1
|
Jang W, Song EL, Mun SJ, Bong KW. Efficient isolation of encoded microparticles in a degassed micromold for highly sensitive and multiplex immunoassay with signal amplification. Biosens Bioelectron 2024; 261:116465. [PMID: 38850735 DOI: 10.1016/j.bios.2024.116465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
Multiplex detection of low-abundance protein biomarkers in biofluids can contribute to diverse biomedical fields such as early diagnosis and precision medicine. However, conventional techniques such as digital ELISA, microarray, and hydrogel-based assay still face limitations in terms of efficient protein detection due to issues with multiplexing capability, sensitivity, or complicated assay procedures. In this study, we present the degassed micromold-based particle isolation technique for highly sensitive and multiplex immunoassay with enzymatic signal amplification. Using degassing treatment of nanoporous polydimethylsiloxane (PDMS) micromold, the encoded particles are isolated in the mold within 5 min absorbing trapped air bubbles into the mold by air suction capability. Through 10 min of signal amplification in the isolated spaces by fluorogenic substrate and horseradish peroxidase labeled in the particle, the assay signal is amplified with one order of magnitude compared to that of the standard hydrogel-based assay. Using the signal amplification assay, vascular endothelial growth factor (VEGF) and chorionic gonadotropin beta (CG beta), the preeclampsia-related protein biomarkers, are quantitatively detected with a limit of detection (LoD) of 249 fg/mL and 476 fg/mL in phosphate buffer saline. The multiplex immunoassay is conducted to validate negligible non-specific detection signals and robust recovery rates in the multiplex assay. Finally, the VEGF and CG beta in real urine samples are simultaneously and quantitatively detected by the developed assay. Given the high sensitivity, multiplexing capability, and process simplicity, the presented particle isolation-based signal amplification assay holds significant potential in biomedical and proteomic fields.
Collapse
Affiliation(s)
- Wookyoung Jang
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - E Loomee Song
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Seok Joon Mun
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Ki Wan Bong
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
2
|
Völlmecke K, Afroz R, Bierbach S, Brenker LJ, Frücht S, Glass A, Giebelhaus R, Hoppe A, Kanemaru K, Lazarek M, Rabbe L, Song L, Velasco Suarez A, Wu S, Serpe M, Kuckling D. Hydrogel-Based Biosensors. Gels 2022; 8:768. [PMID: 36547292 PMCID: PMC9777866 DOI: 10.3390/gels8120768] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/10/2022] [Accepted: 11/17/2022] [Indexed: 11/29/2022] Open
Abstract
There is an increasing interest in sensing applications for a variety of analytes in aqueous environments, as conventional methods do not work reliably under humid conditions or they require complex equipment with experienced operators. Hydrogel sensors are easy to fabricate, are incredibly sensitive, and have broad dynamic ranges. Experiments on their robustness, reliability, and reusability have indicated the possible long-term applications of these systems in a variety of fields, including disease diagnosis, detection of pharmaceuticals, and in environmental testing. It is possible to produce hydrogels, which, upon sensing a specific analyte, can adsorb it onto their 3D-structure and can therefore be used to remove them from a given environment. High specificity can be obtained by using molecularly imprinted polymers. Typical detection principles involve optical methods including fluorescence and chemiluminescence, and volume changes in colloidal photonic crystals, as well as electrochemical methods. Here, we explore the current research utilizing hydrogel-based sensors in three main areas: (1) biomedical applications, (2) for detecting and quantifying pharmaceuticals of interest, and (3) detecting and quantifying environmental contaminants in aqueous environments.
Collapse
Affiliation(s)
- Katharina Völlmecke
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Rowshon Afroz
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Sascha Bierbach
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Lee Josephine Brenker
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Sebastian Frücht
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Alexandra Glass
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Ryland Giebelhaus
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Axel Hoppe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Karen Kanemaru
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michal Lazarek
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Lukas Rabbe
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| | - Longfei Song
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Andrea Velasco Suarez
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Shuang Wu
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Michael Serpe
- Department of Chemistry, University of Alberta, 11227 Saskatchewan Drive, Edmonton, AB T6G 2G2, Canada
| | - Dirk Kuckling
- Department of Chemistry, Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany
| |
Collapse
|
3
|
Chen SY, Wu AY, Lunde R, Lai JJ. Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays. Front Bioeng Biotechnol 2022; 10:884271. [PMID: 35721843 PMCID: PMC9199386 DOI: 10.3389/fbioe.2022.884271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker concentration is significantly lower than the assay detection limit, which compromises the sensitivity. To address the challenge, we developed an osmotic processor that statically and spontaneously concentrated biomarkers. The specimen in the device interfaces with the aqueous polymer solution via a dialysis membrane. The polymer solution induces an osmotic pressure difference that extracts water from the specimen, while the membrane retains the biomarkers. The evaluation demonstrated that osmosis induced by various water-soluble polymers efficiently extracted water from the specimens, ca. 5–15 ml/h. The osmotic processor concentrated the specimens to improve the lateral flow assays’ detection limits for the model analytes—human chorionic gonadotropin and SARS-CoV-2 nucleocapsid protein. After the treatment via the osmotic processor, the lateral flow assays detected the corresponding biomarkers in the concentrated specimens. The test band intensities of the assays with the concentrated specimens were very similar to the reference assays with 100-fold concentrations. The mass spectrometry analysis estimated the SARS-CoV-2 nucleocapsid protein concentration increased ca. 200-fold after the osmosis. With its simplicity and flexibility, this device demonstrates a great potential to be utilized in conjunction with the existing lateral flow assays for enabling highly sensitive detection of dilute target analytes in urine.
Collapse
Affiliation(s)
- Sheng-You Chen
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Abe Y. Wu
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Ruby Lunde
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- *Correspondence: James J. Lai,
| |
Collapse
|
4
|
Macdougall LJ, Wechsler ME, Culver HR, Benke EH, Broerman A, Bowman CN, Anseth KS. Charged Poly( N-isopropylacrylamide) Nanogels for the Stabilization of High Isoelectric Point Proteins. ACS Biomater Sci Eng 2021; 7:4282-4292. [PMID: 33560107 DOI: 10.1021/acsbiomaterials.0c01690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Storage and transportation of protein therapeutics using refrigeration is a costly process; a reliable electrical supply is vital, expensive equipment is needed, and unique transportation is required. Reducing the reliance on the cold chain would enable low-cost transportation and storage of biologics, ultimately improving accessibility of this class of therapeutics to patients in remote locations. Herein, we report on the synthesis of charged poly(N-isopropylacrylamide) nanogels that efficiently adsorb a range of different proteins of varying isoelectric points and molecular weights (e.g., adsorption capacity (Q) = 4.7 ± 0.2 mg/mg at 6 mg/mL initial IgG concentration), provide protection from external environmental factors (i.e., temperature), and subsequently release the proteins in an efficient manner (e.g., 100 ± 1% at 2 mg/mL initial IgG concentration). Both cationic and anionic nanogels were synthesized and selectively chosen based on the ability to form electrostatic interactions with adsorbed proteins (e.g., cationic nanogels adsorb low isoelectric point proteins whereas anionic nanogels adsorb high isoelectric point proteins). The nanogel-protein complex formed upon adsorption increases the stabilization of the protein's tertiary structure, providing protection against denaturation at elevated temperatures (e.g., 84 ± 4% of the protected IgG was stabilized when exposed to 65 °C). The addition of a high molar salt solution (e.g., 40 mM CaCl2 solution) to protein-laden nanogels disrupts the electrostatic interactions and collapses the nanogel, ultimately releasing the protein. The versatile materials utilized, in addition to the protein loading and release mechanisms described, provide a simple and efficient strategy to protect fragile biologics for their transport to remote areas without necessitating costly storage equipment.
Collapse
|
5
|
Ii AN, Lin SC, Lepene B, Zhou W, Kehn-Hall K, van Hoek ML. Use of magnetic nanotrap particles in capturing Yersinia pestis virulence factors, nucleic acids and bacteria. J Nanobiotechnology 2021; 19:186. [PMID: 34154629 PMCID: PMC8215484 DOI: 10.1186/s12951-021-00859-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background Many pathogens, including Yersinia pestis, cannot be consistently and reliably cultured from blood. New approaches are needed to facilitate the detection of proteins, nucleic acid and microorganisms in whole blood samples to improve downstream assay performance. Detection of biomarkers in whole blood is difficult due to the presence of host proteins that obscure standard detection mechanisms. Nanotrap® particles are micron-sized hydrogel structures containing a dye molecule as the affinity bait and used to detect host biomarkers, viral nucleic acids and proteins as well as some bacterial markers. Nanotraps have been shown to bind and enrich a wide variety of biomarkers and viruses in clinically relevant matrices such as urine and plasma. Our objective was to characterize the binding ability of Nanotrap particle type CN3080 to Y. pestis bacteria, bacterial proteins and nucleic acids from whole human blood in order to potentially improve detection and diagnosis. Results CN3080 Nanotraps bind tightly to Yersinia bacteria, even after washing, and we were able to visualize the co-localized Nanotraps and bacteria by electron microscopy. These magnetic hydrogel Nanotraps were able to bind Yersinia DNA, supporting the utility of Nanotraps for enhancing nucleic acid-based detection methods. Nanotraps were capable of increasing Y. pestis nucleic acid yield by fourfold from whole human blood compared to standard nucleic acid extraction. Interestingly, we found CN3080 Nanotraps to have a high affinity for multiple components of the Yersinia type III secretion system (T3SS), including chaperone proteins, Yop effector proteins and virulence factor protein LcrV (V). Using Nanotraps as a rapid upstream sample-prep tool, we were able to detect LcrV in human blood by western blotting with minimal blood interference in contrast to direct western blotting of blood samples in which LcrV was obscured. We were able to computationally model the interaction of LcrV with the CN3080 Nanotrap dye and found that it had a low delta-G, suggesting high affinity. Importantly, Nanotraps were also able to enhance detection of secreted Yersinia proteins by mass spectrometry. Conclusion Upstream use of magnetic CN3080 Nanotrap particles may improve the downstream workflow though binding and enrichment of biomarkers and speed of processing. Utilization of Nanotrap particles can improve detection of Yersinia pestis proteins and nucleic acid from whole human blood and contribute to downstream assays and diagnostics including molecular methods such as sequencing and PCR and protein-based methods. Graphic Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-021-00859-8.
Collapse
Affiliation(s)
- Alexandra N Ii
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA
| | - Shih-Chao Lin
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,College of Life Sciences, National Taiwan Ocean University, 2 Pei-Ning Rd, Keelung, 202301, Taiwan
| | - Benjamin Lepene
- Ceres Nanosciences, 9460 Innovation Drive, Manassas, VA, 20110, USA
| | - Weidong Zhou
- Center for Applied Proteomics and Personalized Medicine, George Mason University, Manassas, VA, 20110, USA
| | - Kylene Kehn-Hall
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.,Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24060, USA
| | - Monique L van Hoek
- School of Systems Biology, George Mason University, Manassas, VA, 20110, USA.
| |
Collapse
|
6
|
Kim H, Park S, Jeong IG, Song SH, Jeong Y, Kim CS, Lee KH. Noninvasive Precision Screening of Prostate Cancer by Urinary Multimarker Sensor and Artificial Intelligence Analysis. ACS NANO 2021; 15:4054-4065. [PMID: 33296173 DOI: 10.1021/acsnano.0c06946] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Screening for prostate cancer relies on the serum prostate-specific antigen test, which provides a high rate of false positives (80%). This results in a large number of unnecessary biopsies and subsequent overtreatment. Considering the frequency of the test, there is a critical unmet need of precision screening for prostate cancer. Here, we introduced a urinary multimarker biosensor with a capacity to learn to achieve this goal. The correlation of clinical state with the sensing signals from urinary multimarkers was analyzed by two common machine learning algorithms. As the number of biomarkers was increased, both algorithms provided a monotonic increase in screening performance. Under the best combination of biomarkers, the machine learning algorithms screened prostate cancer patients with more than 99% accuracy using 76 urine specimens. Urinary multimarker biosensor leveraged by machine learning analysis can be an important strategy of precision screening for cancers using a drop of bodily fluid.
Collapse
Affiliation(s)
- Hojun Kim
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sungwook Park
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - In Gab Jeong
- Department of Urology, Asan Medical Center (AMC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Sang Hoon Song
- Department of Urology, Asan Medical Center (AMC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Youngdo Jeong
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Choung-Soo Kim
- Department of Urology, Asan Medical Center (AMC), University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Kwan Hyi Lee
- Biomaterials Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
7
|
Magni R, Luchini A, Liotta L, Molestina RE. Proteomic analysis reveals pathogen-derived biomarkers of acute babesiosis in erythrocytes, plasma, and urine of infected hamsters. Parasitol Res 2020; 119:2227-2235. [PMID: 32435898 DOI: 10.1007/s00436-020-06712-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Babesiosis among humans is on the rise in North America. Current diagnostic assays for the screening of babesiosis require blood collection by venipuncture, which is an invasive method. Urine on the other hand is a desirable biospecimen for biomarker analysis of Babesia microti infections because it can be collected periodically and non-invasively. Our group uses a new class of biomarker harvesting nanocage technology, which, when combined with mass spectrometry (MS), can determine the presence of parasite proteins shed in different bodily fluids of mammalian hosts, including urine. Using the hamster model of babesiosis, our nanoparticle-MS approach identified several B. microti proteins in erythrocytes, plasma, and urine samples. Surface and secreted antigens previously shown to elicit host immune responses against the parasite were particularly abundant in erythrocytes and plasma compared to other proteins. Two of these antigens, BmSA1 and BMR1_03g00947, showed different localization patterns by immunofluorescence of infected erythrocytes. Hamster urine samples from parasitemic animals harbored lower numbers of B. microti proteins compared to erythrocytes and plasma, with glycolytic enzymes, cytoskeletal components, and chaperones being the most frequently detected proteins. By applying novel nanoparticle-MS methods, a high level of analytical sensitivity can be achieved to detect multiple B. microti proteins in blood and urine. This is generally difficult to obtain with other techniques due to the masking of parasite biomarkers by the complex biomolecular matrix of bodily fluids from the host.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Robert E Molestina
- Protistology Laboratory, American Type Culture Collection, Manassas, VA, USA.
| |
Collapse
|
8
|
Caputo D, Caracciolo G. Nanoparticle-enabled blood tests for early detection of pancreatic ductal adenocarcinoma. Cancer Lett 2020; 470:191-196. [PMID: 31783084 DOI: 10.1016/j.canlet.2019.11.030] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is often detected too late to allow adequate treatments with the result that patients are condemned to sufferings and early death. Most efforts have been therefore aimed at identifying sensitive PDAC biomarkers. Although biomarkers have numerous advantages, sample size, intra-individual variability, existence of several biases and confounding variables and cost of investigation make their clinical application challenging. In recent years, nanotechnology is providing new options for early cancer detection. Among recent discoveries, the concept is emerging that the protein corona, i.e. the layer of plasma proteins that surrounds nanomaterials in bodily fluids, is personalized. In particular, the protein corona of cancer patients is significantly different from that of healthy individuals. Herein, we review this concept with a particular focus on clinical relevance. We also discuss the recently developed nanoparticle-enabled blood (NEB) tests that demonstrated to be promising in discriminating PDAC patients from healthy volunteers by global change of the nanoparticle-protein corona. We conclude with a critical discussion of research perspectives aimed at further improving the prediction ability of the test.
Collapse
Affiliation(s)
- Damiano Caputo
- Department of Surgery, University Campus-Biomedico di Roma, Via Alvaro Del Portillo 200, 00128, Rome, Italy
| | - Giulio Caracciolo
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161, Rome, Italy.
| |
Collapse
|
9
|
Haymond A, Davis JB, Espina V. Proteomics for cancer drug design. Expert Rev Proteomics 2019; 16:647-664. [PMID: 31353977 PMCID: PMC6736641 DOI: 10.1080/14789450.2019.1650025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2019] [Accepted: 07/26/2019] [Indexed: 12/29/2022]
Abstract
Introduction: Signal transduction cascades drive cellular proliferation, apoptosis, immune, and survival pathways. Proteins have emerged as actionable drug targets because they are often dysregulated in cancer, due to underlying genetic mutations, or dysregulated signaling pathways. Cancer drug development relies on proteomic technologies to identify potential biomarkers, mechanisms-of-action, and to identify protein binding hot spots. Areas covered: Brief summaries of proteomic technologies for drug discovery include mass spectrometry, reverse phase protein arrays, chemoproteomics, and fragment based screening. Protein-protein interface mapping is presented as a promising method for peptide therapeutic development. The topic of biosimilar therapeutics is presented as an opportunity to apply proteomic technologies to this new class of cancer drug. Expert opinion: Proteomic technologies are indispensable for drug discovery. A suite of technologies including mass spectrometry, reverse phase protein arrays, and protein-protein interaction mapping provide complimentary information for drug development. These assays have matured into well controlled, robust technologies. Recent regulatory approval of biosimilar therapeutics provides another opportunity to decipher the molecular nuances of their unique mechanisms of action. The ability to identify previously hidden protein hot spots is expanding the gamut of potential drug targets. Proteomic profiling permits lead compound evaluation beyond the one drug, one target paradigm.
Collapse
Affiliation(s)
- Amanda Haymond
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Justin B Davis
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University , Manassas , VA , USA
| |
Collapse
|
10
|
Conti A, Luchini A, Benassi MS, Magagnoli G, Pierini M, Piccinni-Leopardi M, Quattrini I, Pollino S, Picci P, Liotta LA, Pazzaglia L. Circulating Candidate Biomarkers in Giant Cell Tumors of Bone. Proteomics Clin Appl 2018; 12:e1800041. [PMID: 30054970 DOI: 10.1002/prca.201800041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 07/17/2018] [Indexed: 01/08/2023]
Abstract
PURPOSE Approximately 5% of giant cell tumors (GCT) of bone develop pulmonary metastases. Although many biomarkers have been proposed, identification of circulating low abundance molecules may be useful to predict malignant progression. EXPERIMENTAL DESIGN The hydrogel nanoparticle technique followed by MS was used to detect low molecular weight serum proteins or protein fragments in serum of 20 GCT patients with different clinical course and in ten healthy sera used as control. The most representative low-abundant de novo or differentially abundant proteins were submitted to String database that recognized interconnected activated pathways including protein activation cascade, wound healing, cell-substrate adhesion, and response to stress. Statistics were performed for identification of candidate prognostic factors. RESULTS Proteome cluster analysis separated metastasis-free from metastatic GCT patients in two well-defined groups where serum levels of signaling transduction mediators and regulators of kinase activity presented a high discriminatory power. Increased expression of proteins STAT5B, GRB2, and OXSR1 was related to a higher probability of metastasis. Multivariate analysis demonstrated that tumor grade and STAT5B were independent prognostic factors. CONCLUSIONS AND CLINICAL RELEVANCE By using a noninvasive technique, we identified differentially abundant serum candidate biomarkers, also providing prognostic information in patients with GCT of bone.
Collapse
Affiliation(s)
- Amalia Conti
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Maria Serena Benassi
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Giovanna Magagnoli
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Michela Pierini
- Chemotherapy Unit, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | | | - Irene Quattrini
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Serena Pollino
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Piero Picci
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Laura Pazzaglia
- Experimental Oncology Laboratory, IRCCS Rizzoli Orthopaedic Institute, Bologna, Italy
| |
Collapse
|
11
|
Culver HR, Wechsler ME, Peppas NA. Label-Free Detection of Tear Biomarkers Using Hydrogel-Coated Gold Nanoshells in a Localized Surface Plasmon Resonance-Based Biosensor. ACS NANO 2018; 12:9342-9354. [PMID: 30204412 PMCID: PMC6156935 DOI: 10.1021/acsnano.8b04348] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The dependence of the localized surface plasmon resonance (LSPR) of noble-metal nanomaterials on refractive index makes LSPR a useful, label-free signal transduction strategy for biosensing. In particular, by decorating gold nanomaterials with molecular recognition agents, analytes of interest can be trapped near the surface, resulting in an increased refractive index surrounding the nanomaterial, and, consequently, a red shift in the LSPR wavelength. Ionic poly( N-isopropylacrylamide- co-methacrylic acid) (PNM) hydrogels were used as protein receptors because PNM nanogels exhibit a large increase in refractive index upon protein binding. Specifically, PNM hydrogels were synthesized on the surface of silica gold nanoshells (AuNSs). This composite material (AuNS@PNM) was used to detect changes in the concentration of two protein biomarkers of chronic dry eye: lysozyme and lactoferrin. Both of these proteins have high isoelectric points, resulting in electrostatic attraction between the negatively charged PNM hydrogels and positively charged proteins. Upon binding lysozyme or lactoferrin, AuNS@PNM exhibits large, concentration-dependent red shifts in LSPR wavelength, which enabled the detection of clinically relevant concentration changes of both biomarkers in human tears. The LSPR-based biosensor described herein has potential utility as an affordable screening tool for chronic dry eye and associated conditions.
Collapse
Affiliation(s)
- Heidi R. Culver
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Biomedical Engineering
| | - Marissa E. Wechsler
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Biomedical Engineering
| | - Nicholas A. Peppas
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine
- Department of Biomedical Engineering
- McKetta Department of Chemical Engineering
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy
- Department of Surgery and Perioperative Care, Dell Medical School, The University of Texas at Austin, Austin, TX, 78712, United States
| |
Collapse
|
12
|
Devine M, Juba M, Russo P, Bishop B. Structurally stable N-t-butylacrylamide hydrogel particles for the capture of peptides. Colloids Surf B Biointerfaces 2017; 161:471-479. [PMID: 29128833 DOI: 10.1016/j.colsurfb.2017.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/30/2017] [Accepted: 11/01/2017] [Indexed: 10/18/2022]
Abstract
Hydrogel particles have proven to be powerful tools for the capture and concentration of low abundance, low molecular weight peptides and proteins from complex biofluids, such as plasma. The primary means of recovering and washing the particles following harvesting is through centrifugation, which can be a very time-consuming process depending on harvest conditions. To improve the process of particle recovery, washing, and elution we have developed new particle formulations: incorporating N-t-butylacrylamide (tBA) in the polymer backbone with monomers bearing more acidic functional groups and higher degrees of cross-linking. These particle formulations produce a stable architecture that does not significantly respond to changes in environmental conditions, such as pH and temperature. These two new formulations impart structural stability to the particle, control swelling, and improve pelleting through centrifugation, even at high pH values. These structurally stable microparticles yield improved particle recovery while maintaining the peptide capture properties of the particle.
Collapse
Affiliation(s)
- Megan Devine
- George Mason University, Department of Chemistry and Biochemistry, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Melanie Juba
- George Mason University, Department of Chemistry and Biochemistry, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Paul Russo
- Center for Applied Proteomics and Molecular Medicine, 10920 George Mason Circle, Manassas, VA, 20110, USA
| | - Barney Bishop
- George Mason University, Department of Chemistry and Biochemistry, 10920 George Mason Circle, Manassas, VA, 20110, USA.
| |
Collapse
|
13
|
Cai T, Yang F. Strategies for Characterization of Low-Abundant Intact or Truncated Low-Molecular-Weight Proteins From Human Plasma. Enzymes 2017; 42:105-123. [PMID: 29054267 PMCID: PMC7102702 DOI: 10.1016/bs.enz.2017.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Low-molecular-weight region (LMW, MW≤30kDa) of human serum/plasma proteins, including small intact proteins, truncated fragments of larger proteins, along with some other small components, has been associated with the ongoing physiological and pathological events, and thereby represent a treasure trove of diagnostic molecules. Great progress in the mining of novel biomarkers from this diagnostic treasure trove for disease diagnosis and health monitoring has been achieved based on serum samples from healthy individuals and patients and powerful new approaches in biochemistry and systems biology. However, cumulative evidence indicates that many potential LMW protein biomarkers might still have escaped from detection due to their low abundance, the dynamic complexity of serum/plasma, and the limited efficiency of characterization approaches. Here, we provide an overview of the current state of knowledge with respect to strategies for the characterization of low-abundant LMW proteins (small intact or truncated proteins) from human serum/plasma, involving prefractionation or enrichment methods to reduce dynamic range and mass spectrometry-based characterization of low-abundant LMW proteins.
Collapse
Affiliation(s)
- Tanxi Cai
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| | - Fuquan Yang
- Laboratory of Protein and Peptide Pharmaceuticals & Laboratory of Proteomics, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
14
|
Harpole M, Davis J, Espina V. Current state of the art for enhancing urine biomarker discovery. Expert Rev Proteomics 2017; 13:609-26. [PMID: 27232439 DOI: 10.1080/14789450.2016.1190651] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Urine is a highly desirable biospecimen for biomarker analysis because it can be collected recurrently by non-invasive techniques, in relatively large volumes. Urine contains cellular elements, biochemicals, and proteins derived from glomerular filtration of plasma, renal tubule excretion, and urogenital tract secretions that reflect, at a given time point, an individual's metabolic and pathophysiologic state. AREAS COVERED High-resolution mass spectrometry, coupled with state of the art fractionation systems are revealing the plethora of diagnostic/prognostic proteomic information existing within urinary exosomes, glycoproteins, and proteins. Affinity capture pre-processing techniques such as combinatorial peptide ligand libraries and biomarker harvesting hydrogel nanoparticles are enabling measurement/identification of previously undetectable urinary proteins. Expert commentary: Future challenges in the urinary proteomics field include a) defining either single or multiple, universally applicable data normalization methods for comparing results within and between individual patients/data sets, and b) defining expected urinary protein levels in healthy individuals.
Collapse
Affiliation(s)
- Michael Harpole
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| | - Justin Davis
- b Department of Chemistry/Biochemistry , George Mason University , Manassas , VA , USA
| | - Virginia Espina
- a Center for Applied Proteomics and Molecular Medicine , George Mason University , Manassas , VA , USA
| |
Collapse
|
15
|
Culver HR, Sharma I, Wechsler ME, Anslyn EV, Peppas NA. Charged poly(N-isopropylacrylamide) nanogels for use as differential protein receptors in a turbidimetric sensor array. Analyst 2017; 142:3183-3193. [PMID: 28745734 PMCID: PMC5570555 DOI: 10.1039/c7an00787f] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Due to the high cost and environmental instability of antibodies, there is precedent for developing synthetic molecular recognition agents for use in diagnostic sensors. While these materials typically have lower specificity than antibodies, their cross-reactivity makes them excellent candidates for use in differential sensing routines. In the current work, we design a set of charge-containing poly(N-isopropylacrylamide) (PNIPAM) nanogels for use as differential protein receptors in a turbidimetric sensor array. Specifically, NIPAM was copolymerized with methacrylic acid and modified via carbodiimide coupling to introduce sulfate, guanidinium, secondary amine, or primary amine groups. Modification of the ionizable groups in the network changed the physicochemical and protein binding properties of the nanogels. For high affinity protein-polymer interactions, turbidity of the nanogel solution increased, while for low affinity interactions minimal change in turbidity was observed. Thus, relative turbidity was used as input for multivariate analysis. Turbidimetric assays were performed in two buffers of different pH (i.e., 7.4 and 5.5), but comparable ionic strength, in order to improve differentiation. Using both buffers, it was possible to achieve 100% classification accuracy of eleven model protein biomarkers with as few as two of the nanogel receptors. Additionally, it was possible to detect changes in lysozyme concentration in a simulated tear fluid using the turbidimetric sensor array.
Collapse
Affiliation(s)
- Heidi R Culver
- Institute for Biomaterials, Drug Delivery, and Regenerative Medicine, USA.
| | | | | | | | | |
Collapse
|
16
|
Magni R, Luchini A. Application of Hydrogel Nanoparticles for the Capture, Concentration, and Preservation of Low-Abundance Biomarkers. Methods Mol Biol 2017; 1606:103-113. [PMID: 28501996 DOI: 10.1007/978-1-4939-6990-6_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In the recent years, a lot of emphasis has been placed on the discovery and detection of clinically relevant biomarkers. Biomarkers are crucial for the early detection of several diseases, and they play an important role in the improvement of current treatments, thus reducing patient mortality rate. Because biofluids account to 60% of the body mass, they represent a goldmine of significant biomarkers. Unfortunately, because of their low concentration in body fluids, their lability, and the presence of high abundance proteins (i.e., albumin and immunoglobulins), low abundance biomarkers are difficult to detect with mass spectrometry or immunoassays. Nanoparticles made of poly(N-isopropylacrylamide) (NIPAm) and functionalized with affinity reactive baits allow researchers to overcome these physiological barriers and in one single step capture, concentrate, and preserve labile biomarkers in complex body fluids (i.e. urine, blood, sweat, CSF). Although hydrogel nanoparticles have been largely studied and used as a drug delivery tool, our application focuses on their capturing abilities instead of the releasing of specific drug molecules. Once the functionalized nanoparticles are incubated with a biological fluid, small biomarkers are captured by the affinity baits while unwanted high abundance analytes are excluded. The potentially relevant biomarkers are then concentrated into small volumes. The concentration factor (up to 10,000-fold) successfully enhances the detection sensitivity of mass spectrometry and immunoassays allowing the detection of previously invisible proteins.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS1A9, Manassas, VA, 20110, USA.
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10920 George Mason Circle, MS1A9, Manassas, VA, 20110, USA
| |
Collapse
|
17
|
Conti A, Fredolini C, Tamburro D, Magagnoli G, Zhou W, Liotta LA, Picci P, Luchini A, Benassi MS. Identification of novel candidate circulating biomarkers for malignant soft tissue sarcomas: Correlation with metastatic progression. Proteomics 2016; 16:689-97. [PMID: 26699407 DOI: 10.1002/pmic.201500164] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/19/2015] [Accepted: 12/16/2015] [Indexed: 12/11/2022]
Abstract
Soft tissue sarcomas (STS) are a heterogeneous group of rare tumors for which identification and validation of biological markers may improve clinical management. The fraction of low-molecular-weight (LMW) circulating proteins and fragments of proteins is a rich source of new potential biomarkers. To identify circulating biomarkers useful for STS early diagnosis and prognosis, we analyzed 53 high-grade STS sera using hydrogel core-shell nanoparticles that selectively entrap LMW proteins by size exclusion and affinity chromatography, protect them from degradation and amplify their concentration for mass spectrometry detection. Twenty-two analytes mostly involved in inflammatory and immunological response, showed a progressive increase from benign to malignant STS with a relative difference in abundance, more than 50% when compared to healthy control. 16 of these were higher in metastatic compared to non-metastatic tumors. Cox's regression analysis revealed a statistical significant association between the abundance of lactotransferrin (LTF) and complement factor H-related 5 (CFHR5) and risk of metastasis. In particular, CFHR5 was associated with the risk of metastasis. The role of circulating proteins involved in metastatic progression will be crucial for a better understanding of STS biology and patient management.
Collapse
Affiliation(s)
- Amalia Conti
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy.,Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Davide Tamburro
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Giovanna Magagnoli
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Piero Picci
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, Istituto Ortopedico Rizzoli, Bologna, Italy
| |
Collapse
|
18
|
Haefner S, Frank P, Elstner M, Nowak J, Odenbach S, Richter A. Smart hydrogels as storage elements with dispensing functionality in discontinuous microfluidic systems. LAB ON A CHIP 2016; 16:3977-3989. [PMID: 27713982 DOI: 10.1039/c6lc00806b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Smart hydrogels are useful elements in microfluidic systems because they respond to environmental stimuli and are capable of storing reagents. We present here a concept of using hydrogels (poly(N-isopropylacrylamide)) as an interface between continuous and discontinuous microfluidics. Their swelling and shrinking capabilities allow them to act as storage elements for reagents absorbed in the swelling process. When the swollen hydrogel collapses in an oil-filled channel, the incorporated water and molecules are expelled from the hydrogel and form a water reservoir. Water-in-oil droplets can be released from the reservoir generating different sized droplets depending on the flow regime at various oil flow rates (dispensing functionality). Different hydrogel sizes and microfluidic structures are discussed in terms of their storage and droplet formation capabilities. The time behaviour of the hydrogel element is investigated by dynamic swelling experiments and computational fluid dynamics simulations. By precise temperature control, the device acts as an active droplet generator and converts continuous to discontinuous flows.
Collapse
Affiliation(s)
- Sebastian Haefner
- Polymeric Microsystems, Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Philipp Frank
- Polymeric Microsystems, Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany.
| | - Martin Elstner
- Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| | - Johannes Nowak
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Odenbach
- Chair of Magnetofluiddynamics, Measuring and Automation Technology, Technische Universität Dresden, 01062 Dresden, Germany
| | - Andreas Richter
- Polymeric Microsystems, Institute of Semiconductors and Microsystems, Technische Universität Dresden, 01062 Dresden, Germany. and Center for Advancing Electronics Dresden (cfaed), Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
19
|
Use of a Chagas Urine Nanoparticle Test (Chunap) to Correlate with Parasitemia Levels in T. cruzi/HIV Co-infected Patients. PLoS Negl Trop Dis 2016; 10:e0004407. [PMID: 26919324 PMCID: PMC4768913 DOI: 10.1371/journal.pntd.0004407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 01/04/2016] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Early diagnosis of reactivated Chagas disease in HIV patients could be lifesaving. In Latin America, the diagnosis is made by microscopical detection of the T. cruzi parasite in the blood; a diagnostic test that lacks sensitivity. This study evaluates if levels of T. cruzi antigens in urine, determined by Chunap (Chagas urine nanoparticle test), are correlated with parasitemia levels in T. cruzi/HIV co-infected patients. METHODOLOGY/PRINCIPAL FINDINGS T. cruzi antigens in urine of HIV patients (N = 55: 31 T. cruzi infected and 24 T. cruzi serology negative) were concentrated using hydrogel particles and quantified by Western Blot and a calibration curve. Reactivation of Chagas disease was defined by the observation of parasites in blood by microscopy. Parasitemia levels in patients with serology positive for Chagas disease were classified as follows: High parasitemia or reactivation of Chagas disease (detectable parasitemia by microscopy), moderate parasitemia (undetectable by microscopy but detectable by qPCR), and negative parasitemia (undetectable by microscopy and qPCR). The percentage of positive results detected by Chunap was: 100% (7/7) in cases of reactivation, 91.7% (11/12) in cases of moderate parasitemia, and 41.7% (5/12) in cases of negative parasitemia. Chunap specificity was found to be 91.7%. Linear regression analysis demonstrated a direct relationship between parasitemia levels and urine T. cruzi antigen concentrations (p<0.001). A cut-off of > 105 pg was chosen to determine patients with reactivation of Chagas disease (7/7). Antigenuria levels were 36.08 times (95% CI: 7.28 to 64.88) higher in patients with CD4+ lymphocyte counts below 200/mL (p = 0.016). No significant differences were found in HIV loads and CD8+ lymphocyte counts. CONCLUSION Chunap shows potential for early detection of Chagas reactivation. With appropriate adaptation, this diagnostic test can be used to monitor Chagas disease status in T. cruzi/HIV co-infected patients.
Collapse
|
20
|
Petricoin EF, Ross MM, Zhou W, Tamburro D, Luchini A, Liotta LA, Herman EH, Scully RE, Miller TL, Franco VI, Sallan SE, Lipshultz SE. Development and pilot evaluation of a new nanoparticle-capture workflow for doxorubicin-induced toxicity biomarker identification. PROGRESS IN PEDIATRIC CARDIOLOGY 2015. [DOI: 10.1016/j.ppedcard.2015.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Castro-Sesquen YE, Gilman RH, Galdos-Cardenas G, Ferrufino L, Sánchez G, Valencia Ayala E, Liotta L, Bern C, Luchini A. Use of a novel chagas urine nanoparticle test (chunap) for diagnosis of congenital chagas disease. PLoS Negl Trop Dis 2014; 8:e3211. [PMID: 25275534 PMCID: PMC4183489 DOI: 10.1371/journal.pntd.0003211] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 08/25/2014] [Indexed: 11/17/2022] Open
Abstract
Background Detection of congenital T. cruzi transmission is considered one of the pillars of control programs of Chagas disease. Congenital transmission accounts for 25% of new infections with an estimated 15,000 infected infants per year. Current programs to detect congenital Chagas disease in Latin America utilize microscopy early in life and serology after 6 months. These programs suffer from low sensitivity by microscopy and high loss to follow-up later in infancy. We developed a Chagas urine nanoparticle test (Chunap) to concentrate, preserve and detect T. cruzi antigens in urine for early, non-invasive diagnosis of congenital Chagas disease. Methodology/Principal Findings This is a proof-of-concept study of Chunap for the early diagnosis of congenital Chagas disease. Poly N-isopropylacrylamide nano-particles functionalized with trypan blue were synthesized by precipitation polymerization and characterized with photon correlation spectroscopy. We evaluated the ability of the nanoparticles to capture, concentrate and preserve T. cruzi antigens. Urine samples from congenitally infected and uninfected infants were then concentrated using these nanoparticles. The antigens were eluted and detected by Western Blot using a monoclonal antibody against T. cruzi lipophosphoglycan. The nanoparticles concentrate T. cruzi antigens by 100 fold (western blot detection limit decreased from 50 ng/ml to 0.5 ng/ml). The sensitivity of Chunap in a single specimen at one month of age was 91.3% (21/23, 95% CI: 71.92%–98.68%), comparable to PCR in two specimens at 0 and 1 month (91.3%) and significantly higher than microscopy in two specimens (34.8%, 95% CI: 16.42%–57.26%). Chunap specificity was 96.5% (71/74 endemic, 12/12 non-endemic specimens). Particle-sequestered T. cruzi antigens were protected from trypsin digestion. Conclusion/Significance Chunap has the potential to be developed into a simple and sensitive test for the early diagnosis of congenital Chagas disease. Congenital Chagas disease is one of the main pillars for the control of Chagas disease because 25% of new infections occur by this route. Conventional diagnosis of congenital Chagas disease is based on microscopy at birth and serology at 9 months. However microscopy misses many infections and many at-risk infants fail to complete serology at six to nine months. We have developed a Chagas urine nanoparticle test (Chunap) for concentration and detection of T. cruzi antigens. Chunap was evaluated in urine samples of 1-month old children. At this age children have the highest levels of parasitemia and therefore also excrete the highest levels of antigen. Parents prefer a urine test to having their baby's blood drawn. Chunap diagnosed congenital infection in a single urine sample as well as PCR in two blood samples. This study also shows that hydrogel/trypan blue particles used in our test efficiently capture, concentrate and protect urinary T. cruzi antigens from enzymatic degradation. Chunap allows for the early diagnosis of congenital Chagas disease, and with appropriate adaptation, may allow early point-of-care intervention.
Collapse
Affiliation(s)
- Yagahira E Castro-Sesquen
- Department of International Health, Johns Hopkins University, Bloomberg School of Hygiene and Public Health, Baltimore, Maryland, United States of America; Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Robert H Gilman
- Department of International Health, Johns Hopkins University, Bloomberg School of Hygiene and Public Health, Baltimore, Maryland, United States of America
| | - Gerson Galdos-Cardenas
- Department of International Health, Johns Hopkins University, Bloomberg School of Hygiene and Public Health, Baltimore, Maryland, United States of America
| | | | - Gerardo Sánchez
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Edward Valencia Ayala
- Laboratorio de Investigación en Enfermedades Infecciosas, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Lance Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, United States of America
| | - Caryn Bern
- Global Health Sciences, Department of Epidemiology and Biostatistics School of Medicine, University of California, San Francisco, California, United States of America
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Fairfax, Virginia, United States of America
| | | |
Collapse
|
22
|
Magni R, Espina BH, Liotta LA, Luchini A, Espina V. Hydrogel nanoparticle harvesting of plasma or urine for detecting low abundance proteins. J Vis Exp 2014:e51789. [PMID: 25145492 DOI: 10.3791/51789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Novel biomarker discovery plays a crucial role in providing more sensitive and specific disease detection. Unfortunately many low-abundance biomarkers that exist in biological fluids cannot be easily detected with mass spectrometry or immunoassays because they are present in very low concentration, are labile, and are often masked by high-abundance proteins such as albumin or immunoglobulin. Bait containing poly(N-isopropylacrylamide) (NIPAm) based nanoparticles are able to overcome these physiological barriers. In one step they are able to capture, concentrate and preserve biomarkers from body fluids. Low-molecular weight analytes enter the core of the nanoparticle and are captured by different organic chemical dyes, which act as high affinity protein baits. The nanoparticles are able to concentrate the proteins of interest by several orders of magnitude. This concentration factor is sufficient to increase the protein level such that the proteins are within the detection limit of current mass spectrometers, western blotting, and immunoassays. Nanoparticles can be incubated with a plethora of biological fluids and they are able to greatly enrich the concentration of low-molecular weight proteins and peptides while excluding albumin and other high-molecular weight proteins. Our data show that a 10,000 fold amplification in the concentration of a particular analyte can be achieved, enabling mass spectrometry and immunoassays to detect previously undetectable biomarkers.
Collapse
Affiliation(s)
- Ruben Magni
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | | | - Lance A Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University;
| |
Collapse
|
23
|
Shafagati N, Patanarut A, Luchini A, Lundberg L, Bailey C, Petricoin E, Liotta L, Narayanan A, Lepene B, Kehn-Hall K. The use of Nanotrap particles for biodefense and emerging infectious disease diagnostics. Pathog Dis 2014; 71:164-76. [PMID: 24449537 PMCID: PMC7108521 DOI: 10.1111/2049-632x.12136] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Revised: 01/07/2014] [Accepted: 01/07/2014] [Indexed: 11/28/2022] Open
Abstract
Detection of early infectious disease may be challenging due to the low copy number of organisms present. To overcome this limitation and rapidly measure low concentrations of the pathogen, we developed a novel technology: Nanotrap particles, which are designed to capture, concentrate, and protect biomarkers from complex biofluids. Nanotrap particles are thermoresponsive hydrogels that are capable of antigen capture through the coupling of affinity baits to the particles. Here, we describe recent findings demonstrating that Nanotrap particles are able to capture live infectious virus, viral RNA, and viral proteins. Capture is possible even in complex mixtures such as serum and allows the concentration and protection of these analytes, providing increased performance of downstream assays. The Nanotrap particles are a versatile sample preparation technology that has far reaching implications for biomarker discovery and diagnostic assays.
Collapse
Affiliation(s)
- Nazly Shafagati
- National Center for Biodefense and Infectious Diseases, School of Systems Biology, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Reactive oxygen species activate NFκB (p65) and p53 and induce apoptosis in RVFV infected liver cells. Virology 2014; 449:270-86. [DOI: 10.1016/j.virol.2013.11.023] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 08/02/2013] [Accepted: 11/17/2013] [Indexed: 12/30/2022]
|
25
|
Gel-free proteomics reveal potential biomarkers of priming-induced salt tolerance in durum wheat. J Proteomics 2013; 91:486-99. [DOI: 10.1016/j.jprot.2013.08.010] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Revised: 07/19/2013] [Accepted: 08/12/2013] [Indexed: 11/18/2022]
|
26
|
Bosch J, Luchini A, Pichini S, Tamburro D, Fredolini C, Liotta L, Petricoin E, Pacifici R, Facchiano F, Segura J, Garaci E, Gutiérrez-Gallego R. Analysis of urinary human growth hormone (hGH) using hydrogel nanoparticles and isoform differential immunoassays after short recombinant hGH treatment: preliminary results. J Pharm Biomed Anal 2013; 85:194-7. [PMID: 23954438 DOI: 10.1016/j.jpba.2013.07.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 07/15/2013] [Accepted: 07/19/2013] [Indexed: 11/28/2022]
Abstract
Successful application clinical-grade human growth hormone (hGH) immunoassays to the discovery of illegal doping cases has been rare. Indeed, the preferred biological matrix in doping control is urine, where the estimated baseline concentration of hGH falls well below the linear range and sensitivity threshold of all commercially available immunoassays, including hGH isoform differential immunoassays which can discriminate pituitary endogenous hGH from recombinant hGH. We employed hydrogel nanoparticles as a pre-processing step that concentrate urinary hGH into the linear range of isoform differential immunoassays. We explored the characteristics of immunoassays in urine spiked with both phGH or rhGH, after pre-treatment with the nanoparticles. Subsequently, pre-treatment was applied to urine obtained from 3 healthy volunteers administered during three days with daily subcutaneous injections of 0.026 mg/kg/day rhGH, Genotonorm(®). Linearity between both rhGH and phGH concentrations in urine measured by a chemoluminescent assay (Immulite) and in the particle eluate was evident for differential immunoassays (R square higher than 0.999). In case of treated individuals the recombinant/pituitary concentration ratios remained above the established World Anti-Doping Agency (WADA) criterion for hGH misuse up to 24h after the last administration dose, using both assays for volunteer 1 and 2 while in case of volunteer 3 results were inconclusive. The use of nanoparticles appears to open the possibility of assessing rhGH misuse in urine.
Collapse
Affiliation(s)
- Jaume Bosch
- Bioanalysis Group IMIM-Parc Salut Mar and Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona Biomedical Research Park (PRBB), Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Bueno VB, Bentini R, Catalani LH, Petri DFS. Synthesis and swelling behavior of xanthan-based hydrogels. Carbohydr Polym 2013; 92:1091-9. [DOI: 10.1016/j.carbpol.2012.10.062] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 09/12/2012] [Accepted: 10/23/2012] [Indexed: 12/30/2022]
|
28
|
Pin E, Fredolini C, Petricoin EF. The role of proteomics in prostate cancer research: biomarker discovery and validation. Clin Biochem 2012; 46:524-38. [PMID: 23266295 DOI: 10.1016/j.clinbiochem.2012.12.012] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 12/10/2012] [Accepted: 12/12/2012] [Indexed: 01/06/2023]
Abstract
PURPOSE Prostate Cancer (PCa) represents the second most frequent type of tumor in men worldwide. Incidence increases with patient age and represents the most important risk factor. PCa is mostly characterized by indolence, however in a small percentage of cases (3%) the disease progresses to a metastatic state. To date, the most important issue concerning PCa research is the difficulty in distinguishing indolent from aggressive disease. This problem frequently results in low-grade PCa patient overtreatment and, in parallel; an effective treatment for distant and aggressive disease is not yet available. RESULT Proteomics represents a promising approach for the discovery of new biomarkers able to improve the management of PCa patients. Markers more specific and sensitive than PSA are needed for PCa diagnosis, prognosis and response to treatment. Moreover, proteomics could represent an important tool to identify new molecular targets for PCa tailored therapy. Several possible PCa biomarkers sources, each with advantages and limitations, are under investigation, including tissues, urine, serum, plasma and prostatic fluids. Innovative high-throughput proteomic platforms are now identifying and quantifying new specific and sensitive biomarkers for PCa detection, stratification and treatment. Nevertheless, many putative biomarkers are still far from being applied in clinical practice. CONCLUSIONS This review aims to discuss the recent advances in PCa proteomics, emphasizing biomarker discovery and their application to clinical utility for diagnosis and patient stratification.
Collapse
Affiliation(s)
- Elisa Pin
- George Mason University, Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | |
Collapse
|
29
|
Hüttenhain R, Soste M, Selevsek N, Röst H, Sethi A, Carapito C, Farrah T, Deutsch EW, Kusebauch U, Moritz RL, Niméus-Malmström E, Rinner O, Aebersold R. Reproducible quantification of cancer-associated proteins in body fluids using targeted proteomics. Sci Transl Med 2012; 4:142ra94. [PMID: 22786679 PMCID: PMC3766734 DOI: 10.1126/scitranslmed.3003989] [Citation(s) in RCA: 195] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The rigorous testing of hypotheses on suitable sample cohorts is a major limitation in translational research. This is particularly the case for the validation of protein biomarkers; the lack of accurate, reproducible, and sensitive assays for most proteins has precluded the systematic assessment of hundreds of potential marker proteins described in the literature. Here, we describe a high-throughput method for the development and refinement of selected reaction monitoring (SRM) assays for human proteins. The method was applied to generate such assays for more than 1000 cancer-associated proteins, which are functionally related to candidate cancer driver mutations. We used the assays to determine the detectability of the target proteins in two clinically relevant samples: plasma and urine. One hundred eighty-two proteins were detected in depleted plasma, spanning five orders of magnitude in abundance and reaching below a concentration of 10 ng/ml. The narrower concentration range of proteins in urine allowed the detection of 408 proteins. Moreover, we demonstrate that these SRM assays allow reproducible quantification by monitoring 34 biomarker candidates across 83 patient plasma samples. Through public access to the entire assay library, researchers will be able to target their cancer-associated proteins of interest in any sample type using the detectability information in plasma and urine as a guide. The generated expandable reference map of SRM assays for cancer-associated proteins will be a valuable resource for accelerating and planning biomarker verification studies.
Collapse
Affiliation(s)
- Ruth Hüttenhain
- Department of Biology, Institute of Molecular Systems Biology, ETH Zurich, 8093 Zurich, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Prakash A, Rezai T, Krastins B, Sarracino D, Athanas M, Russo P, Zhang H, Tian Y, Li Y, Kulasingam V, Drabovich A, Smith CR, Batruch I, Oran PE, Fredolini C, Luchini A, Liotta L, Petricoin E, Diamandis EP, Chan DW, Nelson R, Lopez MF. Interlaboratory reproducibility of selective reaction monitoring assays using multiple upfront analyte enrichment strategies. J Proteome Res 2012; 11:3986-95. [PMID: 22639787 DOI: 10.1021/pr300014s] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples.
Collapse
Affiliation(s)
- Amol Prakash
- Thermo Fisher Scientific, BRIMS (Biomarker Research in Mass Spectrometry), Cambridge, Massachusetts 02139, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
GH is believed to be widely employed in sports as a performance-enhancing substance. Its use in athletic competition is banned by the World Anti-Doping Agency, and athletes are required to submit to testing for GH exposure. Detection of GH doping is challenging for several reasons including identity/similarity of exogenous to endogenous GH, short half-life, complex and fluctuating secretory dynamics of GH, and a very low urinary excretion rate. The detection test currently in use (GH isoform test) exploits the difference between recombinant GH (pure 22K-GH) and the heterogeneous nature of endogenous GH (several isoforms). Its main limitation is the short window of opportunity for detection (~12-24 h after the last GH dose). A second test to be implemented soon (the biomarker test) is based on stimulation of IGF-I and collagen III synthesis by GH. It has a longer window of opportunity (1-2 wk) but is less specific and presents a variety of technical challenges. GH doping in a larger sense also includes doping with GH secretagogues and IGF-I and its analogs. The scientific evidence for the ergogenicity of GH is weak, a fact that is not widely appreciated in athletic circles or by the general public. Also insufficiently appreciated is the risk of serious health consequences associated with high-dose, prolonged GH use. This review discusses the GH biology relevant to GH doping; the virtues and limitations of detection tests in blood, urine, and saliva; secretagogue efficacy; IGF-I doping; and information about the effectiveness of GH as a performance-enhancing agent.
Collapse
Affiliation(s)
- Gerhard P Baumann
- Partnership for Clean Competition, Colorado Springs, Colorado 80919, USA.
| |
Collapse
|
32
|
Luchini A, Tamburro D, Magni R, Fredolini C, Espina V, Bosch J, Garaci E, Petricoin EF, Liotta LA. Application of Analyte Harvesting Nanoparticle Technology to the Measurement of Urinary HGH in Healthy Individuals. ACTA ACUST UNITED AC 2012; 2. [PMID: 24014257 DOI: 10.4172/2161-0673.1000e127] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Urine represents a valuable biofluid for noninvasive measurement of Human Growth Hormone (HGH) secretion. Unfortunately, currently available commercial HGH immunoassays do not achieve the sensitivity needed for urinary HGH measurement in the low picogram per milliliter range, the expected normal concentration range of HGH in urine. A nanotechnology based sample preprocessing step was used to extract and concentrate HGH in urine so that urinary HGH could be measured with a clinical grade standard immunoassay designed for serum (Immulite 1000, Siemens). We applied the nanoparticle enhanced immunoassay to evaluate the baseline value of urinary HGH in a population of healthy young adults (age 18-30, N=33, median 21, M: F=39%:61%, with no reported medical therapies). Nanoparticle sample preprocessing effectively improved the lower limit of detection of the Immulite HGH assay by more than 50 fold, shifting the linear range of the assay to encompass the expected value of urinary HGH. The full process between run and within run CV% was 7.9 and 9.0%, respectively. On 33 healthy volunteers, the 95% reference values for hGH in spot urine normalized to specific gravity were 0.64 - 16.85 pg/mL (0.05-5.82 ng/g creatinine). Nanoparticle preprocessing constitutes a reliable means of measuring urinary HGH with a clinical grade immunoassay, now establishing a normal baseline value for HGH in urine. Nanoparticles can be used to study the kinetics of HGH excretion in urine, and the factors that influence urinary HGH secretion and HGH isoform proportions.
Collapse
Affiliation(s)
- Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
The completion of the human genome project has led to intensified efforts toward comprehensive analysis of proteomes. New possibilities exist for efficient proteomic technologies. However, primary attention is given to the discovery of new predictive biomarker patterns. Understanding proteomes and, in particular, protein-mediated interactions underlying their complexity and diversity, is critical for the development of more reliable and robust diagnostic platforms, which are anticipated to enable personalized medicine. Of immediate relevance in this respect are those approaches that capitalize on the application of nanotechnology, which is seen as a powerful tool for the diagnosis of early-stage diseases. Here we highlight the current state of the field exemplified by recent nano-enabled technologies for biomarker discovery.
Collapse
|
34
|
Microspheres Containing Cibacron Blue F3G-A and Incorporated Iron Oxide Nanoparticles as Biomarker Harvesting Platforms. Polymers (Basel) 2011. [DOI: 10.3390/polym3031181] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Ray S, Reddy PJ, Choudhary S, Raghu D, Srivastava S. Emerging nanoproteomics approaches for disease biomarker detection: a current perspective. J Proteomics 2011; 74:2660-81. [PMID: 21596164 DOI: 10.1016/j.jprot.2011.04.027] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 03/15/2011] [Accepted: 04/28/2011] [Indexed: 01/29/2023]
Abstract
Availability of genome sequence of human and different pathogens has advanced proteomics research for various clinical applications. One of the prime goals of proteomics is identification and characterization of biomarkers for cancer and other fatal human diseases to aid an early diagnosis and monitor disease progression. However, rapid detection of low abundance biomarkers from the complex biological samples under clinically relevant conditions is extremely difficult, and it requires the development of ultrasensitive, robust and high-throughput technological platform. In order to overcome several technical limitations associated with sensitivity, dynamic range, detection time and multiplexing, proteomics has started integrating several emerging disciplines such as nanotechnology, which has led to the development of a novel analytical platform known as 'nanoproteomics'. Among the diverse classes of nanomaterials, the quantum dots, gold nanoparticles, carbon nanotubes and silicon nanowires are the most promising candidates for diagnostic applications. Nanoproteomics offers several advantages such as ultralow detection, short assay time, high-throughput capability and low sample consumption. In this article, we have discussed the application of nanoproteomics for biomarker discovery in various diseases with special emphasis on various types of cancer. Furthermore, we have discussed the prospects, merits and limitations of nanoproteomics.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai 400076, India
| | | | | | | | | |
Collapse
|
36
|
Ray S, Reddy PJ, Jain R, Gollapalli K, Moiyadi A, Srivastava S. Proteomic technologies for the identification of disease biomarkers in serum: advances and challenges ahead. Proteomics 2011; 11:2139-61. [PMID: 21548090 DOI: 10.1002/pmic.201000460] [Citation(s) in RCA: 170] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 01/22/2023]
Abstract
Serum is an ideal biological sample that contains an archive of information due to the presence of a variety of proteins released by diseased tissue, and serum proteomics has gained considerable interest for the disease biomarker discovery. Easy accessibility and rapid protein changes in response to disease pathogenesis makes serum an attractive sample for clinical research. Despite these advantages, the analysis of serum proteome is very challenging due to the wide dynamic range of proteins, difficulty in finding low-abundance target analytes due to the presence of high-abundance serum proteins, high levels of salts and other interfering compounds, variations among individuals and paucity of reproducibility. Sample preparation introduces pre-analytical variations and poses major challenges to analyze the serum proteome. The label-free detection techniques such as surface plasmon resonance, microcantilever, few nanotechniques and different resonators are rapidly emerging for the analysis of serum proteome and they have exhibited potential to overcome few limitations of the conventional techniques. In this article, we will discuss the current status of serum proteome analysis for the biomarker discovery and address key technological advancements, with a focus on challenges and amenable solutions.
Collapse
Affiliation(s)
- Sandipan Ray
- Wadhwani Research Center for Biosciences and Bioengineering, Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, India
| | | | | | | | | | | |
Collapse
|
37
|
Longo C, Gambara G, Espina V, Luchini A, Bishop B, Patanarut AS, Petricoin EF, Beretti F, Ferrari B, Garaci E, De Pol A, Pellacani G, Liotta LA. A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum. Exp Dermatol 2011; 20:29-34. [PMID: 21158936 DOI: 10.1111/j.1600-0625.2010.01187.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Melanoma represents only 4% of all skin cancers, but nearly 80% of skin cancer deaths. This manuscript applies several new measurement technologies with the purpose of elucidating molecular signatures of melanoma aggressiveness. PURPOSE We sought to determine whether low-abundant serum proteins related to apoptotic pathways could be measured and correlated with defined melanoma subtypes. Hydrogel core shell nanoparticles, a new technology capable of selectively entrapping low molecular weight proteins and protecting them from enzymatic degradation, were used to capture candidate serum biomarkers. Biomarker levels were correlated with confocal microscopy, thereby representing a combination of new technologies for in vivo histologic documentation. RESULTS Among a panel of analyzed serum proteins, Bak was differentially expressed between nevi and melanomas. Melanomas with higher Bak serum levels exhibited more pronounced junctional activity on confocal imaging, whereas lesions with 'sparse' dermal nests had weak Bak expression. CONCLUSIONS Our study links serum proteome analysis with confocal microscopic clinical in vivo histologic classification of melanomas. Bak has not been previously measured in serum. Bak differential expression among melanoma subtypes confirms the importance of the apoptotic pathway as a contributor to melanoma aggressiveness.
Collapse
Affiliation(s)
- Caterina Longo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Longo C, Gambara G, Espina V, Luchini A, Bishop B, Patanarut AS, Petricoin EF, Beretti F, Ferrari B, Garaci E, De Pol A, Pellacani G, Liotta LA. A novel biomarker harvesting nanotechnology identifies Bak as a candidate melanoma biomarker in serum. Exp Dermatol 2011. [PMID: 21158936 DOI: 10.1111/j.1600-0625.2010.01187.x.a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
BACKGROUND Melanoma represents only 4% of all skin cancers, but nearly 80% of skin cancer deaths. This manuscript applies several new measurement technologies with the purpose of elucidating molecular signatures of melanoma aggressiveness. PURPOSE We sought to determine whether low-abundant serum proteins related to apoptotic pathways could be measured and correlated with defined melanoma subtypes. Hydrogel core shell nanoparticles, a new technology capable of selectively entrapping low molecular weight proteins and protecting them from enzymatic degradation, were used to capture candidate serum biomarkers. Biomarker levels were correlated with confocal microscopy, thereby representing a combination of new technologies for in vivo histologic documentation. RESULTS Among a panel of analyzed serum proteins, Bak was differentially expressed between nevi and melanomas. Melanomas with higher Bak serum levels exhibited more pronounced junctional activity on confocal imaging, whereas lesions with 'sparse' dermal nests had weak Bak expression. CONCLUSIONS Our study links serum proteome analysis with confocal microscopic clinical in vivo histologic classification of melanomas. Bak has not been previously measured in serum. Bak differential expression among melanoma subtypes confirms the importance of the apoptotic pathway as a contributor to melanoma aggressiveness.
Collapse
Affiliation(s)
- Caterina Longo
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Douglas TA, Tamburro D, Fredolini C, Espina BH, Lepene BS, Ilag L, Espina V, Petricoin EF, Liotta LA, Luchini A. The use of hydrogel microparticles to sequester and concentrate bacterial antigens in a urine test for Lyme disease. Biomaterials 2010; 32:1157-66. [PMID: 21035184 DOI: 10.1016/j.biomaterials.2010.10.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Accepted: 10/04/2010] [Indexed: 01/24/2023]
Abstract
Hydrogel biomarker capturing microparticles were evaluated as a biomaterial to amplify the sensitivity of urine testing for infectious disease proteins. Lyme disease is a bacterial infection transmitted by ticks. Early diagnosis and prompt treatment of Lyme disease reduces complications including arthritis and cardiac involvement. While a urine test is highly desirable for Lyme disease screening, this has been difficult to accomplish because the antigen is present at extremely low concentrations, below the detection limit of clinical immunoassays. N-isopropylacrylamide (NIPAm)-acrylic acid (AAc) microparticles were covalently functionalized with amine containing dyes via amidation of carboxylic groups present in the microparticles. The dyes act as affinity baits towards protein analytes in solution. NIPAm/AAc microparticles functionalized with acid black 48 (AB48) mixed with human urine, achieved close to one hundred percent capture and 100 percent extraction yield of the target antigen. In urine, microparticles sequestered and concentrated Lyme disease antigens 100 fold, compared to the absence of microparticles, achieving an immunoassay detection sensitivity of 700 pg/mL in 10 mL urine. Antigen present in a single infected tick could be readily detected following microparticle sequestration. Hydrogel microparticles functionalized with high affinity baits can dramatically increase the sensitivity of urinary antigen tests for infectious diseases such as Lyme disease. These findings justify controlled clinical studies evaluating the sensitivity and precision of Lyme antigen testing in urine.
Collapse
Affiliation(s)
- Temple A Douglas
- Center for Applied Proteomics and Molecular Medicine, George Mason University, 10900 University Boulevard, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Fredolini C, Liotta LA, Petricoin EF. Application of proteomic technologies for prostate cancer detection, prognosis, and tailored therapy. Crit Rev Clin Lab Sci 2010; 47:125-38. [PMID: 20858067 DOI: 10.3109/10408363.2010.503558] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Prostate cancer affects 3 in 10 men over the age of 50 years, and, unfortunately, the clinical course of the disease is poorly predicted. At present, there is no means that can distinguish indolent from aggressive/metastatic tumors. Thus, a personalized clinical approach could be helpful in diagnosing clinically relevant disease and guiding appropriate patient therapy. Individualized medicine requires a deep knowledge of the molecular mechanisms underpinning prostate cancer carcinogenesis. Proteomics may be the most powerful way to uncover biomarkers of detection, prognosis, and prediction, as proteins do the work of the cell and represent the majority of the diagnostic markers and drug targets today. Proteomic technologies are rapidly advancing beyond the two-dimensional gel separation techniques of the past to new types of mass spectrometry and protein microarray analyses. Biological fluids and tissue-cell proteomes from men with prostate cancer are being explored to identify diagnostic and prognostic biomarkers and therapeutic targets using these new proteomic approaches. Traditional and novel proteomic technology and their application to prostate cancer studies in translational research will be presented and discussed in this review. Proteomics coupled with powerful nanotechnology-based biomarker discovery approaches may provide a new and exciting opportunity for body fluid-borne biomarker discovery and characterization. While innovative mass spectrometry technology and nanotrap could be applied to improve the discovery and measurement of biomarkers for the early detection of prostate cancer, the use of tissue proteomic tools such as the reverse-phase protein microarray may provide new approaches for personalization of therapies tailored to each tumor's unique pathway activation network.
Collapse
|
41
|
Luchini A, Fredolini C, Espina BH, Meani F, Reeder A, Rucker S, Petricoin EF, Liotta LA. Nanoparticle technology: addressing the fundamental roadblocks to protein biomarker discovery. Curr Mol Med 2010; 10:133-41. [PMID: 20196732 DOI: 10.2174/156652410790963268] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 03/15/2009] [Indexed: 01/13/2023]
Abstract
Clinically relevant biomarkers exist in blood and body fluids in extremely low concentrations, are masked by high abundance high molecular weight proteins, and often undergo degradation during collection and transport due to endogenous and exogenous proteinases. Nanoparticles composed of a N-isopropylacrylamide hydrogel core shell functionalized with internal affinity baits are a new technology that can address all of these critical analytical challenges for disease biomarker discovery and measurement. Core-shell, bait containing, nanoparticles can perform four functions in one step, in solution, in complex biologic fluids (e.g. blood or urine): a) molecular size sieving, b) complete exclusion of high abundance unwanted proteins, c) target analyte affinity sequestration, and d) complete protection of captured analytes from degradation. Targeted classes of protein analytes sequestered by the particles can be concentrated in small volumes to effectively amplify (up to 100 fold or greater depending on the starting sample volume) the sensitivity of mass spectrometry, western blotting, and immunoassays. The materials utilized for the manufacture of the particles are economical, stable overtime, and remain fully soluble in body fluids to achieve virtually 100 percent capture of all solution phase target proteins within a few minutes.
Collapse
Affiliation(s)
- A Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, VA 20110, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Fredolini C, Tamburro D, Gambara G, Lepene BS, Espina V, Petricoin EF, Liotta LA, Luchini A. Nanoparticle technology: amplifying the effective sensitivity of biomarker detection to create a urine test for hGH. Drug Test Anal 2010; 1:447-54. [PMID: 20355230 DOI: 10.1002/dta.96] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Several clinical-grade immunoassays exist for the specific measurement of hGH or its isoforms in blood but there is an urgent need to apply these same reliable assays to the measurement of hGH in urine as a preferred 'non-invasive' biofluid. Unfortunately, conventional hGH immunoassays cannot attain the sensitivity required to detect the low concentrations of hGH in urine. The lowest limit of sensitivity for existing hGH immunoassays is >50 pg/mL, while the estimated concentration of urinary hGH is about 1 pg/m-50 times lower than the sensitivity threshold. We have created novel N-isopropylacrylamide (NIPAm)-based hydrogel nanoparticles functionalized with an affinity bait. When introduced into an analyte-containing solution, the nanoparticles can perform, in one step, (1) complete harvesting of all solution phase target analytes, (2) full protection of the captured analyte from degradation and (3) sequestration of the analyte, effectively increasing the analyte concentration up to a hundredfold. N-isopropylacrylamide nanoparticles functionalized with Cibacron Blue F3GA bait have been applied to raise the concentration of urinary hGH into the linear range of clinical grade immunoassays. This technology now provides an opportunity to evaluate the concentration of hGH in urine with high precision and accuracy.
Collapse
|
43
|
Fredolini C, Meani F, Luchini A, Zhou W, Russo P, Ross M, Patanarut A, Tamburro D, Gambara G, Ornstein D, Odicino F, Ragnoli M, Ravaggi A, Novelli F, Collura D, D'Urso L, Muto G, Belluco C, Pecorelli S, Liotta L, Petricoin EF. Investigation of the ovarian and prostate cancer peptidome for candidate early detection markers using a novel nanoparticle biomarker capture technology. AAPS JOURNAL 2010; 12:504-18. [PMID: 20549403 DOI: 10.1208/s12248-010-9211-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 06/01/2010] [Indexed: 11/30/2022]
Abstract
Current efforts to identify protein biomarkers of disease use mainly mass spectrometry (MS) to analyze tissue and blood specimens. The low-molecular-weight "peptidome" is an attractive information archive because of the facile nature by which the low-molecular-weight information freely crosses the endothelial cell barrier of the vasculature, which provides opportunity to measure disease microenvironment-associated protein analytes secreted or shed into the extracellular interstitium and from there into the circulation. However, identifying useful protein biomarkers (peptidomic or not) which could be useful to detect early detection/monitoring of disease, toxicity, doping, or drug abuse has been severely hampered because even the most sophisticated, high-resolution MS technologies have lower sensitivities than those of the immunoassays technologies now routinely used in clinical practice. Identification of novel low abundance biomarkers that are indicative of early-stage events that likely exist in the sub-nanogram per milliliter concentration range of known markers, such as prostate-specific antigen, cannot be readily detected by current MS technologies. We have developed a new nanoparticle technology that can, in one step, capture, concentrate, and separate the peptidome from high-abundance blood proteins. Herein, we describe an initial pilot study whereby the peptidome content of ovarian and prostate cancer patients is investigated with this method. Differentially abundant candidate peptidome biomarkers that appear to be specific for early-stage ovarian and prostate cancer have been identified and reveal the potential utility for this new methodology.
Collapse
|
44
|
Patanarut A, Luchini A, Botterell PJ, Mohan A, Longo C, Vorster P, Petricoin EF, Liotta LA, Bishop B. Synthesis and characterization of hydrogel particles containing Cibacron Blue F3G-A. Colloids Surf A Physicochem Eng Asp 2010; 362:8-19. [PMID: 20871782 DOI: 10.1016/j.colsurfa.2010.03.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The analysis of low abundance and low molecular weight biomolecules is challenging due to their labile nature and the presence of high abundance, high molecular weight species such as serum albumin, which can hinder their detection. Functionalized hydrogel particles have proven to be ideally suited for this application. We here report the synthesis of hydrogel core and core-shell particles with incorporated Cibacron Blue F3G-A, and analysis of their harvesting properties. Hydrogel particle scaffolds consisting of cross-linked N-isopropylacrylamide and allylamine copolymers were synthesized via surfactant-free precipitation polymerization, with the blue dye subsequently affixed via a nucleophilic substitution reaction. The dye-functionalized core and core-shell particles were found to efficiently harvest and sequester dilute low molecular weight peptides and proteins from solution, with the core-shell particles more effectively excluding larger proteins. Moreover, proteins bound by core and core-shell particles containing blue dye were protected from tryptic degradation. These findings suggest that core and core-shell hydrogel particles containing Cibacron Blue F3G-A constitute promising new tools for peptide/protein biomarker harvesting applications.
Collapse
Affiliation(s)
- Alexis Patanarut
- Department of Chemistry and Biochemistry, George Mason University, Manassas, VA.20110
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Clinical application of proteomics in ovarian cancer prevention and treatment. Mol Diagn Ther 2010; 13:297-311. [PMID: 19791834 DOI: 10.1007/bf03256335] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As recent scientific findings using whole-genome mutational scanning technologies have concluded, cancer is a protein pathway disease, which is often diagnosed too late, when the success of therapeutic modalities is very limited. Proteomics has been proposed as the field that can help overcome this limitation and usher in a new era of molecular investigation for early diagnosis and classification of tumors. Proteomics applications in cancer research encompass two general aspects: (i) the study and characterization of protein production; and (ii) the definition of protein function. The first aims to identify qualitative or quantitative differences in the proteome that can help differentiate between healthy and diseased states or achieve a better clinical classification of diseases. The second studies the complexity of protein interactions and their activation states, mapping the network of signaling pathways within and outside the cells. The challenges in translating the findings of proteomics research into clinical practice are numerous. Lack of reproducibility, variable availability of samples and the bias associated with their selection and handling, the need for large, prospective validation trials, and finally the strict requirement for a very high level of clinical sensitivity and specificity are some of the hurdles that need to be overcome to achieve early detection and treatment. Nevertheless, proteomics is a field in rapid progression that has already developed beyond initial criticism and is making its way toward important applications and discoveries. Specifically, there has been an increasing number of reports on the potential clinical application of proteomics for early detection as well as risk assessment and management of ovarian cancer. This disease is the leading cause of death from gynecologic malignancies in the US, with poor prognosis resulting from the lack of reliable, sensitive screening tests and the limited understanding of the mechanisms of chemoresistance and relapse. In the future, serum proteomics applications in the gynecologic oncology field could identify blood-based biomarkers that are predictors of disease presence or progression, and tissue proteomics could help define the optimal targeted agent and effective dose for each patient's disease. These advances will allow improved monitoring of therapy response and disease relapse, and aid in the engineering of new drugs and strategies to circumvent resistance mechanisms while avoiding the adverse effects of traditional chemotherapy.
Collapse
|
46
|
Bane TK, Timmons MS, Kauffman SJ, Catlin DH. Enrichment and immunoprecipitation of 22 kDa human growth hormone spiked into human urine. Drug Test Anal 2009; 1:441-6. [DOI: 10.1002/dta.101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
47
|
Luchini A, Longo C, Espina V, Petricoin EF, Liotta LA. Nanoparticle technology: Addressing the fundamental roadblocks to protein biomarker discovery. JOURNAL OF MATERIALS CHEMISTRY 2009; 19:5071-5077. [PMID: 20585471 PMCID: PMC2888266 DOI: 10.1039/b822264a] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The incorporation of affinity baits into N-isopropylacrylamide-hydrogel-based nanoparticles offers a novel technology that addresses the major analytical challenges of disease biomarker discovery. In solution in complex biologic fluids (e.g. blood or urine), core-shell bait-containing nanoparticles can perform three functions in one step: (a) sieve molecules according to size, (b) sequestrate and concentrate target analytes, and (c) protect analytes from degradation.
Collapse
|
48
|
Longo C, Patanarut A, George T, Bishop B, Zhou W, Fredolini C, Ross MM, Espina V, Pellacani G, Petricoin EF, Liotta LA, Luchini A. Core-shell hydrogel particles harvest, concentrate and preserve labile low abundance biomarkers. PLoS One 2009; 4:e4763. [PMID: 19274087 PMCID: PMC2651577 DOI: 10.1371/journal.pone.0004763] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/11/2009] [Indexed: 01/18/2023] Open
Abstract
Background The blood proteome is thought to represent a rich source of biomarkers for early stage disease detection. Nevertheless, three major challenges have hindered biomarker discovery: a) candidate biomarkers exist at extremely low concentrations in blood; b) high abundance resident proteins such as albumin mask the rare biomarkers; c) biomarkers are rapidly degraded by endogenous and exogenous proteinases. Methodology and Principal Findings Hydrogel nanoparticles created with a N-isopropylacrylamide based core (365 nm)-shell (167 nm) and functionalized with a charged based bait (acrylic acid) were studied as a technology for addressing all these biomarker discovery problems, in one step, in solution. These harvesting core-shell nanoparticles are designed to simultaneously conduct size exclusion and affinity chromatography in solution. Platelet derived growth factor (PDGF), a clinically relevant, highly labile, and very low abundance biomarker, was chosen as a model. PDGF, spiked in human serum, was completely sequestered from its carrier protein albumin, concentrated, and fully preserved, within minutes by the particles. Particle sequestered PDGF was fully protected from exogenously added tryptic degradation. When the nanoparticles were added to a 1 mL dilute solution of PDGF at non detectable levels (less than 20 picograms per mL) the concentration of the PDGF released from the polymeric matrix of the particles increased within the detection range of ELISA and mass spectrometry. Beyond PDGF, the sequestration and protection from degradation for a series of additional very low abundance and very labile cytokines were verified. Conclusions and Significance We envision the application of harvesting core-shell nanoparticles to whole blood for concentration and immediate preservation of low abundance and labile analytes at the time of venipuncture.
Collapse
Affiliation(s)
- Caterina Longo
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Alexis Patanarut
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Tony George
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Barney Bishop
- Department of Chemistry and Biochemistry, George Mason University, Manassas, Virginia, United States of America
| | - Weidong Zhou
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Claudia Fredolini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Mark M. Ross
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Virginia Espina
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Giovanni Pellacani
- Department of Dermatology, University of Modena and Reggio Emilia, Modena, Italy
| | - Emanuel F. Petricoin
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Lance A. Liotta
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
| | - Alessandra Luchini
- Center for Applied Proteomics and Molecular Medicine, George Mason University, Manassas, Virginia, United States of America
- * E-mail:
| |
Collapse
|