related genes (IRGs) detected in The Cancer Genome Atlas (TCGA) which potentially regulate TAMs in TME. In 497 LUAD patients, higher immune scores conferred better overall survival (OS). We identified 93 hub IRGs out of 234 for further prognostic significance. Among them, three IRGs (BTK, Cd1c, and S100P) were proved to be closely correlated to the prognosis of patients with LUAD. Moreover, the immune risk score (IRS) based on the gene expression level of the three IRGs was an independent prognostic factor for OS. Higher IRS predicted lower OS, higher mortality and worse tumor stage. With a good predictive ability [area under the ROC curve (AUC) in TCGA = 0.701, AUC in GEO = 0.722], the IRS contributed to a good risk stratification ability of the nomogram. Immunologically, the three IRGs were related to M1 macrophages and NK cell subsets in TME. Interestingly, by characterizing these immune components in situ we found that S100P is a driver for tumor cells to induce TAM migration and M2 polarization in the immunosuppressive tumor niche. We identified the key genes driving TAM migration and transformation and elucidated the immune landscape of LUAD. The data suggest that IRGs from TME have the potential to become indicators for estimating cancer prognosis and guiding individualized treatment.
Collapse
Affiliation(s)
- Jing Wu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Jiawei Zhou
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Qian Xu
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Ruth Foley
- The Charles Institute of Dermatology, School of Medicine, University College Dublin, Dublin, Ireland
| | - Jianqiang Guo
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Xin Zhang
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Chang Tian
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Min Mu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| | - Yingru Xing
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, China
| | - Yafeng Liu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Xueqin Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China
| | - Dong Hu
- School of Medicine, Anhui University of Science and Technology, Huainan, China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, China.,Key Laboratory of Industrial Dust Prevention and Control & Occupational Safety and Health of the Ministry of Education, Anhui University of Science and Technology, Huainan, China
| |
Collapse
|
22
|
Meredith LR, Burnette EM, Grodin EN, Irwin MR, Ray LA. Immune treatments for alcohol use disorder: A translational framework. Brain Behav Immun 2021; 97:349-364. [PMID: 34343618 PMCID: PMC9044974 DOI: 10.1016/j.bbi.2021.07.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 07/10/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
While the immune system is essential for survival, an excessive or prolonged inflammatory response, such as that resulting from sustained heavy alcohol use, can damage the host and contribute to psychiatric disorders. A growing body of literature indicates that the immune system plays a critical role in the development and maintenance of alcohol use disorder (AUD). As such, there is enthusiasm for treatments that can restore healthy levels of inflammation as a mechanism to reduce drinking and promote recovery. In this qualitative literature review, we provide a conceptual rationale for immune therapies and discuss progress in medications development for AUD focused on the immune system as a treatment target. This review is organized into sections based on primary signaling pathways targeted by the candidate therapies, namely: (a) toll-like receptors, (b) phosphodiesterase inhibitors, (c) peroxisome proliferator-activated receptors, (d) microglia and astrocytes, (e) other immune pharmacotherapies, and (f) behavioral therapies. As relevant within each section, we examine the basic biological mechanisms of each class of therapy and evaluate preclinical research testing the role of the therapy on mitigating alcohol-related behaviors in animal models. To the extent available, translational findings are reviewed with discussion of completed and ongoing randomized clinical trials and their findings to date. An applied and clinically focused approach is taken to identify the potential clinical applications of the various treatments reviewed. We conclude by delineating the most promising candidate treatments and discussing future directions by considering opportunities for immune treatment development and personalized medicine for AUD.
Collapse
Affiliation(s)
- Lindsay R Meredith
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Elizabeth M Burnette
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Erica N Grodin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael R Irwin
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA; Jane and Terry Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, CA, USA; Cousins Center for Psychoneuroimmunology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lara A Ray
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA; Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
23
|
Rogers BB. B-Cell Malignancies: The Use of Small Molecule Agents for Treatment and Management. Clin J Oncol Nurs 2021; 24:199-204. [PMID: 32196006 DOI: 10.1188/20.cjon.199-204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Hematologic B-cell malignancies, which have varying behavior patterns, disease processes, and treatment responses, include non-Hodgkin lymphoma, leukemias, and myeloma. Although monoclonal antibodies and other agents have led to dramatic advances in the treatment of B-cell malignancies, the development of small molecules have enhanced the ability to treat and manage these malignancies and their adverse events (AEs). Oncology nurses need to be educated on the unique side effects for each class of these agents so that they can administer interventions to prevent and manage AEs in patients.
Collapse
|
24
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T, Yang S. Small molecules in targeted cancer therapy: advances, challenges, and future perspectives. Signal Transduct Target Ther 2021; 6:201. [PMID: 34054126 PMCID: PMC8165101 DOI: 10.1038/s41392-021-00572-w] [Citation(s) in RCA: 716] [Impact Index Per Article: 179.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/23/2021] [Accepted: 03/15/2021] [Indexed: 02/07/2023] Open
Abstract
Due to the advantages in efficacy and safety compared with traditional chemotherapy drugs, targeted therapeutic drugs have become mainstream cancer treatments. Since the first tyrosine kinase inhibitor imatinib was approved to enter the market by the US Food and Drug Administration (FDA) in 2001, an increasing number of small-molecule targeted drugs have been developed for the treatment of malignancies. By December 2020, 89 small-molecule targeted antitumor drugs have been approved by the US FDA and the National Medical Products Administration (NMPA) of China. Despite great progress, small-molecule targeted anti-cancer drugs still face many challenges, such as a low response rate and drug resistance. To better promote the development of targeted anti-cancer drugs, we conducted a comprehensive review of small-molecule targeted anti-cancer drugs according to the target classification. We present all the approved drugs as well as important drug candidates in clinical trials for each target, discuss the current challenges, and provide insights and perspectives for the research and development of anti-cancer drugs.
Collapse
Affiliation(s)
- Lei Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Yueshan Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Liang Xiong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Wenjing Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ming Wu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Ting Yuan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, People's Republic of China
| | - Wei Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Chenyu Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Zhuang Miao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Tianqi Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Shengyong Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China.
| |
Collapse
|
25
|
Uckun FM, Venkatachalam T. Targeting Solid Tumors With BTK Inhibitors. Front Cell Dev Biol 2021; 9:650414. [PMID: 33937249 PMCID: PMC8079762 DOI: 10.3389/fcell.2021.650414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023] Open
Abstract
The repurposing of FDA-approved Bruton's tyrosine kinase (BTK) inhibitors as therapeutic agents for solid tumors may offer renewed hope for chemotherapy-resistant cancer patients. Here we review the emerging evidence regarding the clinical potential of BTK inhibitors in solid tumor therapy. The use of BTK inhibitors may through lead optimization and translational research lead to the development of new and effective combination regimens for metastatic and/or therapy-refractory solid tumor patients.
Collapse
Affiliation(s)
- Fatih M Uckun
- Immuno-Oncology Program, Ares Pharmaceuticals, LLC, St. Paul, MN, United States
| | | |
Collapse
|
26
|
Manji F, Puckrin R, Stewart DA. Novel synthetic drugs for the treatment of non-Hodgkin lymphoma. Expert Opin Pharmacother 2021; 22:1417-1427. [PMID: 33711241 DOI: 10.1080/14656566.2021.1902988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: Over the past two decades, deeper understanding of B-cell signaling pathways and other mechanisms of lymphomagenesis have yielded promising targets for novel drugs in the treatment of non-Hodgkin lymphoma.Areas covered: This article provides a comprehensive review of approved synthetic drugs targeting the BTK, PI3K, immunomodulation, proteasome, HDAC, EZH2, and nuclear export pathways in non-Hodgkin lymphoma. The review includes coverage of the pharmacology, efficacy, toxicity, and active areas of research for each drug. The authors also provide their expert perspectives on the field and their opinions for the future.Expert opinion: Although novel synthetic drugs have generally not impacted clinical practice to the same extent as immune and cellular therapies, there remains an important role for targeted drugs in the treatment of non-Hodgkin lymphoma, particularly in the relapsed setting and for patients ineligible for more intensive therapies. Clinical outcomes and tolerability may improve further with the development of newer generations of synthetic drugs and emerging combination regimens with other targeted and immune therapies.
Collapse
Affiliation(s)
- Farheen Manji
- Princess Margaret Cancer Centre, University of Toronto, Toronto, Ontaria, Canada
| | - Robert Puckrin
- Postgraduate Medical Education, University of Calgary, Calgary, Alberta, Canada
| | - Douglas A Stewart
- Department of Oncology, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
27
|
Kim JM, Park J, Noh EM, Song HK, Kang SY, Jung SH, Kim JS, Park BH, Lee YR, Youn HJ. Bruton's agammaglobulinemia tyrosine kinase (Btk) regulates TPA‑induced breast cancer cell invasion via PLCγ2/PKCβ/NF‑κB/AP‑1‑dependent matrix metalloproteinase‑9 activation. Oncol Rep 2021; 45:56. [PMID: 33760219 PMCID: PMC7962096 DOI: 10.3892/or.2021.8007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 01/14/2021] [Indexed: 12/13/2022] Open
Abstract
Bruton's agammaglobulinemia tyrosine kinase (BTK) is an important cytoplasmic tyrosine kinase involved in B-lymphocyte development, differentiation, and signaling. Activated protein kinase C (PKC), in turn, induces the activation of mitogen-activated protein kinase (MAPK) signaling, which promotes cell proliferation, viability, apoptosis, and metastasis. This effect is associated with nuclear factor-κB (NF-κB) activation, suggesting an anti-metastatic effect of BTK inhibitors on MCF-7 cells that leads to the downregulation of matrix metalloproteinase (MMP)-9 expression. However, the effect of BTK on breast cancer metastasis is unknown. In this study, the anti-metastatic activity of BTK inhibitors was examined in MCF-7 cells focusing on MMP-9 expression in 12-O-tetradecanoylphorbol-13-acetate (TPA)-stimulated MCF-7 cells. The expression and activity of MMP-9 in MCF-7 cells were investigated using quantitative polymerase chain reaction analysis, western blotting, and zymography. Cell invasion and migration were investigated using the Matrigel invasion and cell migration assays. BTK inhibitors [ibrutinib (10 µM), CNX-774 (10 µM)] significantly attenuated TPA-induced cell invasion and migration in MCF-7 cells and inhibited the activation of the phospholipase Cγ2/PKCβ signaling pathways. In addition, small interfering RNA specific for BTK suppressed MMP-9 expression and cell metastasis. Collectively, results of the present study indicated that BTK suppressed TPA-induced MMP-9 expression and cell invasion/migration by activating the MAPK or IκB kinase/NF-κB/activator protein-1 pathway. The results clarify the mechanism of action of BTK in cancer cell metastasis by regulating MMP-9 expression in MCF-7 cells.
Collapse
Affiliation(s)
- Jeong-Mi Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Jinny Park
- Department of Internal Medicine, Division of Hematology, Gil Medical Center, Gachon University College of Medicine, Incheon 405‑760, Republic of Korea
| | - Eun-Mi Noh
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Hyun-Kyung Song
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Sang Yull Kang
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Sung Hoo Jung
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Jong-Suk Kim
- Department of Biochemistry, Institute of Medical Science, Chonbuk National University Medical School, Jeonju, Jeollabuk 560‑182, Republic of Korea
| | - Byung-Hyun Park
- Department of Biochemistry and Molecular Biology and Director of Center for Meta Inflammation Research, Chonbuk National University Medical School, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Young-Rae Lee
- Department of Oral Biochemistry, School of Dentistry, Wonkwang University, Iksan, Jeollabuk 570‑749, Republic of Korea
| | - Hyun Jo Youn
- Department of Surgery, Research Institute of Clinical Medicine, Jeonbuk National University Hospital, Jeonbuk National University and Biomedical Research Institute, Jeonju, Jeollabuk 560‑182, Republic of Korea
| |
Collapse
|
28
|
Anand GS. Disrupting enzyme fluidity. eLife 2021; 10:65221. [PMID: 33492229 PMCID: PMC7834015 DOI: 10.7554/elife.65221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 01/18/2021] [Indexed: 11/29/2022] Open
Abstract
A combination of X-ray crystallography, NMR, and mass spectrometry has revealed how diverse small-molecule inhibitors bind Bruton’s tyrosine kinase and alter the conformation of this enzyme.
Collapse
Affiliation(s)
- Ganesh Srinivasan Anand
- Department of Chemistry and Huck Institute of Life Sciences, Pennsylvania State University, University Park, United States
| |
Collapse
|
29
|
Wang K, Xu Q, Zhong H. The Bruton's Tyrosine Kinase Inhibitor Ibrutinib Impairs the Vascular Development of Zebrafish Larvae. Front Pharmacol 2021; 11:625498. [PMID: 33519491 PMCID: PMC7838594 DOI: 10.3389/fphar.2020.625498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/15/2020] [Indexed: 12/13/2022] Open
Abstract
Ibrutinib is an orally bioavailable, irreversible selective Bruton’s tyrosine kinase inhibitor that has demonstrated impressive therapeutic effects in patients with B cell malignancies. However, adverse effects, such as bleeding and hypertension, are also reported, implying that studies on the toxicological effect of ibrutinib on living organisms are needed. Here, we have used zebrafish, a successful model organism for studying toxicology, to investigate the influence of ibrutinib during embryogenesis. We found that ibrutinib had potent toxicity on embryonic development, especially vascular development in zebrafish embryos. We also revealed that ibrutinib perturbed vascular formation by suppressing angiogenesis, rather than vasculogenesis. In addition, ibrutinib exposure led to the collapse of the vascular lumen, as well as reduced proliferation and enhanced apoptosis of vascular endothelial cells. Moreover, the expression of vascular development-related genes was also altered in ibrutinib-treated embryos. To our knowledge, this is the first study to describe the vascular toxicity of ibrutinib in an animal model, providing a theoretical basis for clinical safety guidelines in ibrutinib treatment.
Collapse
Affiliation(s)
- Kun Wang
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Qiushi Xu
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| | - Hanbing Zhong
- Department of Biology, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
30
|
Joseph RE, Amatya N, Fulton DB, Engen JR, Wales TE, Andreotti A. Differential impact of BTK active site inhibitors on the conformational state of full-length BTK. eLife 2020; 9:60470. [PMID: 33226337 PMCID: PMC7834017 DOI: 10.7554/elife.60470] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 11/20/2020] [Indexed: 12/30/2022] Open
Abstract
Bruton’s tyrosine kinase (BTK) is targeted in the treatment of B-cell disorders including leukemias and lymphomas. Currently approved BTK inhibitors, including Ibrutinib, a first-in-class covalent inhibitor of BTK, bind directly to the kinase active site. While effective at blocking the catalytic activity of BTK, consequences of drug binding on the global conformation of full-length BTK are unknown. Here, we uncover a range of conformational effects in full-length BTK induced by a panel of active site inhibitors, including large-scale shifts in the conformational equilibria of the regulatory domains. Additionally, we find that a remote Ibrutinib resistance mutation, T316A in the BTK SH2 domain, drives spurious BTK activity by destabilizing the compact autoinhibitory conformation of full-length BTK, shifting the conformational ensemble away from the autoinhibited form. Future development of BTK inhibitors will need to consider long-range allosteric consequences of inhibitor binding, including the emerging application of these BTK inhibitors in treating COVID-19. Treatments for blood cancers, such as leukemia and lymphoma, rely heavily on chemotherapy, using drugs that target a vulnerable aspect of the cancer cells. B-cells, a type of white blood cell that produces antibodies, require a protein called Bruton’s tyrosine kinase, or BTK for short, to survive. The drug ibrutinib (Imbruvica) is used to treat B-cell cancers by blocking BTK. The BTK protein consists of several regions. One of them, known as the kinase domain, is responsible for its activity as an enzyme (which allows it to modify other proteins by adding a ‘tag’ known as a phosphate group). The other regions of BTK, known as regulatory modules, control this activity. In BTK’s inactive form, the regulatory modules attach to the kinase domain, blocking the regulatory modules from interacting with other proteins. When BTK is activated, it changes its conformation so the regulatory regions detach and become available for interactions with other proteins, at the same time exposing the active kinase domain. Ibrutinib and other BTK drugs in development bind to the kinase domain to block its activity. However, it is not known how this binding affects the regulatory modules. Previous efforts to study how drugs bind to BTK have used a version of the protein that only had the kinase domain, instead of the full-length protein. Now, Joseph et al. have studied full-length BTK and how it binds to five different drugs. The results reveal that ibrutinib and another drug called dasatinib both indirectly disrupt the normal position of the regulatory domains pushing BTK toward a conformation that resembles the activated state. By contrast, the three other compounds studied do not affect the inactive structure. Joseph et al. also examined a mutation in BTK that confers resistance against ibrutinib. This mutation increases the activity of BTK by disrupting the inactive structure, leading to B cells surviving better. Understanding how drug resistance mechanisms can work will lead to better drug treatment strategies for cancer. BTK is also a target in other diseases such as allergies or asthma and even COVID-19. If interactions between partner proteins and the regulatory domain are important in these diseases, then they may be better treated with drugs that maintain the regulatory modules in their inactive state. This research will help to design drugs that are better able to control BTK activity.
Collapse
Affiliation(s)
- Raji E Joseph
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - Neha Amatya
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - D Bruce Fulton
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| | - John R Engen
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Thomas E Wales
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, United States
| | - Amy Andreotti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, United States
| |
Collapse
|
31
|
Liu J, Ji M, Li Z, Xu X, Li L, Li H, Tian Y, Su X. A rapid UHPLC–MS/MS method for the quantification of ARQ531 in rat plasma: Validation and its application to a pharmacokinetic study. Biomed Chromatogr 2020; 34:e4937. [DOI: 10.1002/bmc.4937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 06/20/2020] [Accepted: 06/29/2020] [Indexed: 11/09/2022]
Affiliation(s)
- Jizhen Liu
- Laboratory of Animal Center Guangdong Medical University Dongguan Guangdong Province China
| | - Musi Ji
- Department of Internal Medicine, Liaobu Hospital Guangdong Medical University Dongguan Guangdong Province China
| | - Zhidong Li
- Laboratory of Animal Center Guangdong Medical University Dongguan Guangdong Province China
| | - Xun Xu
- Laboratory of Animal Center Guangdong Medical University Dongguan Guangdong Province China
| | - Lili Li
- Laboratory of Animal Center Guangdong Medical University Dongguan Guangdong Province China
| | - Huawen Li
- Laboratory of Animal Center Guangdong Medical University Dongguan Guangdong Province China
| | - Yuguang Tian
- Laboratory of Animal Center Southern Medical University Guangzhou Guangdong Province China
| | - Xiaohua Su
- Laboratory of Animal Center Guangdong Medical University Dongguan Guangdong Province China
- Laboratory of Animal Center Southern Medical University Guangzhou Guangdong Province China
| |
Collapse
|
32
|
Pery N, Rizvi NB, Shafiq MI. Development of piperidinyl dipyrrrolopyridine-based dual inhibitors of Janus kinase and Bruton’s tyrosine kinase: a potential therapeutic probability to deal with rheumatoid arthritis. J Mol Model 2020; 26:235. [DOI: 10.1007/s00894-020-04512-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 08/05/2020] [Indexed: 02/07/2023]
|
33
|
Li C, Franklin L, Chen R, Mack T, Humora M, Ma B, Hopkins BT, Guzowski J, Zheng F, MacPhee M, Lin Y, Ferguson S, Patience D, Moniz GA, Kiesman WF, O’Brien EM. Process Development and Large-Scale Synthesis of BTK Inhibitor BIIB068. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.0c00087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Chaomin Li
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Lloyd Franklin
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Robbie Chen
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Tamera Mack
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael Humora
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Bin Ma
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Brian T. Hopkins
- Medicinal Chemistry, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - John Guzowski
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Fengmei Zheng
- Pharmaceutical Sciences, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Michael MacPhee
- Pharmaceutical Sciences, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Yiqing Lin
- Pharmaceutical Sciences, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Steven Ferguson
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Daniel Patience
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - George A. Moniz
- CMC Management, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - William F. Kiesman
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| | - Erin M. O’Brien
- Chemical Process Development, Biogen, 225 Binney Street, Cambridge, Massachusetts 02142, United States
| |
Collapse
|
34
|
The Interplay between MicroRNAs and the Components of the Tumor Microenvironment in B-Cell Malignancies. Int J Mol Sci 2020; 21:ijms21093387. [PMID: 32403283 PMCID: PMC7246984 DOI: 10.3390/ijms21093387] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/22/2020] [Accepted: 05/07/2020] [Indexed: 12/12/2022] Open
Abstract
An increased focus is being placed on the tumorigenesis and contexture of tumor microenvironment in hematopoietic and solid tumors. Despite recent clinical revolutions in adoptive T-cell transfer approaches and immune checkpoint blockade, tumor microenvironment is a major obstacle to tumor regression in B-cell malignancies. A transcriptional alteration of coding and non-coding RNAs, such as microRNAs (miRNAs), has been widely demonstrated in the tumor microenvironment of B-cell malignancies. MiRNAs have been associated with different clinical-biological forms of B-cell malignancies and involved in the regulation of B lymphocyte development, maturation, and function, including B-cell activation and malignant transformation. Additionally, tumor-secreted extracellular vesicles regulate recipient cell functions in the tumor microenvironment to facilitate metastasis and progression by delivering miRNA contents to neighboring cells. Herein, we focus on the interplay between miRNAs and tumor microenvironment components in the different B-cell malignancies and its impact on diagnosis, proliferation, and involvement in treatment resistance.
Collapse
|
35
|
Bi KW, Wei XG, Qin XX, Li B. BTK Has Potential to Be a Prognostic Factor for Lung Adenocarcinoma and an Indicator for Tumor Microenvironment Remodeling: A Study Based on TCGA Data Mining. Front Oncol 2020; 10:424. [PMID: 32351880 PMCID: PMC7175916 DOI: 10.3389/fonc.2020.00424] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 03/10/2020] [Indexed: 01/25/2023] Open
Abstract
Tumor microenvironment (TME) plays a crucial role in the initiation and progression of lung adenocarcinoma (LUAD); however, there is still a challenge in understanding the dynamic modulation of the immune and stromal components in TME. In the presented study, we applied CIBERSORT and ESTIMATE computational methods to calculate the proportion of tumor-infiltrating immune cell (TIC) and the amount of immune and stromal components in 551 LUAD cases from The Cancer Genome Atlas (TCGA) database. The differentially expressed genes (DEGs) were analyzed by COX regression analysis and protein–protein interaction (PPI) network construction. Then, Bruton tyrosine kinase (BTK) was determined as a predictive factor by the intersection analysis of univariate COX and PPI. Further analysis revealed that BTK expression was negatively correlated with the clinical pathologic characteristics (clinical stage, distant metastasis) and positively correlated with the survival of LUAD patients. Gene Set Enrichment Analysis (GSEA) showed that the genes in the high-expression BTK group were mainly enriched in immune-related activities. In the low-expression BTK group, the genes were enriched in metabolic pathways. CIBERSORT analysis for the proportion of TICs revealed that B-cell memory and CD8+ T cells were positively correlated with BTK expression, suggesting that BTK might be responsible for the preservation of immune-dominant status for TME. Thus, the levels of BTK might be useful for outlining the prognosis of LUAD patients and especially be a clue that the status of TME transition from immune-dominant to metabolic activity, which offered an extra insight for therapeutics of LUAD.
Collapse
Affiliation(s)
- Ke-Wei Bi
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xu-Ge Wei
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Xiao-Xue Qin
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| | - Bo Li
- Key Laboratory of Cell Biology, Department of Developmental Cell Biology, Ministry of Public Health and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University, Shenyang, China
| |
Collapse
|
36
|
Hanna KS, Campbell M, Husak A, Sturm S. The role of Bruton's tyrosine kinase inhibitors in the management of mantle cell lymphoma. J Oncol Pharm Pract 2020; 26:1190-1199. [PMID: 32279595 DOI: 10.1177/1078155220915956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mantle cell lymphoma is a rare subtype of B-cell non-Hodgkin's lymphomas that is generally classified as an aggressive lymphoma requiring front-line chemo-immunotherapy with stem cell rescue. Despite effective treatment, many patients relapse or are refractory to front-line therapy. In addition, these patients may also develop drug resistance requiring novel modalities for subsequent lines. Bruton's tyrosine kinase inhibitors have demonstrated a well-tolerated safety and efficacy profile across several B-cell malignancies. Ibrutinib, acalabrutinib, and zanubrutinib are FDA-approved as treatment options for patients with Mantle cell lymphoma following one prior line of therapy. Various factors should be considered which include the adverse event profile of these agents and ability to adhere to therapy. In this article, we review the role of Bruton's tyrosine kinase inhibitors for the management of Mantle cell lymphoma and review the clinical pharmacology, pharmacokinetics, safety and efficacy, and future directions.
Collapse
Affiliation(s)
| | | | - Alex Husak
- College of Pharmacy, University of Minnesota, MN, USA
| | - Sabrina Sturm
- College of Pharmacy, University of Minnesota, MN, USA
| |
Collapse
|
37
|
Hamid AB, Petreaca RC. Secondary Resistant Mutations to Small Molecule Inhibitors in Cancer Cells. Cancers (Basel) 2020; 12:cancers12040927. [PMID: 32283832 PMCID: PMC7226513 DOI: 10.3390/cancers12040927] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 12/14/2022] Open
Abstract
Secondary resistant mutations in cancer cells arise in response to certain small molecule inhibitors. These mutations inevitably cause recurrence and often progression to a more aggressive form. Resistant mutations may manifest in various forms. For example, some mutations decrease or abrogate the affinity of the drug for the protein. Others restore the function of the enzyme even in the presence of the inhibitor. In some cases, resistance is acquired through activation of a parallel pathway which bypasses the function of the drug targeted pathway. The Catalogue of Somatic Mutations in Cancer (COSMIC) produced a compendium of resistant mutations to small molecule inhibitors reported in the literature. Here, we build on these data and provide a comprehensive review of resistant mutations in cancers. We also discuss mechanistic parallels of resistance.
Collapse
|
38
|
Abstract
The standard regimen for the treatment of newly diagnosed primary CNS lymphoma (PCNSL) remains regimens that contain high-dose methotrexate (MTX). While these regimens can provide control for some patients, there is a dearth of options for the treatment of patients with PCNSL who cannot tolerate MTX-containing regimens, or whose cancers are refractory to MTX. In this article, we review a promising new option; ibrutinib, a Bruton tyrosine kinase inhibitor, for patients with relapsed and refractory PCNSL.
Collapse
Affiliation(s)
- Justin T Low
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| | - Katherine B Peters
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA.,Department of Neurology, The Preston Robert Tisch Brain Tumor Center, Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
39
|
Liu S, Da Y, Wang F, Yan R, Shu Y, Lin P, Lin J. Targeted selective degradation of Bruton’s tyrosine kinase by PROTACs. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02526-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
40
|
Zhai Z, Li R, Bai X, Ning X, Lin Z, Zhao X, Jin Y, Yin Y. Design, synthesis and biological evaluation of novel dithiocarbamate-substituted diphenylaminopyrimidine derivatives as BTK inhibitors. Bioorg Med Chem 2019; 27:4124-4142. [DOI: 10.1016/j.bmc.2019.07.043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 02/08/2023]
|