1
|
Wang Z, Lau JW, Liu S, Ren Z, Gong Z, Liu X, Xing B. A Nitroreductase-Activatable Metabolic Reporter for Covalent Labeling of Pathological Hypoxic Cells in Tumorigenesis. Angew Chem Int Ed Engl 2024; 63:e202411636. [PMID: 39152515 DOI: 10.1002/anie.202411636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Aberrant hypoxic stress will initiate a cascade of pathological consequence observed prominently in tumorigenesis. Understanding of hypoxia's role in tumorigenesis is highly essential for developing effective therapeutics, which necessitates reliable tools to specifically distinguish hypoxic tumor cells (or tissues) and correlate their dynamics with the status of disease in complex living settings for precise theranostics. So far, disparate hypoxia-responsive probe molecules and prodrugs were designed via chemical or enzymatic reactions, yet their capability in real-time reporting pathogenesis development is often compromised due to unrestricted diffusion and less selectivity towards the environmental responsiveness. Herein we present an oxygen-insensitive nitroreductase (NTR)-activatable glycan metabolic reporter (pNB-ManNAz) capable of covalently labeling hypoxic tumor cells and tissues. Under pathophysiological hypoxic environments, the caged non-metabolizable precursor pNB-ManNAz exhibited unique responsiveness to cellular NTR, culminating in structural self-immolation and the resultant ManNAz could incorporate onto cell surface glycoproteins, thereby facilitating fluorescence labeling via bioorthogonal chemistry. This NTR-responsive metabolic reporter demonstrated broad applicability for multicellular hypoxia labeling, particularly in the dynamic monitoring of orthotopic tumorigenesis and targeted tumor phototherapy in vivo. We anticipate that this approach holds promise for investigating hypoxia-related pathological progression, offering valuable insights for accurate diagnosis and treatment.
Collapse
Affiliation(s)
- Zhimin Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jun Wei Lau
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Songhan Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| | - Ziheng Ren
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Zhiyuan Gong
- Department of Biological Sciences, National University of Singapore, Singapore, 119077, Singapore
| | - Xiaogang Liu
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Bengang Xing
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637371, Singapore
| |
Collapse
|
2
|
Yan K, Zhang W, Song H, Xu X. Sphingolipid metabolism and regulated cell death in malignant melanoma. Apoptosis 2024; 29:1860-1878. [PMID: 39068623 DOI: 10.1007/s10495-024-02002-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2024] [Indexed: 07/30/2024]
Abstract
Malignant melanoma (MM) is a highly invasive and therapeutically resistant skin malignancy, posing a significant clinical challenge in its treatment. Programmed cell death plays a crucial role in the occurrence and progression of MM. Sphingolipids (SP), as a class of bioactive lipids, may be associated with many kinds of diseases. SPs regulate various forms of programmed cell death in tumors, including apoptosis, necroptosis, ferroptosis, and more. This review will delve into the mechanisms by which different types of SPs modulate various forms of programmed cell death in MM, such as their regulation of cell membrane permeability and signaling pathways, and how they influence the survival and death fate of MM cells. An in-depth exploration of the role of SPs in programmed cell death in MM aids in unraveling the molecular mechanisms of melanoma development and holds significant importance in developing novel therapeutic strategies.
Collapse
Affiliation(s)
- Kexin Yan
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Wei Zhang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China
| | - Hao Song
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| | - Xiulian Xu
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences, Peking Union Medical College, Nanjing, China.
| |
Collapse
|
3
|
Wang H. The interplay of EBV virus and cell metabolism in lung cancer. J Cell Mol Med 2024; 28:e70088. [PMID: 39601114 PMCID: PMC11599874 DOI: 10.1111/jcmm.70088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 11/29/2024] Open
Abstract
Epstein-Barr virus infection has been implicated in various cancers, including lung cancer, where it influences cellular metabolism to promote tumorigenesis. This review examines the complex interplay between Epstein-Barr virus and cell metabolism in lung cancer, highlighting viral mechanisms of metabolic reprogramming and their implications for therapeutic strategies. Key viral proteins such as LMP1 and LMP2A manipulate glycolysis, glutaminolysis and lipid metabolism to support viral replication and immune evasion within the tumour microenvironment. Understanding these interactions provides insights into novel therapeutic approaches targeting viral-induced metabolic vulnerabilities in Epstein-Barr virus-associated lung cancer.
Collapse
Affiliation(s)
- Hongwei Wang
- Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer HospitalChinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical UniversityTaiyuanShanxiChina
| |
Collapse
|
4
|
Singh T, Sharma K, Jena L, Kaur P, Singh S, Munshi A. Mitochondrial bioenergetics of breast cancer. Mitochondrion 2024; 79:101951. [PMID: 39218051 DOI: 10.1016/j.mito.2024.101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/05/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Breast cancer cells exhibit metabolic heterogeneity based on tumour aggressiveness. Glycolysis and mitochondrial respiration are two major metabolic pathways for ATP production. The oxygen flux, oxygen tension, proton leakage, protonmotive force, inner mitochondrial membrane potential, ECAR and electrochemical proton gradient maintain metabolic homeostasis, ATP production, ROS generation, heat dissipation, and carbon flow and are referred to as "sub-domains" of mitochondrial bioenergetics. Tumour aggressiveness is influenced by these mechanisms, especially when breast cancer cells undergo metastasis. These physiological parameters for healthy mitochondria are as crucial as energy demands for tumour growth and metastasis. The instant energy demands are already elucidated under Warburg effects, while these parameters may have dual functionality to maintain cellular bioenergetics and cellular health. The tumour cell might maintain these mitochondrial parameters for mitochondrial health or avoid apoptosis, while energy production could be a second priority. This review focuses explicitly on the crosstalk between metabolic domains and the utilisation of these parameters by breast cancer cells for their progression. Some major interventions are discussed based on mitochondrial bioenergetics that need further investigation. This review highlights the pathophysiological significance of mitochondrial bioenergetics and the regulation of its sub-domains by breast tumour cells for uncontrolled proliferation.
Collapse
Affiliation(s)
- Tashvinder Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Kangan Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Laxmipriya Jena
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Prabhsimran Kaur
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India
| | - Sandeep Singh
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| | - Anjana Munshi
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda 151401, India.
| |
Collapse
|
5
|
Sikder S, Bhattacharya A, Agrawal A, Sethi G, Kundu TK. Micro-RNAs in breast cancer progression and metastasis: A chromatin and metabolic perspective. Heliyon 2024; 10:e38193. [PMID: 39386816 PMCID: PMC11462366 DOI: 10.1016/j.heliyon.2024.e38193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Breast cancer is a highly complex disease with multiple subtypes. While many of the breast cancer cases are sporadic some can be familial or hereditary. Genomic integrity is closely monitored by several mechanisms, such as DNA damage machinery and mitotic checkpoints. Any defect in the key genes involved in the regulation of these mechanisms often results in genomic instability, predisposing the cells to malignancy. This results in altered expression of many coding and noncoding genes. The noncoding RNAs especially the long noncoding RNA (lncRNAs) and microRNA (miRNAs) act as key regulators of cancer gene networks. Some miRNAs repress the expression of the heterochromatin-associated proteins, inducing the formation of open chromatin, and promoting the expression of genes required for oncogenesis. Additionally, specific miRNAs may also favour cancer progression and metastasis by regulating the expression of genes that support the metabolic microenvironment essential for cancer cell growth and proliferation. Understanding how these noncoding RNAs contribute to breast cancer development opens potential avenues for therapeutic intervention, targeting their dysregulated activity.
Collapse
Affiliation(s)
- Sweta Sikder
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aditya Bhattacharya
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| | - Aayushi Agrawal
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Sector-10, Jankipuram Extension, Sitapur Road, Lucknow, 226031, UP, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, 117600, Singapore
| | - Tapas K. Kundu
- Transcription and Disease Laboratory, Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, 560064, India
| |
Collapse
|
6
|
Zhou X, Nie M, Xin X, Hua T, Zhang J, Shi R, Dong K, Shu W, Yan B, Wang H. RAB17 promotes endometrial cancer progression by inhibiting TFRC-dependent ferroptosis. Cell Death Dis 2024; 15:655. [PMID: 39242574 PMCID: PMC11379720 DOI: 10.1038/s41419-024-07013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 08/13/2024] [Accepted: 08/19/2024] [Indexed: 09/09/2024]
Abstract
Studies have indicated that RAB17 expression levels are associated with tumor malignancy, and RAB17 is more highly expressed in endometrial cancer (EC) tissues than in peritumoral tissues. However, the roles and potential mechanisms of RAB17 in EC remain undefined. The present study confirmed that the expression of RAB17 facilitates EC progression by suppressing cellular ferroptosis-like alterations. Mechanistically, RAB17 attenuated ferroptosis in EC cells by inhibiting transferrin receptor (TFRC) protein expression in a ubiquitin proteasome-dependent manner. Because EC is a blood-deprived tumor with a poor energy supply, the relationship between RAB17 and hypoglycemia was investigated. RAB17 expression was increased in EC cells incubated in low-glucose medium. Moreover, low-glucose medium limited EC cell ferroptosis and promoted EC progression through the RAB17-TFRC axis. The in vitro results were corroborated by in vivo studies and clinical data. Overall, the present study revealed that increased RAB17 promotes the survival of EC cells during glucose deprivation by inhibiting the onset of TFRC-dependent ferroptosis.
Collapse
Affiliation(s)
- Xing Zhou
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Miaomiao Nie
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Xiaoyan Xin
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Teng Hua
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Jun Zhang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Rui Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Kejun Dong
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Wan Shu
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China
| | - Bei Yan
- Institute of Medical Sciences, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, P. R. China.
| |
Collapse
|
7
|
Manoharan MM, Montes GC, Acquarone M, Swan KF, Pridjian GC, Nogueira Alencar AK, Bayer CL. Metabolic theory of preeclampsia: implications for maternal cardiovascular health. Am J Physiol Heart Circ Physiol 2024; 327:H582-H597. [PMID: 38968164 PMCID: PMC11442029 DOI: 10.1152/ajpheart.00170.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Preeclampsia (PE) is a multisystemic disorder of pregnancy that not only causes perinatal mortality and morbidity but also has a long-term toll on the maternal and fetal cardiovascular system. Women diagnosed with PE are at greater risk for the subsequent development of hypertension, ischemic heart disease, cardiomyopathy, cerebral edema, seizures, and end-stage renal disease. Although PE is considered heterogeneous, inefficient extravillous trophoblast (EVT) migration leading to deficient spiral artery remodeling and increased uteroplacental vascular resistance is the likely initiation of the disease. The principal pathophysiology is placental hypoxia, causing subsequent oxidative stress, leading to mitochondrial dysfunction, mitophagy, and immunological imbalance. The damage imposed on the placenta in turn results in the "stress response" categorized by the dysfunctional release of vasoactive components including oxidative stressors, proinflammatory factors, and cytokines into the maternal circulation. These bioactive factors have deleterious effects on systemic endothelial cells and coagulation leading to generalized vascular dysfunction and hypercoagulability. A better understanding of these metabolic factors may lead to novel therapeutic approaches to prevent and treat this multisystemic disorder. In this review, we connect the hypoxic-oxidative stress and inflammation involved in the pathophysiology of PE to the resulting persistent cardiovascular complications in patients with preeclampsia.
Collapse
Affiliation(s)
- Mistina M Manoharan
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
| | - Guilherme C Montes
- Department of Pharmacology and Psychobiology, Roberto Alcântara Gomes Institute Biology (IBRAG), Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| | - Mariana Acquarone
- Department of Neurology, Tulane University, New Orleans, Louisiana, United States
| | - Kenneth F Swan
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | - Gabriella C Pridjian
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| | | | - Carolyn L Bayer
- Department of Biomedical Engineering, Tulane University, New Orleans, Louisiana, United States
- Department of Obstetrics and Gynecology, Tulane University, New Orleans, Louisiana, United States
| |
Collapse
|
8
|
Gubser PM, Wijesinghe S, Heyden L, Gabriel SS, de Souza DP, Hess C, McConville MM, Utzschneider DT, Kallies A. Aerobic glycolysis but not GLS1-dependent glutamine metabolism is critical for anti-tumor immunity and response to checkpoint inhibition. Cell Rep 2024; 43:114632. [PMID: 39159042 DOI: 10.1016/j.celrep.2024.114632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/04/2024] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Tumor cells undergo uncontrolled proliferation driven by enhanced anabolic metabolism including glycolysis and glutaminolysis. Targeting these pathways to inhibit cancer growth is a strategy for cancer treatment. Critically, however, tumor-responsive T cells share metabolic features with cancer cells, making them susceptible to these treatments as well. Here, we assess the impact on anti-tumor T cell immunity and T cell exhaustion by genetic ablation of lactate dehydrogenase A (LDHA) and glutaminase1 (GLS1), key enzymes in aerobic glycolysis and glutaminolysis. Loss of LDHA severely impairs expansion of T cells in response to tumors and chronic infection. In contrast, T cells lacking GLS1 can compensate for impaired glutaminolysis by engaging alternative pathways, including upregulation of asparagine synthetase, and thus efficiently respond to tumor challenge and chronic infection as well as immune checkpoint blockade. Targeting GLS1-dependent glutaminolysis, but not aerobic glycolysis, may therefore be a successful strategy in cancer treatment, particularly in combination with immunotherapy.
Collapse
Affiliation(s)
- Patrick M Gubser
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Sharanya Wijesinghe
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Leonie Heyden
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Sarah S Gabriel
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - David P de Souza
- Metabolomics Australia, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia
| | - Christoph Hess
- Department of Biomedicine, Immunobiology, University of Basel and University Hospital of Basel, 4031 Basel, Switzerland; Department of Medicine, CITIID, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, UK
| | - Malcolm M McConville
- Metabolomics Australia, Bio21 Molecular Science & Biotechnology Institute, University of Melbourne, Parkville, VIC, Australia; Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC, Australia
| | - Daniel T Utzschneider
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia
| | - Axel Kallies
- The Peter Doherty Institute for Infection and Immunity and Department of Microbiology and Immunology, University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
9
|
Guo J, Jiang X, Lian J, Li H, Zhang F, Xie J, Deng J, Hou X, Du Z, Hao E. Evaluation of the effect of GSK-3β on liver cancer based on the PI3K/AKT pathway. Front Cell Dev Biol 2024; 12:1431423. [PMID: 39156976 PMCID: PMC11327086 DOI: 10.3389/fcell.2024.1431423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
The PI3K/AKT/GSK-3β signaling pathway plays a pivotal role in numerous physiological and pathological processes, including cell proliferation, apoptosis, differentiation, and metabolic regulation. Aberrant activation of the PI3K/AKT pathway is intricately linked to development of tumor. GSK-3β, belonging to the serine/threonine protein kinase family, is crucial in the pathogenesis of liver cancer. As a key rate-limiting enzyme in the glucose metabolism pathway, GSK-3β significantly impacts the growth, proliferation, metastasis, and apoptosis of liver cancer cells. It is also implicated in chemotherapy resistance. Elevated expression of GSK-3β diminishes the sensitivity of liver cancer cells to chemotherapeutic agents, thereby playing a substantial role in the development of drug resistance. Consequently, targeting of GSK-3β, particularly within the PI3K/AKT signaling pathway, is regarded as a promising therapeutic strategy for liver cancer. The precise identification and subsequent modulation of this pathway represent a substantial potential for innovative clinical interventions in the management of liver cancer.
Collapse
Affiliation(s)
- Jiageng Guo
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinya Jiang
- Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine, Nanning, China
| | - Jing Lian
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Huaying Li
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Fan Zhang
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jinling Xie
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Xiaotao Hou
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Collaborative Innovation Center of Study on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, China
- Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
10
|
Li M, Ren Q, Chen K, Yin R, Li W, Fang Z, Liu S, Lan L, Hong G. Regulation of macrophage polarization and glucose metabolism by the ERK/MAPK-HK1 signaling pathway in paraquat-induced acute lung injury. Chem Biol Interact 2024; 397:111062. [PMID: 38763349 DOI: 10.1016/j.cbi.2024.111062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/05/2024] [Accepted: 05/17/2024] [Indexed: 05/21/2024]
Abstract
Acute lung injury is the leading cause of paraquat (PQ) poisoning-related mortality. The mechanism by which macrophages are involved in PQ-induced acute lung injury remains unclear. In recent years, the role of metabolic reprogramming in macrophage functional transformation has received significant attention. The current study aimed to identify the role of altered macrophage glucose metabolism and molecular mechanisms in PQ poisoning-induced acute lung injury. We established a model of acute lung injury in PQ-intoxicated mice via the intraperitoneal injection of PQ. PQ exposure induces macrophage M1 polarization and promotes the release of inflammatory factors, which causes the development of acute lung injury in mice. In vitro analysis revealed that PQ altered glucose metabolism, which could be reversed by siRNA transfection to silence the expression of HK1, a key enzyme in glucose metabolism. RNA sequencing revealed that the ERK/MAPK pathway was the crucial molecular mechanism of PQ pathogenesis. Further, U0126, an ERK inhibitor, could inhibit PQ-induced HK1 activation and macrophage M1 polarization. These findings provide novel insights into the previously unrecognized mechanism of ERK/MAPK-HK1 activation in PQ poisoning.
Collapse
Affiliation(s)
- Mengxuan Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Qinghuan Ren
- Wenzhou Medical University, Wenzhou, 325000, China
| | - Kaiyuan Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Ran Yin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Wenwen Li
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zuochun Fang
- Longgang Campus of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Sunxiang Liu
- Longgang Campus of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Linhua Lan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Guangliang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China; Longgang Campus of the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China.
| |
Collapse
|
11
|
Liang Y, Ye F, Luo D, Long L, Wang Y, Jin Y, Wang L, Li Y, Han D, Chen B, Zhao W, Wang L, Yang Q. Exosomal circSIPA1L3-mediated intercellular communication contributes to glucose metabolic reprogramming and progression of triple negative breast cancer. Mol Cancer 2024; 23:125. [PMID: 38849860 PMCID: PMC11161950 DOI: 10.1186/s12943-024-02037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/31/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Breast cancer is the most common malignant tumor, and metastasis remains the major cause of poor prognosis. Glucose metabolic reprogramming is one of the prominent hallmarks in cancer, providing nutrients and energy to support dramatically elevated tumor growth and metastasis. Nevertheless, the potential mechanistic links between glycolysis and breast cancer progression have not been thoroughly elucidated. METHODS RNA-seq analysis was used to identify glucose metabolism-related circRNAs. The expression of circSIPA1L3 in breast cancer tissues and serum was examined by qRT-PCR, and further assessed its diagnostic value. We also evaluated the prognostic potential of circSIPA1L3 by analyzing a cohort of 238 breast cancer patients. Gain- and loss-of-function experiments, transcriptomic analysis, and molecular biology experiments were conducted to explore the biological function and regulatory mechanism of circSIPA1L3. RESULTS Using RNA-seq analysis, circSIPA1L3 was identified as the critical mediator responsible for metabolic adaption upon energy stress. Gain- and loss-of-function experiments revealed that circSIPA1L3 exerted a stimulative effect on breast cancer progression and glycolysis, which could also be transported by exosomes and facilitated malignant behaviors among breast cancer cells. Significantly, the elevated lactate secretion caused by circSIPA1L3-mediated glycolysis enhancement promoted the recruitment of tumor associated macrophage and their tumor-promoting roles. Mechanistically, EIF4A3 induced the cyclization and cytoplasmic export of circSIPA1L3, which inhibited ubiquitin-mediated IGF2BP3 degradation through enhancing the UPS7-IGF2BP3 interaction. Furthermore, circSIPA1L3 increased mRNA stability of the lactate export carrier SLC16A1 and the glucose intake enhancer RAB11A through either strengthening their interaction with IGF2BP3 or sponging miR-665, leading to enhanced glycolytic metabolism. Clinically, elevated circSIPA1L3 expression indicated unfavorable prognosis base on the cohort of 238 breast cancer patients. Moreover, circSIPA1L3 was highly expressed in the serum of breast cancer patients and exhibited high diagnostic value for breast cancer patients. CONCLUSIONS Our study highlights the oncogenic role of circSIPA1L3 through mediating glucose metabolism, which might serve as a promising diagnostic and prognostic biomarker and potential therapeutic target for breast cancer.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Fangzhou Ye
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Dan Luo
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Li Long
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
- Department of Breast Surgery, Mianyang Central Hospital, Mianyang, Sichuan, 621000, P.R. China
| | - Yajie Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Yuhan Jin
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Lei Wang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Yaming Li
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Dianwen Han
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China
| | - Bing Chen
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Wenjing Zhao
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Lijuan Wang
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China
| | - Qifeng Yang
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Wenhua Xi Road No. 107, Jinan, Shandong, 250012, P.R. China.
- Biological Resource Center, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, P.R. China.
- Research Institute of Breast Cancer, Shandong University, Jinan, Shandong, 250012, P.R. China.
| |
Collapse
|
12
|
Sheng X, Wang MM, Zhang GD, Su Y, Fang HB, Yu ZH, Su Z. Dual inhibition of oxidative phosphorylation and glycolysis to enhance cancer therapy. Bioorg Chem 2024; 147:107325. [PMID: 38583247 DOI: 10.1016/j.bioorg.2024.107325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/07/2024] [Accepted: 03/31/2024] [Indexed: 04/09/2024]
Abstract
Dual suppression of oxidative phosphorylation (OXPHOS) and glycolysis can disrupt metabolic adaption of cancer cells, inhibiting energy supply and leading to successful cancer therapy. Herein, we have developed an α-tocopheryl succinate (α-TOS)-functionalized iridium(III) complex Ir2, a highly lipophilic mitochondria targeting anticancer molecule, could inhibit both oxidative phosphorylation (OXPHOS) and glycolysis, resulting in the energy blockage and cancer growth suppression. Mechanistic studies reveal that complex Ir2 induces reactive oxygen species (ROS) elevation and mitochondrial depolarization, and triggers DNA oxidative damage. These damages could evoke the cancer cell death with the mitochondrial-relevant apoptosis and autophagy. 3D tumor spheroids experiment demonstrates that Ir2 owned superior antiproliferation performance, as the potent anticancer agent in vivo. This study not only provided a new path for dual inhibition of both mitochondrial OXPHOS and glycolytic metabolisms with a novel α-TOS-functionalized metallodrug, but also further demonstrated that the mitochondrial-relevant therapy could be effective in enhancing the anticancer performance.
Collapse
Affiliation(s)
- Xi Sheng
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Meng-Meng Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Guan-Dong Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Yan Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China; Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Hong-Bao Fang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Zheng-Hong Yu
- Department of Rheumatology and Immunology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, China.
| | - Zhi Su
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
13
|
Zhang Q, Luo Y, Qian B, Cao X, Xu C, Guo K, Wan R, Jiang Y, Wang T, Mei Z, Liu J, Lv C. A systematic pan-cancer analysis identifies LDHA as a novel predictor for immunological, prognostic, and immunotherapy resistance. Aging (Albany NY) 2024; 16:8000-8018. [PMID: 38709280 PMCID: PMC11132014 DOI: 10.18632/aging.205800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 03/18/2024] [Indexed: 05/07/2024]
Abstract
Lactate dehydrogenase A (LDHA), a critical enzyme involved in glycolysis, is broadly involved multiple biological functions in human cancers. It is reported that LDHA can impact tumor immune surveillance and induce the transformation of tumor-associated macrophages, highlighting its unnoticed function of LDHA in immune system. However, in human cancers, the role of LDHA in prognosis and immunotherapy hasn't been investigated. In this study, we analyzed the expression pattern and prognostic value of LDHA in pan-cancer and explored its association between tumor microenvironment (TME), immune infiltration subtype, stemness scores, tumor mutation burden (TMB), and immunotherapy resistance. We found that LDHA expression is tumor heterogeneous and that its high expression is associated with poor prognosis in multiple human cancers. In addition, LDHA expression was positively correlated with the presence of mononuclear/macrophage cells, and also promoted the infiltration of a range of immune cells. Genomic alteration of LDHA was common in different types of cancer, while with prognostic value in pan-cancers. Pan-cancer analysis revealed that the significant correlations existed between LDHA expression and tumor microenvironment (including stromal cells and immune cells) as well as stemness scores (DNAss and RNAss) across cancer types. Drug sensitivity analysis also revealed that LDHA was able to predict response to chemotherapy and immunotherapy. Furthermore, it was confirmed that knockdown of LDHA reduced proliferation and migration ability of lung cancer cells. Taken together, LDHA could serve as a prognostic biomarker and a potential immunotherapy marker.
Collapse
Affiliation(s)
- Qiqi Zhang
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
| | - Yuanning Luo
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Bingshuo Qian
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
- School of Pharmacy, Henan University, Kaifeng, P.R. China
| | - Xiuhua Cao
- Department of Gastroenterology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Caijun Xu
- Southwest Medical University, Luzhou, P.R. China
| | - Kan Guo
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
| | - Runlan Wan
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, P.R. China
| | - Yaling Jiang
- Southwest Medical University, Luzhou, P.R. China
| | - Tiecheng Wang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| | - Zhiqiang Mei
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
| | - Jinbiao Liu
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, P.R. China
| | - Chaoxiang Lv
- The Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, P.R. China
- Southwest Medical University, Luzhou, P.R. China
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, P.R. China
| |
Collapse
|
14
|
Wu H, Jiao Y, Guo X, Wu Z, Lv Q. METTL14/miR-29c-3p axis drives aerobic glycolysis to promote triple-negative breast cancer progression though TRIM9-mediated PKM2 ubiquitination. J Cell Mol Med 2024; 28:e18112. [PMID: 38263865 PMCID: PMC10844685 DOI: 10.1111/jcmm.18112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/25/2024] Open
Abstract
The energy metabolic rearrangement of triple-negative breast cancer (TNBC) from oxidative phosphorylation to aerobic glycolysis is a significant biological feature and can promote the malignant progression. However, there is little knowledge about the functional mechanisms of methyltransferase-like protein 14 (METTL14) mediated contributes to TNBC malignant progression. Our study found that METTL14 expression was significantly upregulated in TNBC tissues and cell lines. Silencing METTL14 significantly inhibited TNBC cell growth and invasion in vitro, as well as suppressed tumour growth. Mechanically, METTL14 was first found to activate miR-29c-3p through m6A and regulate tripartite motif containing 9 (TRIM9) to promote ubiquitination of pyruvate kinase isoform M2 (PKM2) and lead to its transition from tetramer to dimer, resulting in glucose metabolic reprogramming from oxidative phosphorylation to aerobic glycolysis to promote the progress of TNBC. Taken together, these findings reveal important roles of METTL14 in TNBC tumorigenesis and energy metabolism, which might represent a novel potential therapeutic target for TNBC.
Collapse
Affiliation(s)
- Hao Wu
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Yile Jiao
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Xinyi Guo
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| | - Zhenru Wu
- Laboratory of Pathology, West China HospitalSichuan UniversityChengduChina
| | - Qing Lv
- Division of Breast Surgery, Department of General SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Breast Center, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
15
|
Koyuncu I, Temiz E, Seker F, Balos MM, Akkafa F, Yuksekdag O, Yılmaz MA, Zengin G. A mixed-apoptotic effect of Jurinea mesopotamica extract on prostate cancer cells: a promising source for natural chemotherapeutics. Chem Biodivers 2024; 21:e202301747. [PMID: 38161146 DOI: 10.1002/cbdv.202301747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/03/2024]
Abstract
This research investigates the potential use of Jurinea mesopotamica Hand.-Mazz. (Asteraceae) in cancer treatment. In this study, a plant extract was prepared using all parts of J. mesopotamica, and its effect on the proliferation of cancer and normal cells was tested using the MTT method. It was found to have a selective cytotoxic effect on prostate cancer cells, with the lowest IC50 (half-maximal inhibitory concentration) of 10μg/mL found in the butanol extract (JMBE). The extract suppressed the proliferation of prostate cancer cells (67 %), disrupted organelle integrity (49 %), increased reactive oxidative stress (66 %), and triggered cell death (51 %). In addition, apoptotic gene expressions and protein levels increased, and the profile of amino acids related to energy metabolism was elevated. Based on LC-MS/MS results, the plant contained higher levels of flavonoids, including isoquercitrin, cosmosiin, astragalin, nicotiflorin, luteolin, and apigenin. These results suggest that J. mesopotamica has a selective effect on prostate cancer due to its high flavonoid content and might be a promising natural alternative for cancer treatment.
Collapse
Affiliation(s)
- Ismail Koyuncu
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ebru Temiz
- Program of Medical Promotion and Marketing, Health Services Vocational School, Harran University, Sanliurfa, Turkey
| | - Fatma Seker
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Harran University, Sanliurfa, Turkey
| | - M Maruf Balos
- Sanliurfa Provincial Directorate of National Education, Sanliurfa, Turkey
| | - Feridun Akkafa
- Department of Medical Biology, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Ozgür Yuksekdag
- Department of Medical Biochemistry, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - M Abdullah Yılmaz
- Department of Analytical Chemistry, Faculty of Pharmacy, Dicle University, Diyarbakir, Turkey
| | - Gokhan Zengin
- Department of Biology, Science Faculty, Selcuk University, Konya, Turkey
| |
Collapse
|
16
|
Wang Y, Song X, Song Y, Fang K, Chang X. Investigating the cell membrane localization of PADI4 in breast cancer cells and inhibition of anti-PADI4 monoclonal antibody. J Cancer Res Clin Oncol 2023; 149:17253-17268. [PMID: 37804426 PMCID: PMC10657297 DOI: 10.1007/s00432-023-05433-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/09/2023]
Abstract
BACKGROUND Peptidyl arginine deiminase 4 (PADI4) is a post-translational modification enzymecan that converts arginine in protein into citrulline in the presence of calcium ions, which is called citrullination. PADI4 has been reported to be expressed in the cytoplasm and nucleus in a variety of malignant tumors. Based on the GeneCards database and our previous research, it is speculated that PADI4 may also be expressed on the cell membrane. This study aimed to confirm the membrane expression of PADI4 and the effect of anti-PADI4 antibodies on cell membrane PADI4. This may be another mechanism of action of anti-PADI4 monoclonal antibodies in the treatment of breast cancer. METHODS The subcellular localizations of PADI4 in MDA-MB-231 and MCF-7 breast cancer cells were determined by immunofluorescence, immunoelectron microscopy, and Western blot analysis. The tumor cells were treated with PADI4 antibody, and cell proliferation, migration, colony formation, apoptosis, glycolysis, and epithelial-mesenchymal transition (EMT) were measured as well as the expression of some essential tumor genes. RESULTS PADI4 was not only localized in the nucleus and cytoplasm of breast cancer cells but was also detected on the cell membrane. Following PADI4 antibody treatment, cell proliferation, migration, colony formation, EMT, and ATP production through glycolysis were decreased, and the mRNA expression of MYC proto-oncogene (MYC), FAT atypical cadherin 1 (FAT1), nuclear factor kappa B subunit 1 (NFκB), and tumor necrosis factor (TNF-α) in breast cancer cells was downregulated, while the mRNA expression of tumor protein p63 (TP63) was upregulated. CONCLUSIONS PADI4 is expressed on the cell membrane in breast cancer cells. Anti-PADI4 antibodies can affect the biological functions of cell membrane PADI4, including proliferation, migration, apoptosis, and glycolysis, thereby inhibiting tumor progression.
Collapse
Affiliation(s)
- Yan Wang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Xianqin Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Yu Song
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China
| | - Kehua Fang
- Clinical Laboratory of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| | - Xiaotian Chang
- Medical Research Center of The Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, 266000, Shandong, People's Republic of China.
| |
Collapse
|
17
|
Kursvietiene L, Kopustinskiene DM, Staneviciene I, Mongirdiene A, Kubová K, Masteikova R, Bernatoniene J. Anti-Cancer Properties of Resveratrol: A Focus on Its Impact on Mitochondrial Functions. Antioxidants (Basel) 2023; 12:2056. [PMID: 38136176 PMCID: PMC10740678 DOI: 10.3390/antiox12122056] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/27/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is one of the most serious public health issues worldwide, demanding ongoing efforts to find novel therapeutic agents and approaches. Amid growing interest in the oncological applications of phytochemicals, particularly polyphenols, resveratrol-a naturally occurring polyphenolic stilbene derivative-has emerged as a candidate of interest. This review analyzes the pleiotropic anti-cancer effects of resveratrol, including its modulation of apoptotic pathways, cell cycle regulation, inflammation, angiogenesis, and metastasis, its interaction with cancer stem cells and the tumor microenvironment. The effects of resveratrol on mitochondrial functions, which are crucial to cancer development, are also discussed. Future research directions are identified, including the elucidation of specific molecular targets, to facilitate the clinical translation of resveratrol in cancer prevention and therapy.
Collapse
Affiliation(s)
- Lolita Kursvietiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
| | - Inga Staneviciene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Ausra Mongirdiene
- Department of Biochemistry, Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, Eiveniu str. 4, LT-50009 Kaunas, Lithuania (I.S.); (A.M.)
| | - Kateřina Kubová
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Ruta Masteikova
- Department of Pharmaceutical Technology, Masaryk University, 60177 Brno, Czech Republic; (K.K.); (R.M.)
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
18
|
Duan SL, Wu M, Zhang ZJ, Chang S. The potential role of reprogrammed glucose metabolism: an emerging actionable codependent target in thyroid cancer. J Transl Med 2023; 21:735. [PMID: 37853445 PMCID: PMC10585934 DOI: 10.1186/s12967-023-04617-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/11/2023] [Indexed: 10/20/2023] Open
Abstract
Although the incidence of thyroid cancer is increasing year by year, most patients, especially those with differentiated thyroid cancer, can usually be cured with surgery, radioactive iodine, and thyroid-stimulating hormone suppression. However, treatment options for patients with poorly differentiated thyroid cancers or radioiodine-refractory thyroid cancer have historically been limited. Altered energy metabolism is one of the hallmarks of cancer and a well-documented feature in thyroid cancer. In a hypoxic environment with extreme nutrient deficiencies resulting from uncontrolled growth, thyroid cancer cells utilize "metabolic reprogramming" to satisfy their energy demand and support malignant behaviors such as metastasis. This review summarizes past and recent advances in our understanding of the reprogramming of glucose metabolism in thyroid cancer cells, which we expect will yield new therapeutic approaches for patients with special pathological types of thyroid cancer by targeting reprogrammed glucose metabolism.
Collapse
Affiliation(s)
- Sai-Li Duan
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Min Wu
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Zhe-Jia Zhang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Shi Chang
- Department of General Surgery, Xiangya Hospital Central South University, Changsha, 410008, Hunan, People's Republic of China.
- Xiangya Hospital, National Clinical Research Center for Geriatric Disorders, Changsha, 410008, Hunan, People's Republic of China.
- Clinical Research Center for Thyroid Disease in Hunan Province, Changsha, 410008, Hunan, People's Republic of China.
- Hunan Provincial Engineering Research Center for Thyroid and Related Diseases Treatment Technology, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
19
|
Wang T, Sun F, Li C, Nan P, Song Y, Wan X, Mo H, Wang J, Zhou Y, Guo Y, Helali AE, Xu D, Zhan Q, Ma F, Qian H. MTA1, a Novel ATP Synthase Complex Modulator, Enhances Colon Cancer Liver Metastasis by Driving Mitochondrial Metabolism Reprogramming. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300756. [PMID: 37442756 PMCID: PMC10477900 DOI: 10.1002/advs.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 06/22/2023] [Indexed: 07/15/2023]
Abstract
Liver metastasis is the most fatal event of colon cancer patients. Warburg effect has been long challenged by the fact of upregulated oxidative phosphorylation (OXPHOS), while its mechanism remains unclear. Here, metastasis-associated antigen 1 (MTA1) is identified as a newly identified adenosine triphosphate (ATP) synthase modulator by interacting with ATP synthase F1 subunit alpha (ATP5A), facilitates colon cancer liver metastasis by driving mitochondrial bioenergetic metabolism reprogramming, enhancing OXPHOS; therefore, modulating ATP synthase activity and downstream mTOR pathways. High-throughput screening of an anticancer drug shows MTA1 knockout increases the sensitivity of colon cancer to mitochondrial bioenergetic metabolism-targeted drugs and mTOR inhibitors. Inhibiting ATP5A enhances the sensitivity of liver-metastasized colon cancer to sirolimus in an MTA1-dependent manner. The therapeutic effects are verified in xenograft models and clinical cases. This research identifies a new modulator of mitochondrial bioenergetic reprogramming in cancer metastasis and reveals a new mechanism on upregulating mitochondrial OXPHOS as the reversal of Warburg effect in cancer metastasis is orchestrated.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijing100142China
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Fangzhou Sun
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Chunxiao Li
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Peng Nan
- Laboratory Medicine CenterDepartment of Clinical LaboratoryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310014China
| | - Yan Song
- Department of PathologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xuhao Wan
- School of Electrical Engineering and AutomationWuhan UniversityWuhan430000China
| | - Hongnan Mo
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Jinsong Wang
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yantong Zhou
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Yuzheng Guo
- School of Electrical Engineering and AutomationWuhan UniversityWuhan430000China
| | - Aya Ei Helali
- Department of Clinical OncologyLi Ka Shing Faculty of MedicineUniversity of Hong KongHong Kong999077China
| | - Dongkui Xu
- Department of VIPNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Laboratory of Molecular OncologyPeking University Cancer Hospital & InstituteBeijing100142China
- Peking University International Cancer InstitutePeking UniversityBeijing100191China
- Institute of Cancer ResearchShenzhen Bay Laboratory, Cancer Institute, Shenzhen Key Laboratory of Gastrointestinal Cancer Translational Research, Peking University Shenzhen Hospital, Shenzhen Peking University‐the Hong Kong University of Science and Technology (PKU‐HKUST) Medical CenterShenzhen518107China
- Research Unit of Molecular Cancer ResearchChinese Academy of Medical SciencesBeijing100021China
| | - Fei Ma
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Medical OncologyNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Haili Qian
- State Key Laboratory of Molecular OncologyNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| |
Collapse
|
20
|
Bernatoniene J, Jakstas V, Kopustinskiene DM. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int J Mol Sci 2023; 24:12293. [PMID: 37569669 PMCID: PMC10418374 DOI: 10.3390/ijms241512293] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol glucoside salidroside, and tyrosol, are responsible for the biological action of R. rosea, exerting antioxidant, immunomodulatory, anti-aging, anti-fatigue activities. R. rosea extract formulations are used as alternative remedies to enhance mental and cognitive functions and protect the central nervous system and heart during stress. Recent studies indicate that R. rosea may be used to treat diabetes, cancer, and a variety of cardiovascular and neurological disorders such as Alzheimer's and Parkinson's diseases. This paper reviews the beneficial effects of the extract of R. rosea, its key active components, and their possible use in the treatment of chronic diseases. R. rosea represents an excellent natural remedy to address situations involving decreased performance, such as fatigue and a sense of weakness, particularly in the context of chronic diseases. Given the significance of mitochondria in cellular energy metabolism and their vulnerability to reactive oxygen species, future research should prioritize investigating the potential effects of R. rosea main bioactive phenolic compounds on mitochondria, thus targeting cellular energy supply and countering oxidative stress-related effects.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
| |
Collapse
|
21
|
Xia P, Zhang H, Lu H, Xu K, Jiang X, Jiang Y, Gongye X, Chen Z, Liu J, Chen X, Ma W, Zhang Z, Yuan Y. METTL5 stabilizes c-Myc by facilitating USP5 translation to reprogram glucose metabolism and promote hepatocellular carcinoma progression. Cancer Commun (Lond) 2023; 43:338-364. [PMID: 36602428 PMCID: PMC10009668 DOI: 10.1002/cac2.12403] [Citation(s) in RCA: 42] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/10/2022] [Accepted: 12/22/2022] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most prevalent cancers in the world, with a high likelihood of metastasis and a dismal prognosis. The reprogramming of glucose metabolism is critical in the development of HCC. The Warburg effect has recently been confirmed to occur in a variety of cancers, including HCC. However, little is known about the molecular biological mechanisms underlying the Warburg effect in HCC cells. In this study, we sought to better understand how methyltransferase 5, N6-adenosine (METTL5) controls the development of HCC and the Warburg effect. METHODS In the current study, quantitative real-time polymerase chain reaction and Western blotting were used to detect the expression of METTL5 in HCC tissues and cell lines. Several different cell models and animal models were established to determine the role of METTL5 in glucose metabolism reprogramming and the underlying molecular mechanism of HCC. Glutathione-S-transferase pulldown, coimmunoprecipitation, RNA sequencing, non-targeted metabolomics, polysome profiling, and luciferase reporter assays were performed to investigate the molecular mechanisms of METTL5 in HCC cells. RESULTS We discovered that METTL5 drove glucose metabolic reprogramming to promote the proliferation and metastasis of HCC. Mechanistically, upregulation of METTL5 promoted c-Myc stability and thus activated its downstream glycolytic genes lactate dehydrogenase A (LDHA), enolase 1 (ENO1), triosephosphate isomerase 1 (TPI1), solute carrier family 2 member 1 (SLC2A1), and pyruvate kinase M2 (PKM2). The c-Box and ubiquitin binding domain (UBA) regions of ubiquitin specific peptidase 5 (USP5) binded to c-Myc protein and inhibited K48-linked polyubiquitination of c-Myc. Further study revealed that METTL5 controled the USP5 translation process, which in turn regulated the ubiquitination of c-Myc. Furthermore, we identified cAMP responsive element binding protein 1 (CREB1)/P300 as a critical transcriptional regulator of METTL5 that promoted the transcription of METTL5 in HCC. In patient-derived tumor xenograft (PDX) models, adenovirus-mediated knockout of METTL5 had a good antitumor effect and prolonged the survival of PDX-bearing mice. CONCLUSIONS These findings point to a novel mechanism by which CREB1/P300-METTL5-USP5-c-Myc controls abnormal glucose metabolism and promotes tumor growth, suggesting that METTL5 is a potential therapeutic target and prognostic biomarker for HCC.
Collapse
Affiliation(s)
- Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Hao Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Haofeng Lu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Department of Hepatobiliary Surgery, The First Affiliated Hospital of Yangtze University, Jingzhou, Hubei, P. R. China
| | - Kequan Xu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Xiang Jiang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yuke Jiang
- Department of Clinical and Translational Research Center, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, Guangdong, P. R. China
| | - Xiangdong Gongye
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Zhang Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Jie Liu
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Xi Chen
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Weijie Ma
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| | - Zhonglin Zhang
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China
| | - Yufeng Yuan
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, P. R. China.,Clinical Medicine Research Center for Minimally Invasive Procedure of Hepatobiliary & Pancreatic Diseases of Hubei Province, Wuhan, Hubei, P. R. China
| |
Collapse
|
22
|
Wu H, Jiao Y, Zhou C, Guo X, Wu Z, Lv Q. miR-140-3p/usp36 axis mediates ubiquitination to regulate PKM2 and suppressed the malignant biological behavior of breast cancer through Warburg effect. Cell Cycle 2023; 22:680-692. [PMID: 36305548 PMCID: PMC9980702 DOI: 10.1080/15384101.2022.2139554] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/10/2022] [Accepted: 10/19/2022] [Indexed: 11/03/2022] Open
Abstract
Breast cancer is a phenomenon in which breast epithelial cells proliferate out of control under the action of various carcinogenic factors. However, the role of USP36 in breast cancer is unknown. We analyzed the expression of USP36 in breast cancer and its association with poor prognosis in breast cancer patients. The effect of USP36 on malignant biological behavior of breast cancer was verified by cell functional experiments. The upstream regulatory mechanism of USP36 was analyzed by Western blot and quantitative RT-qPCR. The influence of USP36 on the Warburg effect of breast cancer was analyzed by detecting the metabolism of cellular energy substances. We found that USP36 is highly expressed in breast tumor tissues and breast cancer cell lines. High expression of USP36 predicts poor prognosis in patients with breast cancer. Effectively reducing the expression of USP36 can significantly inhibit the proliferation, invasion and migration of breast cancer cells, and promote the apoptosis of breast cancer cells. Meanwhile, inhibiting the expression of USP36 can significantly inhibit the production of ATP, lactate, pyruvate and glucose uptake in breast cancer cells. miR-140-3p is an upstream regulator of USP36, which can partially reverse the regulatory effect of USP36 on breast cancer cells. Importantly, USP36 regulates the expression of PKM2 through ubiquitination, which plays a role in regulating the Warburg effect. We confirmed that miR-140-3p regulates the expression of USP36, which mediates ubiquitination and regulates the expression of PKM2, and regulates the malignant biological behavior of breast cancer through the energy metabolism process.
Collapse
Affiliation(s)
- Hao Wu
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Yile Jiao
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Chen Zhou
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Xinyi Guo
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Zhenru Wu
- Laboratory of Pathology, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Lv
- Department of Breast Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
23
|
Ito R, Yashiro M, Tsukioka T, Izumi N, Komatsu H, Inoue H, Yamamoto Y, Nishiyama N. GLUT1 and PKM2 may be useful prognostic predictors in patients with non‑small cell lung cancer following curative R0 resection. Oncol Lett 2023; 25:129. [PMID: 36844619 PMCID: PMC9950336 DOI: 10.3892/ol.2023.13715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 01/24/2023] [Indexed: 02/12/2023] Open
Abstract
Lung cancer has a poor prognosis despite recent progresses being made regarding its treatment. In addition, there is a paucity of reliable and independent prognostic predictors for non-small cell lung cancer (NSCLC) following curative resection. Glycolysis is associated with the malignancy and proliferation of cancer cells. Glucose transporter 1 (GLUT1) promotes glucose uptake, whereas pyruvate kinase M2 (PKM2) promotes anaerobic glycolysis. The present study aimed to evaluate the relationship between the expression of GLUT1 and PKM2 and the clinicopathological features of patients with NSCLC, and to identify a reliable prognostic factor for NSCLC following curative resection. Patients with NSCLC who underwent curative surgery were retrospectively enrolled to the present study. GLUT1 and PKM2 expression was assessed using immunohistochemistry. Subsequently, the association between the clinicopathological features of patients with NSCLC and the expression of GLUT1 and PKM2 was assessed. Of the 445 patients with NSCLC included in the present study, 65 (15%) were positive for both GLUT1 and PKM2 expression (G+/P+ group). GLUT1 and PKM2 positivity was significantly associated with sex, absence of adenocarcinoma, lymphatic invasion and pleural invasion. Furthermore, patients with NSCLC in the G+/P+ group presented significantly poorer survival rates than those expressing other markers. G+/P+ expression was significantly associated with poor disease-free survival. In conclusion, the findings of the present study indicated that the combination of GLUT1 and PKM2 may be considered a reliable prognostic factor for patients with NSCLC following curative resection, especially in patients with stage I NSCLC.
Collapse
Affiliation(s)
- Ryuichi Ito
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan,Cancer Center for Translational Research, Osaka Metropolitan University, Osaka 545-8585, Japan,Correspondence to: Dr Masakazu Yashiro, Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, 1-4-3 Asahimachi, Abeno-ku, Osaka 545-8585, Japan, E-mail:
| | - Takuma Tsukioka
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Nobuhiro Izumi
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hiroaki Komatsu
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Hidetoshi Inoue
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka Metropolitan University Graduate School of Medicine, Osaka 545-8585, Japan,Cancer Center for Translational Research, Osaka Metropolitan University, Osaka 545-8585, Japan
| | - Noritoshi Nishiyama
- Department of Thoracic Surgery, Osaka Metropolitan University, Osaka 545-8585, Japan
| |
Collapse
|
24
|
El-Sheikh NM, Abulsoud AI, Wasfey EF, Hamdy NM. Insights on the potential oncogenic impact of long non-coding RNA nicotinamide nucleotide transhydrogenase antisense RNA 1 in different cancer types; integrating pathway(s) and clinical outcome(s) association. Pathol Res Pract 2022; 240:154183. [PMID: 36327824 DOI: 10.1016/j.prp.2022.154183] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022]
Abstract
Long non-coding RNAs (lncRNAs) are becoming more prevalent in the cancer field arena, with functional roles in both oncogenic and onco-suppressive pathways. Despite their widespread aberrant expression in a range of human malignancies, the biological activities of the ncRNAs majority are unknown. All showed the involvement of the lncRNA nicotinamide nucleotide transhydrogenase antisense RNA 1 (NNT-AS1). Since NNT-AS1 influences cellular proliferation, invasion, migration, apoptosis, and metastasis, this lncRNA appears to be linked to deregulating the normal cellular processes driving malignancy. This was observed in breast cancer (BC), gastric cancer (GC), colorectal cancer (CRC), epithelial ovarian cancer (EOC), and hepatocellular carcinoma (HCC). The current narrative non-systematic review will discuss "the significance of lncRNAs in cancer", as well as "lncRNAs future potential application(s) as diagnostic or predictive biomarkers", therefore, comprising an opportunity as treatment target(s). The review will have a special emphasis on lncRNA NNT-AS1.
Collapse
Affiliation(s)
- Nada M El-Sheikh
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, El Salam City, Cairo 11785, Egypt; Biochemistry Department, Faculty of Pharmacy (Boy's branch), Al-Azhar University, Nasr City, Cairo 11884, Egypt
| | - Eman F Wasfey
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt
| | - Nadia M Hamdy
- Biochemistry Department, Faculty of Pharmacy, Ain Shams University, Abassia, Cairo 11566, Egypt.
| |
Collapse
|
25
|
Zhou X, Shao Y, Li S, Zhang S, Ding C, Zhuang L, Sun J. An intravenous anesthetic drug-propofol, influences the biological characteristics of malignant tumors and reshapes the tumor microenvironment: A narrative literature review. Front Pharmacol 2022; 13:1057571. [PMID: 36506511 PMCID: PMC9732110 DOI: 10.3389/fphar.2022.1057571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/15/2022] [Indexed: 11/27/2022] Open
Abstract
Malignant tumors are the second leading cause of death worldwide. This is a public health concern that negatively impacts human health and poses a threat to the safety of life. Although there are several treatment approaches for malignant tumors, surgical resection remains the primary and direct treatment for malignant solid tumors. Anesthesia is an integral part of the operation process. Different anesthesia techniques and drugs have different effects on the operation and the postoperative prognosis. Propofol is an intravenous anesthetic that is commonly used in surgery. A substantial number of studies have shown that propofol participates in the pathophysiological process related to malignant tumors and affects the occurrence and development of malignant tumors, including anti-tumor effect, pro-tumor effect, and regulation of drug resistance. Propofol can also reshape the tumor microenvironment, including anti-angiogenesis, regulation of immunity, reduction of inflammation and remodeling of the extracellular matrix. Furthermore, most clinical studies have also indicated that propofol may contribute to a better postoperative outcome in some malignant tumor surgeries. Therefore, the author reviewed the chemical properties, pharmacokinetics, clinical application and limitations, mechanism of influencing the biological characteristics of malignant tumors and reshaping the tumor microenvironment, studies of propofol in animal tumor models and its relationship with postoperative prognosis of propofol in combination with the relevant literature in recent years, to lay a foundation for further study on the correlation between propofol and malignant tumor and provide theoretical guidance for the selection of anesthetics in malignant tumor surgery.
Collapse
Affiliation(s)
- Xueliang Zhou
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Yanfei Shao
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Shuchun Li
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Sen Zhang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Chengsheng Ding
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China/
| | - Lei Zhuang
- Department of Anesthesiology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| | - Jing Sun
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,Shanghai Minimally Invasive Surgery Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,*Correspondence: Jing Sun, ; Lei Zhuang,
| |
Collapse
|
26
|
Wang Y, Liu C, Zhang N, Song X, Song Y, Cai D, Fang K, Chang X. Anti-PADI4 antibody suppresses breast cancer by repressing the citrullinated fibronectin in the tumor microenvironment. Biomed Pharmacother 2022; 153:113289. [DOI: 10.1016/j.biopha.2022.113289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 11/28/2022] Open
|
27
|
Lou Q, Zhang M, Zhang K, Liu X, Zhang Z, Zhang X, Yang Y, Gao Y. Arsenic exposure elevated ROS promotes energy metabolic reprogramming with enhanced AKT-dependent HK2 expression. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155691. [PMID: 35525345 DOI: 10.1016/j.scitotenv.2022.155691] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/22/2022] [Accepted: 04/30/2022] [Indexed: 06/14/2023]
Abstract
Exposure to inorganic or organic arsenic compounds continues to pose substantial public health concerns for hundreds of millions of people around the globe. Highly exposed individuals are susceptible to various illnesses, including impairments and cancers of the lung, liver, skin and bladder. Long-term exposure to low-dose arsenic has been identified to induce aerobic glycolysis, which contributes to cells aberrant proliferation. However, the mechanism underlying arsenic-induced aerobic glycolysis is still unclear. Here, mtDNA copy number is enhanced in arsenic-exposed populations and a positive correlation between serum HK2 and urinary total arsenic was observed in the individuals with high urine arsenic (≥ 0.032 mg/L). In a rat model of trivalent arsenic (iAs3+) exposure, the levels of HK2, NDUFA9 and NDUFB8 were increased in the rats treated with iAs3+ daily by gavage for 12 weeks than those in the control rats. Subsequently, in a low-dose arsenic exposure cell model we found that 0.2 μmol/L iAs3+ induced aerobic glycolysis to promote L-02 cells proliferation and inhibit apoptosis, in which HK2 played an important role. Further studies showed accumulated ROS determined the metabolic reprogramming via activating AKT and then increasing HK2 expression. On the one hand, activated AKT induced aerobic glycolysis by increasing HK2 to promote L-02 cells viability and DNA synthesis; on the other hand, phosphorylated AKT induced HK2 mitochondrial outer-membrane location with VDAC1 to inhibit apoptosis. Taken together, our results indicated that ROS induced by low-dose arsenic exposure determined energy metabolic reprogramming and acted a critical regulator for AKT-dependent HK2 expression and aerobic glycolysis.
Collapse
Affiliation(s)
- Qun Lou
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Meichen Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Kunyu Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xiaona Liu
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Zaihong Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Xin Zhang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China
| | - Yanmei Yang
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| | - Yanhui Gao
- Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, Harbin 150081, Heilongjiang Province, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province, Ministry of Health (23618504), Harbin Medical University, Harbin 150081, Heilongjiang Province, China.
| |
Collapse
|
28
|
Zheng X, Pan Y, Yang G, Liu Y, Zou J, Zhao H, Yin G, Wu Y, Li X, Wei Z, Yu S, Zhao Y, Wang A, Chen W, Lu Y. Kaempferol impairs aerobic glycolysis against melanoma metastasis via inhibiting the mitochondrial binding of HK2 and VDAC1. Eur J Pharmacol 2022; 931:175226. [PMID: 36007607 DOI: 10.1016/j.ejphar.2022.175226] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 08/05/2022] [Accepted: 08/17/2022] [Indexed: 01/10/2023]
Abstract
Metastasis is the leading cause of death in melanoma patients. Aerobic glycolysis is a common metabolic feature in tumor and is closely related to cell growth and metastasis. Kaempferol (KAM) is one of the active ingredients in the total flavonoids of Chinese traditional medicine Sparganii Rhizoma. Studies have shown that it interferes with the cell cycle, apoptosis, angiogenesis and metastasis of tumor cells, but whether it can affect the aerobic glycolysis of melanoma is still unclear. Here, we explored the effects and mechanisms of KAM on melanoma metastasis and aerobic glycolysis. KAM inhibited the migration and invasion of A375 and B16F10 cells, and reduced the lung metastasis of melanoma cells. Extracellular acidification rates (ECAR) and glucose consumption were obviously suppressed by KAM, as well as the production of ATP, pyruvate and lactate. Mechanistically, the activity of hexokinase (HK), the first key kinase of aerobic glycolysis, was significantly inhibited by KAM. Although the total protein expression of HK2 was not significantly changed, the binding of HK2 and voltage-dependent anion channel 1 (VDAC1) on mitochondria was inhibited by KAM through AKT/GSK-3β signal pathway. In conclusion, KAM inhibits melanoma metastasis via blocking aerobic glycolysis of melanoma cells, in which the binding of HK2 and VDAC1 on mitochondria was broken.
Collapse
Affiliation(s)
- Xiuqin Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yanhong Pan
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Department of Pharmacy, the Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Gejun Yang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Liu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jueyao Zou
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Han Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Gang Yin
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yuanyuan Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Zhonghong Wei
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Suyun Yu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Yang Zhao
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Aiyun Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China
| | - Wenxing Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
| | - Yin Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China; Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing, China.
| |
Collapse
|
29
|
Kim SB. Function and therapeutic development of exosomes for cancer therapy. Arch Pharm Res 2022; 45:295-308. [PMID: 35604532 PMCID: PMC9125016 DOI: 10.1007/s12272-022-01387-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/18/2022] [Indexed: 02/06/2023]
Abstract
Exosomes are extracellular vesicles, 50–150 nm in diameter, released by most cells. Exosomes contain several intracellular components, including DNA, RNA, and proteins, which reflect the parent cell’s status and contribute to intercellular communication. Cancers are associated with high morbidity and mortality rates worldwide. Owing to a high survival rate, cancer treatment by immune modulation of the tumor microenvironment has recently received a lot of attention. Exosomes’ role in immunological control is also being studied extensively. Exosomes play a role in cancer-immune cell communication. Through intracellular communication, exosomes promote tumor growth, metastasis, angiogenesis, and drug resistance. In addition, innate immune cell-derived exosomes and adaptive immune cell exosomes have an anti-tumorigenic activity. Exosome-related tumor microenvironment drugs are being developed, including inhibitors of exosomal release, tumor-derived exosomes, and immune cell-derived exosome engineering, although there are still some obstacles to overcome. We describe in this review the significance of exosomes in the tumor microenvironment. We also summarize current studies on anticancer immune drug development and the challenges in developing exosome-related drugs.
Collapse
Affiliation(s)
- Sang Bum Kim
- College of Pharmacy, Sahmyook University, Seoul, Republic of Korea, 01795.
| |
Collapse
|
30
|
Zhou H, Zhang J, Yan Z, Qu M, Zhang G, Han J, Wang F, Sun K, Wang L, Yang X. DECR1 directly activates HSL to promote lipolysis in cervical cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159090. [PMID: 34896618 DOI: 10.1016/j.bbalip.2021.159090] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 11/30/2022]
Abstract
Fatty acids have a high turnover rate in cancer cells to supply energy for tumor growth and proliferation. Lipolysis is particularly important for the regulation of fatty acid homeostasis and in the maintenance of cancer cells. In the current study, we explored how 2,4-Dienoyl-CoA reductase (DECR1), a short-chain dehydrogenase/reductase associated with mitochondrial and cytoplasmic compartments, promotes cancer cell growth. We report that DECR1 overexpression significantly reduced the triglyceride (TAG) content in HeLa cells; conversely, DECR1 silencing increased intracellular TAG content. Subsequently, our experiments demonstrate that DECR1 promotes lipolysis via effects on hormone sensitive lipase (HSL). The direct interaction of DECR1 with HSL increases HSL phosphorylation and activity, facilitating the translocation of HSL to lipid droplets. The ensuing enhancement of lipolysis thus increases the release of free fatty acids. Downstream effects include the promotion of cervical cancer cell migration and growth, associated with the enhanced levels of p62 protein. In summary, high levels of DECR1 serves to enhance lipolysis and the release of fatty acid energy stores to support cervical cancer cell growth.
Collapse
Affiliation(s)
- Huijuan Zhou
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Jie Zhang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - ZhongKang Yan
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Min Qu
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Gaojian Zhang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Jianxiong Han
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Feifei Wang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Kai Sun
- School of Life Science, Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Lili Wang
- School of Life Science, Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China
| | - Xingyuan Yang
- Institute of Physical Science and Information Technology, Institute of Health Sciences Anhui University, Hefei, Anhui Hefei, Anhui 230601, PR China.
| |
Collapse
|
31
|
Qin Q, Yang B, Liu J, Song E, Song Y. Polychlorinated biphenyl quinone exposure promotes breast cancer aerobic glycolysis: An in vitro and in vivo examination. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127512. [PMID: 34736186 DOI: 10.1016/j.jhazmat.2021.127512] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/27/2021] [Accepted: 10/13/2021] [Indexed: 06/13/2023]
Abstract
Polychlorinated biphenyls (PCBs) were classified as group I carcinogenic to humans, as their toxicological mechanisms have been associated with cancer initiation and promotion. However, whether PCBs have effects on cancer progression are still largely veiled. Here, we for the first time discovered that a PCB quinone-type metabolite, namely PCB29-pQ, exposure significantly promoted aerobic glycolysis, a hallmark property of metabolic reprogramming in cancer progression. PCB29-pQ exposure activated corresponding glucose transporter type 1 (GLUT1)/integrin β1/Src/focal adhesion kinase (FAK) signaling pathway in breast cancer MDA-MB-231 cells. Conversely, the inhibition of GLUT1 reversed this effect, as well as the ability of migration and invasion of MDA-MB-231 cells. In addition, PCB29-pQ-induced breast cancer metastasis in 4T1-luc cell inoculated nude mice is repressed by GLUT1 inhibition. Overall, our results demonstrated a novel mechanism that PCB29-pQ exposure promotes aerobic glycolysis in both in vitro and in vivo breast cancer models in a GLUT1-dependent fashion, which may provide a strategy to prevent breast cancer cell spread.
Collapse
Affiliation(s)
- Qi Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Bingwei Yang
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Yang Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
32
|
Wei X, Zhao H, Huang G, Liu J, He W, Huang Q. ES-MION-Based Dual-Modality PET/MRI Probes for Acidic Tumor Microenvironment Imaging. ACS OMEGA 2022; 7:3442-3451. [PMID: 35128253 PMCID: PMC8811892 DOI: 10.1021/acsomega.1c05815] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
Among all characteristics of the tumor microenvironment (TME), which are caused by abnormal proliferation of solid tumors, extracellular acidity is an important indicator for malignancy grading. pH-low insertion peptides (pHLIPs) are adopted to discern the acidic TME. To date, different imaging agents including fluorescent, positron emission tomography (PET), single photon emission computed tomography (SPECT), and magnetic resonance (MR) contrast agents with pHLIPs to target the acidic TME have been used to image various tumor models successfully. In this article, a PET/MRI dual-modality probe, based on extremely small magnetic iron oxide nanoparticles (ES-MIONs) with pHLIPs as a targeting unit, was proposed for the first time. In the phantom study, the probe showed relatively high r 1 relaxivity (r 1 = 1.03 mM-1 s-1), indicating that it could be used as a T1-weighted MR contrast agent. The 68Ga-radiolabeled probe was further studied in vitro and in vivo to evaluate pHLIP targeting efficacy and feasibility for PET/MRI. PET with intratumoral injection and T1-weighted MRI with intravenous injection both showed pHLIP-specific delivery of the probe. Therefore, we successfully designed and developed a radiolabeled ES-MION-based dual-modality PET/MRI agent to target the acidic tumor microenvironment. Although the accumulation of the probe in tumors with intravenous injection was not high enough to exhibit signals in the PET imaging study, our study still provides further insights into the ES-MION-based PET/MRI strategy.
Collapse
Affiliation(s)
- Xiuyan Wei
- Medical
Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Haitao Zhao
- Department
of Nuclear Medicine, Institute of Clinical Nuclear Medicine, Renji
Hospital, School of Medicine, Shanghai Jiao
Tong University, Shanghai 200127, China
| | - Gang Huang
- Shanghai
Key Laboratory of Molecular Imaging, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, China
| | - Jianhua Liu
- Medical
Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Weina He
- Medical
Chemistry and Bioinformatics Center, College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qingqing Huang
- Shanghai
Key Laboratory of Molecular Imaging, Shanghai
University of Medicine and Health Sciences, Shanghai 201318, China
| |
Collapse
|
33
|
Albiñana V, Recio-Poveda L, González-Peramato P, Martinez-Piñeiro L, Botella LM, Cuesta AM. Blockade of β2-Adrenergic Receptor Reduces Inflammation and Oxidative Stress in Clear Cell Renal Cell Carcinoma. Int J Mol Sci 2022; 23:ijms23031325. [PMID: 35163250 PMCID: PMC8835934 DOI: 10.3390/ijms23031325] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 12/09/2022] Open
Abstract
Von Hippel-Lindau (VHL) syndrome is a rare inherited cancer disease where the lack of VHL protein triggers the development of multisystemic tumors such us retinal hemangioblastomas (HBs), CNS-HBs, and clear cell renal cell carcinoma (ccRCC). Since standard therapies in VHL have shown limited response, leaving surgery as the only possible treatment, targeting of the β2-adrenergic receptor (ADRB2) has shown therapeutic antitumor benefits on VHL-retinal HBs (clinical trial), VHL-CNS HBs, and VHL-ccRCC (in vitro and in vivo). In the present study, we wanted to look deep into the effects of the ADRB2 blockers propranolol and ICI-118,551 on two main aspects of cancer progression: (i) the changes on the inflammatory response of ccRCC cells; and (ii) the modulation on the Warburg effect (glycolytic metabolism), concretely, on the expression of genes involved in the cell reactive oxygen species (ROS) balance and levels. Accordingly, in vitro studies with primary VHL-ccRCC and 786-O cells measuring ROS levels, ROS-expression of detoxifying enzymes, and the expression of p65/NF-κB targets by RT-PCR were carried out. Furthermore, histological analyses of ccRCC samples from heterotopic mouse xenografts were performed. The obtained results show that ADRB2 blockade in ccRCC cells reduces the level of oxidative stress and stabilizes the inflammatory response. Thus, these data further support the idea of targeting ADRB2 as a promising strategy for the treatment of VHL and other non-VHL tumors.
Collapse
Affiliation(s)
- Virginia Albiñana
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (V.A.); (L.R.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Lucía Recio-Poveda
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (V.A.); (L.R.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
| | - Pilar González-Peramato
- Department of Pathology, La Paz University Hospital, Autonomous University of Madrid, 28029 Madrid, Spain;
| | | | - Luisa María Botella
- Centro de Investigaciones Biológicas Margaritas Salas, 28040 Madrid, Spain; (V.A.); (L.R.-P.)
- Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII (Instituto de Salud Carlos III), 28029 Madrid, Spain
- Correspondence: (L.M.B.); (A.M.C.)
| | - Angel M. Cuesta
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain
- Correspondence: (L.M.B.); (A.M.C.)
| |
Collapse
|
34
|
Wang X, Wang Z, Huang R, Lu Z, Chen X, Huang D. UPP1 Promotes Lung Adenocarcinoma Progression through Epigenetic Regulation of Glycolysis. Aging Dis 2022; 13:1488-1503. [PMID: 36186123 PMCID: PMC9466982 DOI: 10.14336/ad.2022.0218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 11/01/2022] Open
Affiliation(s)
- Xuan Wang
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Zheng Wang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Renhong Huang
- Department of General Surgery, Comprehensive Breast Health Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Zhouyi Lu
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
| | - Xiaofeng Chen
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| | - Dayu Huang
- Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China.
- Correspondence should be addressed to: Dr. Dayu Huang (), Dr. Xiaofeng Chen (); Dr. Xuan Wang ().Department of Thoracic Surgery Huashan Hospital & Cancer Metastasis Institute, Fudan University, Shanghai 200040, China
| |
Collapse
|
35
|
Wei X, Hou Y, Long M, Jiang L, Du Y. Molecular mechanisms underlying the role of hypoxia-inducible factor-1 α in metabolic reprogramming in renal fibrosis. Front Endocrinol (Lausanne) 2022; 13:927329. [PMID: 35957825 PMCID: PMC9357883 DOI: 10.3389/fendo.2022.927329] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Renal fibrosis is the result of renal tissue damage and repair response disorders. If fibrosis is not effectively blocked, it causes loss of renal function, leading to chronic renal failure. Metabolic reprogramming, which promotes cell proliferation by regulating cellular energy metabolism, is considered a unique tumor cell marker. The transition from oxidative phosphorylation to aerobic glycolysis is a major feature of renal fibrosis. Hypoxia-inducible factor-1 α (HIF-1α), a vital transcription factor, senses oxygen status, induces adaptive changes in cell metabolism, and plays an important role in renal fibrosis and glucose metabolism. This review focuses on the regulation of proteins related to aerobic glycolysis by HIF-1α and attempts to elucidate the possible regulatory mechanism underlying the effects of HIF-1α on glucose metabolism during renal fibrosis, aiming to provide new ideas for targeted metabolic pathway intervention in renal fibrosis.
Collapse
Affiliation(s)
- Xuejiao Wei
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Yue Hou
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Mengtuan Long
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
| | - Lili Jiang
- Department of Physical Examination Center, The First Hospital of Jilin University, Changchun, China
| | - Yujun Du
- Department of Nephrology, The First Hospital of Jilin University, Changchun, China
- *Correspondence: Yujun Du,
| |
Collapse
|
36
|
Zhang P, Cheng S, Sheng X, Dai H, He K, Du Y. The role of autophagy in regulating metabolism in the tumor microenvironment. Genes Dis 2021; 10:447-456. [DOI: 10.1016/j.gendis.2021.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/23/2021] [Accepted: 10/24/2021] [Indexed: 10/19/2022] Open
|
37
|
Mu J, Tian Y, Liu F, Wang Z, Tan R, Zhang B, Quan P, Zhang H, Yang J, Yuan P. Mitochondrial transcription factor B1 promotes the progression of hepatocellular carcinoma via enhancing aerobic glycolysis. J Cell Commun Signal 2021; 16:223-238. [PMID: 34825289 DOI: 10.1007/s12079-021-00658-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/09/2021] [Indexed: 12/27/2022] Open
Abstract
Mitochondrial dysfunctions play crucial roles in the carcinogenesis of various human cancers. However, the molecular mechanisms leading to mitochondrial dysfunction and thus cancer progression remains largely unclear. TFB1M (mitochondrial transcription factor B1) is a mitochondrial DNA-binding protein that activates the transcription of mitochondrial DNA. Our bioinformatics analysis indicated a significant up-regulation of TFB1M in hepatocellular carcinoma (HCC). Here, we investigated its clinical significance and biological functions in this malignancy. Here, we found that TFB1M was significantly upregulated in HCC cells probably due to decreased miR-130a-3p expression. High TFB1M expression was positively associated with poor patient survival in HCC. TFB1M contributes to HCC growth and metastasis by promoting cell cycle progression, epithelia-mesenchymal transition (EMT), and inhibiting cell apoptosis. Mechanistically, the metabolic switch from oxidative phosphorylation to glycolysis contributed to the promotion of tumor growth and metastasis by TFB1M overexpression in HCC cells. In summary, we demonstrate that TFB1M plays a crucial oncogenic role in HCC progression, indicating TFB1M as a promising prognostic marker and therapeutic target in HCC.
Collapse
Affiliation(s)
- Jiao Mu
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, 1 Xinsi Road, Xi'an, 710038, Shaanxi, China.,Department of Hematology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.,Department of Hematology, Xi'an Central Hospital, Xi'an, 710003, Shaanxi, China
| | - Yiyuan Tian
- Physiology Divion of Yan'an University Medical College, Yan'an, 716000, Shaanxi, China
| | - Fengzhou Liu
- Aerospace Clinical Medical Center, School of Aerospace Medicine, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Zijun Wang
- Battalion of the First Regiment of Cadets of Basic Medicine, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Rui Tan
- Department of Orthopaedics, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Bei Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, 1 Xinsi Road, Xi'an, 710038, Shaanxi, China
| | - Penghe Quan
- Department of Urology, Xijing Hospital, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Hongxin Zhang
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, 1 Xinsi Road, Xi'an, 710038, Shaanxi, China.
| | - Jingyue Yang
- Department of Oncology, Xijing Hospital, Air Force Military Medical University, 169 Changle West Road, Xi'an, 710032, Shaanxi, China.
| | - Peng Yuan
- Department of Pain Treatment, Tangdu Hospital, Air Force Military Medical University, 1 Xinsi Road, Xi'an, 710038, Shaanxi, China. .,State Key Laboratory of Cancer Biology and Department of Physiology and Pathophysiology, Air Force Military Medical University, Xi'an, 710032, Shaanxi, China.
| |
Collapse
|
38
|
Ito R, Yashiro M, Tsukioka T, Izumi N, Komatsu H, Inoue H, Yamamoto Y, Nishiyama N. Pyruvate dehydrogenase E1α represents a reliable prognostic predictor for patients with non-small cell lung cancer resected via curative operation. J Thorac Dis 2021; 13:5691-5700. [PMID: 34795919 PMCID: PMC8575853 DOI: 10.21037/jtd-21-1463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 12/04/2022]
Abstract
Background Lung cancer is associated with a high morbidity and mortality rate worldwide; however, no reliable and independent prognostic predictor for non-small cell lung cancer (NSCLC) after curative surgery is available. Glucose metabolism is correlated with cancer cell proliferation. Pyruvate dehydrogenase E1α (PDH-E1α) catalyzes the conversion of pyruvate to acetyl-CoA and promotes aerobic glucose metabolism. In this study, we examined the relationship between PDH-E1α expression and clinicopathological factors associated with NSCLC to identify a reliable prognostic predictor of NSCLC after curative surgery. Methods A total of 445 patients with NSCLC who underwent curative resection were enrolled in this study. PDH-E1α expression was evaluated via immunohistochemistry. We analyzed the correlation between PDH-E1α expression and clinicopathological features of the patients. Results In total, 248 (56%) of the 445 patients with NSCLC were PDH-E1α-positive, and 197 patients were PDH-E1α-negative. PDH-E1α positivity was significantly correlated with the presence of adenocarcinoma (P<0.001) compared to the PDH-E1α-negative group. Patients with NSCLC showing PDH-E1α-negative expression had a significantly poorer overall survival rate (P=0.007) than those showing PDH-E1α-positive expression, especially at stage II. Patients with PDH-E1α negative expression also showed a poorer disease-free survival rate (P=0.02). Multivariate analysis revealed that PDH-E1α negativity (P=0.037) and male sex (P<0.001) were significantly correlated with a poor overall survival. Conclusions PDH-E1α may represent a reliable prognostic predictor for NSCLC in patients that have recently undergone curative resection, especially at stage II.
Collapse
Affiliation(s)
- Ryuichi Ito
- Department of Thoracic Surgery, Osaka City University, Osaka, Japan
| | - Masakazu Yashiro
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | - Takuma Tsukioka
- Department of Thoracic Surgery, Osaka City University, Osaka, Japan
| | - Nobuhiro Izumi
- Department of Thoracic Surgery, Osaka City University, Osaka, Japan
| | - Hiroaki Komatsu
- Department of Thoracic Surgery, Osaka City University, Osaka, Japan
| | - Hidetoshi Inoue
- Department of Thoracic Surgery, Osaka City University, Osaka, Japan
| | - Yurie Yamamoto
- Molecular Oncology and Therapeutics, Osaka City University Graduate School of Medicine, Osaka, Japan
| | | |
Collapse
|
39
|
Huang Y, Chen LM, Xie JY, Han H, Zhu BF, Wang LJ, Wang WJ. High Expression of PKM2 Was Associated with the Poor Prognosis of Acute Leukemia. Cancer Manag Res 2021; 13:7851-7858. [PMID: 34675679 PMCID: PMC8520821 DOI: 10.2147/cmar.s331076] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
Purpose To explore the clinical significance of plasma pyruvate kinase M2 (PKM2) in assessing the incidence and prognosis of acute leukemia. Methods Plasma samples from 56 acute myeloid leukemia (AML) patients, 40 acute lymphoblastic leukemia (ALL) patients, and 66 plasma samples from healthy individuals were collected. The level of plasma PKM2 was detected by enzyme-linked immunosorbent assay. The clinical significance of PKM2 in acute leukemia was assessed by analyzing receiver operating characteristic and survival curves. Results The plasma levels of PKM2 in AML or ALL patients were significantly higher than those in healthy individuals, respectively. PKM2 can be used as a potential diagnostic index with the AUC of 0.827 for AML and 0.837 for ALL. The level of plasma PKM2 in ALL patients with a BCR/ABL-positive genotype was significantly higher than that in patients with a BCR/ABL-negative genotype (p<0.05). The event-free survival and the overall survival of acute leukemia patients with higher PKM2 expression was worse than those with lower PKM2 expression. Conclusion This study showed that higher levels of PKM2 was negatively correlated with the prognosis of acute leukemia. Therefore, PKM2 can be used as a potential index to assess the incidence and prognosis of acute leukemia.
Collapse
Affiliation(s)
- Yunxiu Huang
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Lin-Mu Chen
- Department of Pharmacy, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Jin-Ye Xie
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Hui Han
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Bao-Fang Zhu
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Luo-Jia Wang
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| | - Wei-Jia Wang
- Department of Laboratory Medicine, Sun Yat-sen University Affiliated Zhongshan Hospital, Zhongshan, Guangdong Province, People's Republic of China
| |
Collapse
|
40
|
Guo XH, Jiang SS, Zhang LL, Hu J, Edelbek D, Feng YQ, Yang ZX, Hu PC, Zhong H, Yang GH, Yang F. Berberine exerts its antineoplastic effects by reversing the Warburg effect via downregulation of the Akt/mTOR/GLUT1 signaling pathway. Oncol Rep 2021; 46:253. [PMID: 34643248 PMCID: PMC8548812 DOI: 10.3892/or.2021.8204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 09/01/2021] [Indexed: 11/09/2022] Open
Abstract
Glucose transporter 1 (GLUT1) plays a primary role in the glucose metabolism of cancer cells. However, to the best of our knowledge, there are currently no anticancer drugs that inhibit GLUT1 function. The present study aimed to investigate the antineoplastic activity of berberine (BBR), the main active ingredient in numerous Traditional Chinese medicinal herbs, on HepG2 and MCF7 cells. The results of Cell Counting Kit-8 assay, colony formation assay and flow cytometry revealed that BBR effectively inhibited the proliferation of tumor cells, and induced G2/M cell cycle arrest and apoptosis. Notably, the results of luminescence ATP detection assay and glucose uptake assay showed that BBR also significantly inhibited ATP synthesis and markedly decreased the glucose uptake ability, which suggested that the antitumor effect of BBR may occur via reversal of the Warburg effect. In addition, the results of reverse transcription-quantitative PCR, western blotting and immunofluorescence staining indicated that BBR downregulated the protein expression levels of GLUT1, maintained the cytoplasmic internalization of GLUT1 and suppressed the Akt/mTOR signaling pathway in both HepG2 and MCF7 cell lines. Augmentation of Akt phosphorylation levels by the Akt activator, SC79, abolished the BBR-induced decrease in ATP synthesis, glucose uptake, GLUT1 expression and cell proliferation, and reversed the proapoptotic effect of BBR. These findings indicated that the antineoplastic effect of BBR may involve the reversal of the Warburg effect by downregulating the Akt/mTOR/GLUT1 signaling pathway. Furthermore, the results of the co-immunoprecipitation assay demonstrated that BBR increased the interaction between ubiquitin conjugating enzyme E2 I (Ubc9) and GLUT1, which suggested that Ubc9 may mediate the proteasomal degradation of GLUT1. On the other hand, BBR decreased the interaction between Gα-interacting protein-interacting protein at the C-terminus (GIPC) and GLUT1, which suggested that the retention of GLUT1 in the cytoplasm may be achieved by inhibiting the interaction between GLUT1 and GIPC, thereby suppressing the glucose transporter function of GLUT1. The results of the present study provided a theoretical basis for the application of the Traditional Chinese medicine component, BBR, for cancer treatment.
Collapse
Affiliation(s)
- Xiao-Hong Guo
- Department of Medical Biology, School of Basic Medical Sciences, Hubei University of Chinese Medicine, Wuhan, Hubei 430065, P.R. China
| | - Shui-Shan Jiang
- Medical Security Office, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Li-Li Zhang
- Nursing Department, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jun Hu
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Dilda Edelbek
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Yu-Qi Feng
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zi-Xian Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Peng-Chao Hu
- Department of Oncology, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, P.R. China
| | - Hua Zhong
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| | - Guo-Hua Yang
- Department of Medical Genetics, School of Basic Medical Science, Demonstration Center for Experimental Basic Medicine Education, Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Fang Yang
- Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, P.R. China
| |
Collapse
|
41
|
Abstract
To identify regulators of triple-negative breast cancer (TNBC), gene expression profiles of malignant parts of TNBC (mTNBC) and normal adjacent (nadj) parts of the same breasts have been compared. We are interested in the roles of estrogen receptor β (ERβ) and the cytochrome P450 family (CYPs) as drivers of TNBC. We examined by RNA sequencing the mTNBC and nadj parts of five women. We found more than a fivefold elevation in mTNBC of genes already known to be expressed in TNBC: BIRC5/survivin, Wnt-10A and -7B, matrix metalloproteinases (MMPs), chemokines, anterior gradient proteins, and lysophosphatidic acid receptor and the known basal characteristics of TNBC, sox10, ROPN1B, and Col9a3. There were two unexpected findings: 1) a strong induction of CYPs involved in activation of fatty acids (CYP4), and in inactivation of calcitriol (CYP24A1) and retinoic acid (CYP26A1); and 2) a marked down-regulation of FOS, FRA1, and JUN, known tethering partners of ERβ. ERβ is expressed in 20 to 30% of TNBCs and is being evaluated as a target for treating TNBC. We used ERβ+ TNBC patient-derived xenografts in mice and found that the ERβ agonist LY500703 had no effect on growth or proliferation. Expression of CYPs was confirmed by immunohistochemistry in formalin-fixed and paraffin-embedded (FFPE) TNBC. In TNBC cell lines, the CYP4Z1-catalyzed fatty acid metabolite 20-hydroxyeicosatetraenoic acid (20-HETE) increased proliferation, while calcitriol decreased proliferation but only after inhibition of CYP24A1. We conclude that CYP-mediated pathways can be drivers of TNBC but that ERβ is unlikely to be a tumor suppressor because the absence of its main tethering partners renders ERβ functionless on genes involved in proliferation and inflammation.
Collapse
|
42
|
Guan H, Luo W, Liu Y, Li M. Novel circular RNA circSLIT2 facilitates the aerobic glycolysis of pancreatic ductal adenocarcinoma via miR-510-5p/c-Myc/LDHA axis. Cell Death Dis 2021; 12:645. [PMID: 34168116 PMCID: PMC8225611 DOI: 10.1038/s41419-021-03918-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 06/05/2021] [Accepted: 06/08/2021] [Indexed: 01/17/2023]
Abstract
Increasing evidence has indicated the great diagnostic and therapeutic potentials of circular RNAs (circRNAs) in human cancers. Although the biological roles of circRNAs in pancreatic ductal adenocarcinoma (PDAC) have been partially annotated, the potential regulatory mechanism of circRNAs in PDAC tumorigenesis remains poorly understood. Here, our study found that the novel circRNA circSLIT2 was significantly upregulated in PDAC tissues and cells. Clinically, ectopic high-expression of circSLIT2 was correlated with unfavorable prognosis of PDAC patients. Functional experiments demonstrated that circSLIT2 promoted the aerobic glycolysis and proliferation of PDAC cells in vitro, and circSLIT2 knockdown inhibited tumor growth in vivo. Mechanistically, circSLIT2 acted as miRNA sponge to target miR-510-5p/c-Myc axis. Furthermore, c-Myc bound with the promoter region of lactate dehydrogenase A (LDHA) to activate the transcription. Collectively, present findings reveal that circSLIT2/miR-510-5p/c-Myc/LDHA axis participates in the aerobic glycolysis and carcinogenesis of PDAC, and may act as a promising therapeutic target.
Collapse
MESH Headings
- Aged
- Animals
- Apoptosis
- Carcinoma, Pancreatic Ductal/enzymology
- Carcinoma, Pancreatic Ductal/genetics
- Carcinoma, Pancreatic Ductal/pathology
- Cell Line, Tumor
- Cell Proliferation
- Female
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Neoplastic
- Glycolysis
- Humans
- L-Lactate Dehydrogenase/genetics
- L-Lactate Dehydrogenase/metabolism
- Male
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Middle Aged
- Pancreatic Neoplasms/enzymology
- Pancreatic Neoplasms/genetics
- Pancreatic Neoplasms/pathology
- Proto-Oncogene Proteins c-myc/genetics
- Proto-Oncogene Proteins c-myc/metabolism
- RNA, Circular/genetics
- RNA, Circular/metabolism
- Signal Transduction
- Transcription, Genetic
- Mice
Collapse
Affiliation(s)
- Hua Guan
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Wei Luo
- Department of Stomatology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Yuping Liu
- Department of Health Management, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| | - Mingfei Li
- Department of Hepatobiliary Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, China.
| |
Collapse
|
43
|
Mack N, Mazzio E, Badisa R, Soliman KFA. Metabolic Response to the Mitochondrial Toxin 1-Methyl-4-phenylpyridinium (MPP+) in LDH-A/B Double-knockout LS174T Colon Cancer Cells. Cancer Genomics Proteomics 2021; 18:385-405. [PMID: 33994363 DOI: 10.21873/cgp.20267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/15/2021] [Accepted: 04/06/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/AIM Rapid glycolytic substrate-level phosphorylation (SLP) and accumulation of lactic acid are characteristics of diverse cancers. Recent advances in drug discovery have included the use of glycolytic inhibitors with mitochondrial targeting drugs to attempt to invoke an energy crisis in aggressive metabolically active chemo-resistant cancers. In this work, we examine the consequences of inhibiting mitochondrial oxidative phosphorylation (OXPHOS) with 1-methyl-4-phenylpyridinium (MPP+) in LS14T colon cancer cells containing a genetic double knock out (DKO) of lactic acid dehydrogenase (LDHA and LDHB). MATERIALS AND METHODS Several metabolic parameters were evaluated concomitant to whole transcriptomic (WT) mRNA, microRNA, and long intergenic non-coding RNAs using Affymetrix 2.1 human ST arrays. RESULTS MPP+ effectively blocked OXPHOS where a compensatory shift toward anaerobic SLP was only observed in the control vector (CV), and not observed in the LDH-A/B DKOs (lacking the ability to produce lactic acid). Despite this, there was an unexpected resilience to MPP+ in the latter in terms of energy, which displayed significantly higher resting baseline respiratory OXPHOS capacity relative to controls. At the transcriptome level, MPP+ invoked 1738 differential expressed genes (DEGs) out of 48,226; LDH-A/B DKO resulted in 855 DEGs while 349 DEGs were found to be overlapping in both groups versus respective controls, including loss of mitochondrial complex I (subunits 3 and 6), cell cycle transcripts and fluctuations in epigenetic chromatin remodeling systems. In terms of energy, the effects of MPP+ in the CV transcripts reflect the funneling of carbon intermediates toward glycolysis. The LDH-A/B DKO transcripts reflect a flow of carbons away from glycolysis toward the production of acetyl-CoA. CONCLUSION The findings from this study suggest a metabolic resilience to MPP+ in cancer cells devoid of LDH-A/B, explainable in-part by higher baseline OXPHOS respiratory ATP production, necessitating more toxin to suppress the electron transport chain.
Collapse
Affiliation(s)
- Nzinga Mack
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Elizabeth Mazzio
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Ramesh Badisa
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A
| | - Karam F A Soliman
- Pharmaceutical Sciences Division, College of Pharmacy & Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL, U.S.A.
| |
Collapse
|
44
|
Sharma NK, Pal JK. Metabolic Ink Lactate Modulates Epigenomic Landscape: A Concerted Role of Pro-tumor Microenvironment and Macroenvironment During Carcinogenesis. Curr Mol Med 2021; 21:177-181. [PMID: 32436828 DOI: 10.2174/1566524020666200521075252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 11/22/2022]
Abstract
Tumor heterogeneity is influenced by various factors including genetic, epigenetic and axis of metabolic-epigenomic regulation. In recent years, metabolic-epigenomic reprogramming has been considered as one of the many tumor hallmarks and it appears to be driven by both microenvironment and macroenvironment factors including diet, microbiota and environmental pressures. Epigenetically, histone lysine residues are altered by various post-translational modifications (PTMs) such as acetylation, acylation, methylation and lactylation. Furthermore, lactylation is suggested as a new form of PTM that uses a lactate substrate as a metabolic ink for epigenetic writer enzyme that remodels histone proteins. Therefore, preclinical and clinical attempts are warranted to disrupt the pathway of metabolic-epigenomic reprogramming that will turn pro-tumor microenvironment into an anti-tumor microenvironment. This paper highlights the metabolicepigenomic regulation events including lactylation and its metabolic substrate lactate in the tumor microenvironment.
Collapse
Affiliation(s)
- Nilesh Kumar Sharma
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| | - Jayanta K Pal
- Cancer and Translational Research Lab, Department of Biotechnology, Dr. D.Y. Patil Biotechnology & Bioinformatics Institute, Dr. D.Y. Patil Vidyapeeth, Pune, Maharashtra 411033, India
| |
Collapse
|
45
|
Li X, Wang F, Xu X, Zhang J, Xu G. The Dual Role of STAT1 in Ovarian Cancer: Insight Into Molecular Mechanisms and Application Potentials. Front Cell Dev Biol 2021; 9:636595. [PMID: 33834023 PMCID: PMC8021797 DOI: 10.3389/fcell.2021.636595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/01/2021] [Indexed: 01/06/2023] Open
Abstract
The signal transducer and activator of transcription 1 (STAT1) is a transducer protein and acts as a transcription factor but its role in ovarian cancer (OC) is not completely understood. Practically, there are two-faced effects of STAT1 on tumorigenesis in different kinds of cancers. Existing evidence reveals that STAT1 has both tumor-suppressing and tumor-promoting functions involved in angiogenesis, cell proliferation, migration, invasion, apoptosis, drug resistance, stemness, and immune responses mainly through interacting and regulating target genes at multiple levels. The canonical STAT1 signaling pathway shows that STAT1 is phosphorylated and activated by the receptor-activated kinases such as Janus kinase in response to interferon stimulation. The STAT1 signaling can also be crosstalk with other signaling such as transforming growth factor-β signaling involved in cancer cell behavior. OC is often diagnosed at an advanced stage due to symptomless or atypical symptoms and the lack of effective detection at an early stage. Furthermore, patients with OC often develop chemoresistance and recurrence. This review focuses on the multi-faced role of STAT1 and highlights the molecular mechanisms and biological functions of STAT1 in OC.
Collapse
Affiliation(s)
- Xin Li
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fanchen Wang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiaolin Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinguo Zhang
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guoxiong Xu
- Research Center for Clinical Medicine, Jinshan Hospital, Fudan University, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
46
|
Yekula A, Taylor A, Beecroft A, Kang KM, Small JL, Muralidharan K, Rosh Z, Carter BS, Balaj L. The role of extracellular vesicles in acquisition of resistance to therapy in glioblastomas. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:1-16. [PMID: 35582008 PMCID: PMC9019190 DOI: 10.20517/cdr.2020.61] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 10/05/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor with a median survival of 15 months despite standard care therapy consisting of maximal surgical debulking, followed by radiation therapy with concurrent and adjuvant temozolomide treatment. The natural history of GBM is characterized by inevitable recurrence with patients dying from increasingly resistant tumor regrowth after therapy. Several mechanisms including inter- and intratumoral heterogeneity, the evolution of therapy-resistant clonal subpopulations, reacquisition of stemness in glioblastoma stem cells, multiple drug efflux mechanisms, the tumor-promoting microenvironment, metabolic adaptations, and enhanced repair of drug-induced DNA damage have been implicated in therapy failure. Extracellular vesicles (EVs) have emerged as crucial mediators in the maintenance and establishment of GBM. Multiple seminal studies have uncovered the multi-dynamic role of EVs in the acquisition of drug resistance. Mechanisms include EV-mediated cargo transfer and EVs functioning as drug efflux channels and decoys for antibody-based therapies. In this review, we discuss the various mechanisms of therapy resistance in GBM, highlighting the emerging role of EV-orchestrated drug resistance. Understanding the landscape of GBM resistance is critical in devising novel therapeutic approaches to fight this deadly disease.
Collapse
Affiliation(s)
- Anudeep Yekula
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | | | | | - Keiko M. Kang
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Julia L. Small
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Koushik Muralidharan
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Zachary Rosh
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Leonora Balaj
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA 02114, USA
| |
Collapse
|
47
|
Guo C, Gao C, Lv X, Zhao D, Greenaway FT, Hao L, Tian Y, Liu S, Sun M. CRKL promotes hepatocarcinoma through enhancing glucose metabolism of cancer cells via activating PI3K/Akt. J Cell Mol Med 2021; 25:2714-2724. [PMID: 33523562 PMCID: PMC7933966 DOI: 10.1111/jcmm.16303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/05/2020] [Accepted: 01/04/2021] [Indexed: 12/17/2022] Open
Abstract
Abnormal glucose metabolism may contribute to cancer progression. As a member of the CRK (v-crk sarcoma virus CT10 oncogene homologue) adapter protein family, CRKL (CRK-like) associated with the development and progression of various tumours. However, the exact role and underlying mechanism of CRKL on energy metabolism remain unknown. In this study, we investigated the effect of CRKL on glucose metabolism of hepatocarcinoma cells. CRKL and PI3K were found to be overexpressed in both hepatocarcinoma cells and tissues; meanwhile, CRKL up-regulation was positively correlated with PI3K up-regulation. Functional investigations revealed that CRKL overexpression promoted glucose uptake, lactate production and glycogen synthesis of hepatocarcinoma cells by up-regulating glucose transporters 1 (GLUT1), hexokinase II (HKII) expression and down-regulating glycogen synthase kinase 3β (GSK3β) expression. Mechanistically, CRKL promoted glucose metabolism of hepatocarcinoma cells via enhancing the CRKL-PI3K/Akt-GLUT1/HKII-glucose uptake, CRKL-PI3K/Akt-HKII-glucose-lactate production and CRKL-PI3K/Akt-Gsk3β-glycogen synthesis. We demonstrate CRKL facilitates HCC malignancy via enhancing glucose uptake, lactate production and glycogen synthesis through PI3K/Akt pathway. It provides interesting fundamental clues to CRKL-related carcinogenesis through glucose metabolism and offers novel therapeutic strategies for hepatocarcinoma.
Collapse
Affiliation(s)
- Chunmei Guo
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Chao Gao
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
- Present address:
College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing)DaqingChina
| | - Xinxin Lv
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Dongting Zhao
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | | | - Lihong Hao
- Department of Histology and EmbryologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Yuxiang Tian
- Department of BiochemistryCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Shuqing Liu
- Department of BiochemistryCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| | - Ming‐Zhong Sun
- Department of BiotechnologyCollege of Basic Medical SciencesDalian Medical UniversityDalianChina
| |
Collapse
|
48
|
Pan Y, Wang X, He Y, Lin S, Zhu M, Li Y, Wang J, Wang J, Ma X, Xu J, Yang L, Yang G, Huang J, Lu Y, Sheng J. Tumor suppressor ATP4B serve as a promising biomarker for worsening of gastric atrophy and poor differentiation. Gastric Cancer 2021; 24:314-326. [PMID: 33111209 DOI: 10.1007/s10120-020-01128-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/01/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Hydrogen/potassium ATPase β (ATP4B) is a proton pump acting an essential role in gastric acid secretion. This study aimed to investigate the diagnostic performance of ATP4B and its biological role in tumor progression in gastric cancer. METHODS The correlations between ATP4B expression level and clinicopathologic parameters, as well as the relevance of ATP4B expression with overall survival were assessed. The functional roles of ATP4B in gastric cancer were verified by gain- and loss-of-function cell models and tumor xenograft models. The possible downstream effects of ATP4B were analyzed by iTRAQ-based quantitative proteomics analysis. RESULTS A dramatic decrease in ATP4B was associated with malignant transformation in gastric mucosa lesions and correlated with poor differentiation. Restoration of ATP4B expression in gastric cancer cells significantly suppressed cell proliferation, cell viability, migration, invasion, tumorigenicity and induced apoptosis, whereas ATP4B silencing exerted the opposite effects. Mechanistically, we found a quality control on mitochondrial metabolism and functions in ATP4B-overexpression GC cells. CONCLUSIONS Our data suggest that decreasing ATP4B is an indicator for gastric mucosa malignant transformation and GC aggressive phenotype and it plays an inhibitory role in gastric cancer as a tumor suppressor via regulating mitochondrial metabolism and apoptosis pathway.
Collapse
Affiliation(s)
- Yuanming Pan
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.,Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Xin Wang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Yuqi He
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.,The Second School of Clinical Medicine, Southern Medical University, 253 Middle Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Shuye Lin
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.,College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044, China
| | - Min Zhu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China
| | - Yangjie Li
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.,The Second School of Clinical Medicine, Southern Medical University, 253 Middle Industrial Avenue, Guangzhou, 510282, Guangdong, China
| | - Jianxun Wang
- School of Basic Medical Sciences, Qingdao University, Qingdao, China.,Center for Regenerative Medicine, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Jiheng Wang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Xianzong Ma
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Junfeng Xu
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Lang Yang
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China
| | - Guibin Yang
- Department of Gastroenterology, Aerospace Clinic Medical College of Peking University, No. 15 Yuanquan Road, Haidian District, Beijing, 100049, China
| | - Jiaqiang Huang
- College of Life Sciences and Bioengineering, School of Science, Beijing Jiaotong University, 3 Shangyuan Residence, Haidian District, Beijing, 100044, China. .,Cancer and Inflammation Program (CIP), Center for Cancer Research (CCR), National Cancer Institute (NCI), Frederick, MD, USA.
| | - Youyong Lu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital/Institute, No. 52 Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jianqiu Sheng
- Department of Gastroenterology, the 7th Medical Center of Chinese PLA General Hospital, No. 5 Nanmencang, Dongcheng District, Beijing, 100700, China.
| |
Collapse
|
49
|
Antitumor Activity of Protons and Molecular Hydrogen: Underlying Mechanisms. Cancers (Basel) 2021; 13:cancers13040893. [PMID: 33672714 PMCID: PMC7924327 DOI: 10.3390/cancers13040893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/25/2021] [Accepted: 02/16/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Protons (H+) and molecular hydrogen (H2) in the cell are critical in a wide variety of processes. New cancer treatment uses H2, a biologically inactive gas. H2 can rapidly penetrate cell membranes and reach subcellular components to protect nuclear DNA and mitochondria. H2 reduces oxidative stress, exerts anti-inflammatory effects, and acts as a modulator of apoptosis. Exogenous H2 is a protective therapy that can be used in cancer. Cyclotrons and synchrotrons are currently used to produce protons. Proton beam radiotherapy (PBT) offers great promise for the treatment of a wide variety of cancers. H2 and different types of H2 donors may represent a novel therapeutic strategy in cancer treatment. Abstract Understanding the structure and dynamics of the various hydrogen forms has been a subject of numerous studies. Protons (H+) and molecular hydrogen (H2) in the cell are critical in a wide variety of processes. A new cancer treatment uses H2, a biologically inactive gas. Due to its small molecular weight, H2 can rapidly penetrate cell membranes and reach subcellular components to protect nuclear DNA and mitochondria. H2 reduces oxidative stress, exerts anti-inflammatory effects, and acts as a modulator of apoptosis. Exogenous H2, administered by inhalation, drinking H2-rich water, or injecting H2-rich saline solution, is a protective therapy that can be used in multiple diseases, including cancer. In particle therapy, cyclotrons and synchrotrons are the accelerators currently used to produce protons. Proton beam radiotherapy (PBT) offers great promise for the treatment of a wide variety of cancers due to the sharp decrease in the dose of radiation at a defined point. In these conditions, H2 and different types of H2 donors may represent a novel therapeutic strategy in cancer treatment.
Collapse
|
50
|
Ferino A, Xodo LE. Effect of DNA Glycosylases OGG1 and Neil1 on Oxidized G-Rich Motif in the KRAS Promoter. Int J Mol Sci 2021; 22:1137. [PMID: 33498912 PMCID: PMC7865940 DOI: 10.3390/ijms22031137] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/28/2022] Open
Abstract
The promoter of the Kirsten ras (KRAS) proto-oncogene contains, upstream of the transcription start site, a quadruplex-forming motif called 32R with regulatory functions. As guanine under oxidative stress can be oxidized to 8-oxoguanine (8OG), we investigated the capacity of glycosylases 8-oxoguanine glycosylase (OGG1) and endonuclease VIII-like 1 (Neil1) to excise 8OG from 32R, either in duplex or G-quadruplex (G4) conformation. We found that OGG1 efficiently excised 8OG from oxidized 32R in duplex but not in G4 conformation. By contrast, glycosylase Neil1 showed more activity on the G4 than the duplex conformation. We also found that the excising activity of Neil1 on folded 32R depended on G4 topology. Our data suggest that Neil1, besides being involved in base excision repair pathway (BER), could play a role on KRAS transcription.
Collapse
Affiliation(s)
| | - Luigi E. Xodo
- Laboratory of Biochemistry, Department of Medicine, P.le Kolbe 4, 33100 Udine, Italy;
| |
Collapse
|