1
|
Rizvi SFA, Zhang H, Fang Q. Engineering peptide drug therapeutics through chemical conjugation and implication in clinics. Med Res Rev 2024; 44:2420-2471. [PMID: 38704826 DOI: 10.1002/med.22046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/21/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
The development of peptide drugs has made tremendous progress in the past few decades because of the advancements in modification chemistry and analytical technologies. The novel-designed peptide drugs have been modified through various biochemical methods with improved diagnostic, therapeutic, and drug-delivery strategies. Researchers found it a helping hand to overcome the inherent limitations of peptides and bring continued advancements in their applications. Furthermore, the emergence of peptide-drug conjugates (PDCs)-utilizes target-oriented peptide moieties as a vehicle for cytotoxic payloads via conjugation with cleavable chemical agents, resulting in the key foundation of the new era of targeted peptide drugs. This review summarizes the various classifications of peptide drugs, suitable chemical modification strategies to improve the ADME (adsorption, distribution, metabolism, and excretion) features of peptide drugs, and recent (2015-early 2024) progress/achievements in peptide-based drug delivery systems as well as their fruitful implication in preclinical and clinical studies. Furthermore, we also summarized the brief description of other types of PDCs, including peptide-MOF conjugates and peptide-UCNP conjugates. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development and progress toward a bright future of novel peptide drugs.
Collapse
Affiliation(s)
- Syed Faheem Askari Rizvi
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| | - Haixia Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, Gansu, China
| | - Quan Fang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Zeng L, Kang D, Zhu L, Zhou Z, Li Y, Ling W, Zhang Y, Yu DG, Kim I, Song W. Poly(phenylalanine) and poly(3,4-dihydroxy-L-phenylalanine): Promising biomedical materials for building stimuli-responsive nanocarriers. J Control Release 2024; 372:810-828. [PMID: 38968969 DOI: 10.1016/j.jconrel.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/30/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Abstract
Cancer is a serious threat to human health because of its high annual mortality rate. It has attracted significant attention in healthcare, and identifying effective strategies for the treatment and relief of cancer pain requires urgency. Drug delivery systems (DDSs) offer the advantages of excellent efficacy, low cost, and low toxicity for targeting drugs to tumor sites. In recent decades, copolymer carriers based on poly(phenylalanine) (PPhe) and poly(3,4-dihydroxy-L-phenylalanine) (PDopa) have been extensively investigated owing to their good biocompatibility, biodegradability, and controllable stimulus responsiveness, which have resulted in DDSs with loading and targeted delivery capabilities. In this review, we introduce the synthesis of PPhe and PDopa, highlighting the latest proposed synthetic routes and comparing the differences in drug delivery between PPhe and PDopa. Subsequently, we summarize the various applications of PPhe and PDopa in nanoscale-targeted DDSs, providing a comprehensive analysis of the drug release behavior based on different stimulus-responsive carriers using these two materials. In the end, we discuss the challenges and prospects of polypeptide-based DDSs in the field of cancer therapy, aiming to promote their further development to meet the growing demands for treatment.
Collapse
Affiliation(s)
- Lingcong Zeng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Dandan Kang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Linglin Zhu
- Oncology Department of Huadong Hospital, Minimally Invasive Tumor Treatment Center, No. 139 Yan'an West Road, Jing'an District, Shanghai, China 200040
| | - Zunkang Zhou
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yichong Li
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Wei Ling
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Yu Zhang
- School of Pharmacy, Shanghai University of Medicine & Health Sciences, Shanghai 201318, PR China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China
| | - Il Kim
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Wenliang Song
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, PR China.
| |
Collapse
|
3
|
Liang Y, Xiao W, Peng Y, Zhang S, Dong J, Zhao J, Wang Y, Zhang M, Liu Z, Yu B. Development of nanoparticle vaccines utilizing designed Fc-binding homo-oligomers and RBD-Fc of SARS-CoV-2. Antiviral Res 2024; 227:105917. [PMID: 38782067 DOI: 10.1016/j.antiviral.2024.105917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 05/25/2024]
Abstract
The Fc-fused receptor binding domain (RBD-Fc) vaccine for SARS-CoV-2 has garnered significant attention for its capacity to provide effective and specific immune protection. However, its immunogenicity is limited, highlighting the need for improvement in clinical application. Nanoparticle delivery has been shown to be an effective method for enhancing antigen immunogenicity. In this study, we developed bivalent nanoparticle recombinant protein vaccines by assembling the RBD-Fc of SARS-CoV-2 and Fc-binding homo-oligomers o42.1 and i52.3 into octahedral and icosahedral nanoparticles. The formation of RBD-Fc nanoparticles was confirmed through structural characterization and cell binding experiments. Compared to RBD-Fc dimers, the nanoparticle vaccines induced more potent neutralizing antibodies (nAb) and stronger cellular immune responses. Therefore, using bivalent nanoparticle vaccines based on RBD-Fc presents a promising vaccination strategy against SARS-CoV-2 and offers a universal approach for enhancing the immunogenicity of Fc fusion protein vaccines.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/immunology
- COVID-19/prevention & control
- COVID-19/immunology
- COVID-19 Vaccines/immunology
- Immunity, Cellular
- Immunogenicity, Vaccine
- Immunoglobulin Fc Fragments/immunology
- Immunoglobulin Fc Fragments/chemistry
- Mice, Inbred BALB C
- Nanovaccines
- Protein Binding
- Protein Multimerization
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/chemistry
- Spike Glycoprotein, Coronavirus/immunology
- Spike Glycoprotein, Coronavirus/chemistry
- Vaccine Development
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/chemistry
Collapse
Affiliation(s)
- Yucai Liang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Weiling Xiao
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China
| | - Yuan Peng
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Shengshuo Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Jinhua Dong
- School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao, China; International Research Frontiers Initiative, Tokyo Institute of Technology, Yokohama, Japan
| | - Jun Zhao
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong, 261325, China
| | - Yuhui Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, China
| | - Mengtao Zhang
- School of Life Science and Technology, Shandong Second Medical University, Weifang, China
| | - Zhijun Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| | - Bowen Yu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, China.
| |
Collapse
|
4
|
Rizvi SF, Zhang L, Zhang H, Fang Q. Peptide-Drug Conjugates: Design, Chemistry, and Drug Delivery System as a Novel Cancer Theranostic. ACS Pharmacol Transl Sci 2024; 7:309-334. [PMID: 38357281 PMCID: PMC10863443 DOI: 10.1021/acsptsci.3c00269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024]
Abstract
The emergence of peptide-drug conjugates (PDCs) that utilize target-oriented peptide moieties as carriers of cytotoxic payloads, interconnected with various cleavable/noncleavable linkers, resulted in the key-foundation of the new era of targeted therapeutics. They are capable of retaining the integrity of conjugates in the blood circulatory system as well as releasing the drugs at the tumor microenvironment. Other valuable advantages are specificity and selectivity toward targeted-receptors, higher penetration ability, and drug-loading capacity, making them a suitable candidate to play their vital role as promising carrier agents. In this review, we summarized the types of cell-targeting (CTPs) and cell-penetrating peptides (CPPs) that have broad applications in the advancement of targeted drug-delivery systems (DDS). Moreover, the techniques to overcome the limitations of peptide-chemistry for their extensive implementation to construct the PDCs. Besides this, the diversified breakthrough of linker chemistry, and ample knowledge of various cytotoxic payloads used in PDCs in recent years, as well as the mechanism of action of PDCs was critically discussed. The principal aim is to provide scattered and diversified knowledge in one place and to help researchers understand the pinching knots in the science of PDC development, also their progression toward a bright future for PDCs as novel theranostics in clinical practice.
Collapse
Affiliation(s)
- Syed Faheem
Askari Rizvi
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
- Institute
of Molecular Biology and Biotechnology (IMBB), The University of Lahore, Lahore, 54000, Punjab Pakistan
| | - Linjie Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Haixia Zhang
- State
Key Laboratory of Applied Organic Chemistry, College of Chemistry
and Chemical Engineering, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| | - Quan Fang
- Key
Laboratory of Preclinical Study for New Drugs of Gansu Province, and
Institute of Pathology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, Gansu P.R. China
| |
Collapse
|
5
|
Kaltbeitzel J, Wich PR. Protein-based Nanoparticles: From Drug Delivery to Imaging, Nanocatalysis and Protein Therapy. Angew Chem Int Ed Engl 2023; 62:e202216097. [PMID: 36917017 DOI: 10.1002/anie.202216097] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/16/2023]
Abstract
Proteins and enzymes are versatile biomaterials for a wide range of medical applications due to their high specificity for receptors and substrates, high degradability, low toxicity, and overall good biocompatibility. Protein nanoparticles are formed by the arrangement of several native or modified proteins into nanometer-sized assemblies. In this review, we will focus on artificial nanoparticle systems, where proteins are the main structural element and not just an encapsulated payload. While under natural conditions, only certain proteins form defined aggregates and nanoparticles, chemical modifications or a change in the physical environment can further extend the pool of available building blocks. This allows the assembly of many globular proteins and even enzymes. These advances in preparation methods led to the emergence of new generations of nanosystems that extend beyond transport vehicles to diverse applications, from multifunctional drug delivery to imaging, nanocatalysis and protein therapy.
Collapse
Affiliation(s)
- Jonas Kaltbeitzel
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| | - Peter R Wich
- School of Chemical Engineering, University of New South Wales, Sydney, NSW 2052, Australia
- Australian Centre for NanoMedicine, University of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
6
|
Zhang J, Zhao D, Lu K. Mechanisms and influencing factors of peptide hydrogel formation and biomedicine applications of hydrogels. SOFT MATTER 2023; 19:7479-7493. [PMID: 37756117 DOI: 10.1039/d3sm01057k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Self-assembled peptide-based hydrogels have shown great potential in bio-related applications due to their porous structure, strong mechanical stability, high biocompatibility, and easy functionalization. Herein, the structure and characteristics of hydrogels and the mechanism of action of several regular secondary structures during gelation are investigated. The factors influencing the formation of peptide hydrogels, especially the pH responsiveness and salt ion induction are analyzed and summarized. Finally, the biomedical applications of peptide hydrogels, such as bone tissue engineering, cell culture, antigen presentation, antibacterial materials, and drug delivery are reviewed.
Collapse
Affiliation(s)
- Jiahui Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
| | - Kui Lu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Locus Street, High-Tech Industry Development Zone, Zhengzhou 450001, China.
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Yingcai Road 18, Zhengzhou, 450044, Henan Province, China.
| |
Collapse
|
7
|
Xu R, Mu X, Hu Z, Jia C, Yang Z, Yang Z, Fan Y, Wang X, Wu Y, Lu X, Chen J, Xiang G, Li H. Enhancing bioactivity and stability of polymer-based material-tissue interface through coupling multiscale interfacial interactions with atomic-thin TiO 2 nanosheets. NANO RESEARCH 2022; 16:5247-5255. [PMID: 36532602 PMCID: PMC9734535 DOI: 10.1007/s12274-022-5153-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 05/25/2023]
Abstract
Stable and bioactive material-tissue interface (MTF) basically determines the clinical applications of biomaterials in wound healing, sustained drug release, and tissue engineering. Although many inorganic nanomaterials have been widely explored to enhance the stability and bioactivity of polymer-based biomaterials, most are still restricted by their stability and biocompatibility. Here we demonstrate the enhanced bioactivity and stability of polymer-matrix bio-composite through coupling multiscale material-tissue interfacial interactions with atomically thin TiO2 nanosheets. Resin modified with TiO2 nanosheets displays improved mechanical properties, hydrophilicity, and stability. Also, we confirm that this resin can effectively stimulate the adhesion, proliferation, and differentiation into osteogenic and odontogenic lineages of human dental pulp stem cells using in vitro cell-resin interface model. TiO2 nanosheets can also enhance the interaction between demineralized dentinal collagen and resin. Our results suggest an approach to effectively up-regulate the stability and bioactivity of MTFs by designing biocompatible materials at the sub-nanoscale. Electronic Supplementary Material Supplementary material (further details of fabrication and characterization of TiO2 NSs and TiO2-ARCs, the bioactivity evaluation of TiO2-ARCs on hDPSCs, and the measurement of interaction with demineralized dentin collagen) is available in the online version of this article at 10.1007/s12274-022-5153-1.
Collapse
Affiliation(s)
- Rongchen Xu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Third Medical Center, Chinese PLA General Hospital, Beijing, 100039 China
| | - Xiaodan Mu
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zunhan Hu
- Department of Stomatology, Kunming Medical University, Kunming, 650500 China
| | - Chongzhi Jia
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Zhenyu Yang
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Zhongliang Yang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Yiping Fan
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| | - Xiaoyu Wang
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
- Department of Stomatology, The Strategic Support Force Medical Center, Beijing, 100101 China
| | - Yuefeng Wu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Xiaotong Lu
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Jihua Chen
- National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| | - Guolei Xiang
- State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029 China
| | - Hongbo Li
- Department of Stomatology, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853 China
| |
Collapse
|
8
|
Chen X, Peng Y, Xue H, Liu G, Wang N, Shao Z. MiR-21 regulating PVT1/PTEN/IL-17 axis towards the treatment of infectious diabetic wound healing by modified GO-derived biomaterial in mouse models. J Nanobiotechnology 2022; 20:309. [PMID: 35764963 PMCID: PMC9238182 DOI: 10.1186/s12951-022-01516-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/18/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Diabetic foot ulcer (DFU), persistent hyperglycemia and inflammation, together with impaired nutrient and oxygen deficiency, can present abnormal angiogenesis following tissue injury such that these tissues fail to heal properly. It is critical to design a new treatment method for DFU patients with a distinct biomechanism that is more effective than current treatment regimens. METHOD Graphene oxide (GO) was combined with a biocompatible polymer as a kind of modified GO-based hydrogel. The characterization of our biomaterial was measured in vitro. The repair efficiency of the biomaterial was evaluated in the mouse full-skin defect models. The key axis related to diabetic wound (DW) was identified and investigated using bioinformatics analyses and practical experiments. RESULT In the study, we found that our modified GO-based wound dressing material is a promising option for diabetic wound. Secondly, our biomaterial could enhance the secretion of small EVs (sEVs) with more miR-21 by adipose-derived mesenchymal stem cells (AD-MSCs). Thirdly, the PVT1/PTEN/IL-17 axis was found to be decreased to promote DFU wound healing by modifying miR-21 with the discovery of PVT1 as a critical LncRNA by bioinformatics analysis and tests. CONCLUSION These findings could aid in the development of clinical care strategies for DFU wounds.
Collapse
Affiliation(s)
- Xi Chen
- grid.33199.310000 0004 0368 7223Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| | - Yizhong Peng
- grid.33199.310000 0004 0368 7223Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| | - Hang Xue
- grid.33199.310000 0004 0368 7223Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| | - Guohui Liu
- grid.33199.310000 0004 0368 7223Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| | - Ning Wang
- grid.162110.50000 0000 9291 3229National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology, Wuhan, 430070 China
| | - Zengwu Shao
- grid.33199.310000 0004 0368 7223Department of Orthopeadics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022 Hubei China
| |
Collapse
|