1
|
Joshi B, de Lannoy C, Howarth MR, Kim SH, Joo C. iMAX FRET (Information Maximized FRET) for Multipoint Single-Molecule Structural Analysis. NANO LETTERS 2024; 24:8487-8494. [PMID: 38975639 PMCID: PMC11261617 DOI: 10.1021/acs.nanolett.4c00447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
Understanding the structure of biomolecules is vital for deciphering their roles in biological systems. Single-molecule techniques have emerged as alternatives to conventional ensemble structure analysis methods for uncovering new biology in molecular dynamics and interaction studies, yet only limited structural information could be obtained experimentally. Here, we address this challenge by introducing iMAX FRET, a one-pot method that allows ab initio 3D profiling of individual molecules using two-color FRET measurements. Through the stochastic exchange of fluorescent weak binders, iMAX FRET simultaneously assesses multiple distances on a biomolecule within a few minutes, which can then be used to reconstruct the coordinates of up to four points in each molecule, allowing structure-based inference. We demonstrate the 3D reconstruction of DNA nanostructures, protein quaternary structures, and conformational changes in proteins. With iMAX FRET, we provide a powerful approach to advance the understanding of biomolecular structure by expanding conventional FRET analysis to three dimensions.
Collapse
Affiliation(s)
- Bhagyashree
S. Joshi
- Kavli
Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Carlos de Lannoy
- Kavli
Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, The Netherlands
| | - Mark R. Howarth
- Department
of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K.
| | - Sung Hyun Kim
- Kavli
Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, The Netherlands
- Department
of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
- New
and Renewable Energy Research Center, Ewha
Womans University, Seoul 03760, Republic
of Korea
| | - Chirlmin Joo
- Kavli
Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Delft 2629HZ, The Netherlands
- Department
of Physics, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
2
|
Higuera-Rodriguez RA, De Pascali MC, Aziz M, Sattler M, Rant U, Kaiser W. Kinetic FRET Assay to Measure Binding-Induced Conformational Changes of Nucleic Acids. ACS Sens 2023; 8:4597-4606. [PMID: 38060303 PMCID: PMC10749467 DOI: 10.1021/acssensors.3c01527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/27/2023] [Accepted: 11/28/2023] [Indexed: 12/08/2023]
Abstract
The interaction of small molecules or proteins with RNA or DNA often involves changes in the nucleic acid (NA) folding and structure. A biophysical characterization of these processes helps us to understand the underlying molecular mechanisms. Here, we propose kinFRET (kinetics Förster resonance energy transfer), a real-time ensemble FRET methodology to measure binding and folding kinetics. With kinFRET, the kinetics of conformational changes of NAs (DNA or RNA) upon analyte binding can be directly followed via a FRET signal using a chip-based biosensor. We demonstrate the utility of this approach with two representative examples. First, we monitored the conformational changes of different formats of an aptamer (MN19) upon interaction with small-molecule analytes. Second, we characterized the binding kinetics of RNA recognition by tandem K homology (KH) domains of the human insulin-like growth factor II mRNA-binding protein 3 (IMP3), which reveals distinct kinetic contributions of the two KH domains. Our data demonstrate that kinFRET is well suited to study the kinetics and conformational changes of NA-analyte interactions.
Collapse
Affiliation(s)
- R. Anahi Higuera-Rodriguez
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Mareike C. De Pascali
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Masood Aziz
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
| | - Michael Sattler
- TUM
School of Natural Sciences, Department of Bioscience, Technical University of Munich, Garching 85748, Germany
- Helmholtz
Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Neuherberg 85764, Germany
| | - Ulrich Rant
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| | - Wolfgang Kaiser
- Dynamic
Biosensors GmbH, Perchtinger Str. 8/10, Munich 81379, Germany
| |
Collapse
|
3
|
Albertazzi L, Heilemann M. When Weak Is Strong: A Plea for Low-Affinity Binders for Optical Microscopy. Angew Chem Int Ed Engl 2023; 62:e202303390. [PMID: 37158582 DOI: 10.1002/anie.202303390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/10/2023]
Abstract
The exploitation of low-affinity molecular interactions in protein labeling is an emerging topic in optical microscopy. Such non-covalent and low-affinity interactions can be realized with various concepts from chemistry and for different molecule classes, and lead to a constant renewal of fluorescence signals at target sites. Further benefits are a versatile use across microscopy methods, in 3D, live and many-target applications. In recent years, several classes of low-affinity labels were developed and a variety of powerful applications demonstrated. Still, this research field is underdeveloped, while the potential is huge.
Collapse
|
4
|
Niederauer C, Nguyen C, Wang-Henderson M, Stein J, Strauss S, Cumberworth A, Stehr F, Jungmann R, Schwille P, Ganzinger KA. Dual-color DNA-PAINT single-particle tracking enables extended studies of membrane protein interactions. Nat Commun 2023; 14:4345. [PMID: 37468504 DOI: 10.1038/s41467-023-40065-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/07/2023] [Indexed: 07/21/2023] Open
Abstract
DNA-PAINT based single-particle tracking (DNA-PAINT-SPT) has recently significantly enhanced observation times in in vitro SPT experiments by overcoming the constraints of fluorophore photobleaching. However, with the reported implementation, only a single target can be imaged and the technique cannot be applied straight to live cell imaging. Here we report on leveraging this technique from a proof-of-principle implementation to a useful tool for the SPT community by introducing simultaneous live cell dual-color DNA-PAINT-SPT for quantifying protein dimerization and tracking proteins in living cell membranes, demonstrating its improved performance over single-dye SPT.
Collapse
Affiliation(s)
| | - Chikim Nguyen
- Autonomous Matter Department, AMOLF, Amsterdam, The Netherlands
| | | | - Johannes Stein
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | | | | - Florian Stehr
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Ralf Jungmann
- Max Planck Institute of Biochemistry, Martinsried, Germany
- Faculty of Physics, Ludwig Maximilian University, Munich, Germany
| | - Petra Schwille
- Max Planck Institute of Biochemistry, Martinsried, Germany
| | | |
Collapse
|
5
|
Wang Y, Li W, Ye B, Bi X. Chemical and Biological Strategies for Profiling Protein-Protein Interactions in Living Cells. Chem Asian J 2023; 18:e202300226. [PMID: 37089007 PMCID: PMC10946512 DOI: 10.1002/asia.202300226] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 04/25/2023]
Abstract
Protein-protein interactions (PPIs) play critical roles in almost all cellular signal transduction events. Characterization of PPIs without interfering with the functions of intact cells is very important for basic biology study and drug developments. However, the ability to profile PPIs especially those weak/transient interactions in their native states remains quite challenging. To this end, many endeavors are being made in developing new methods with high efficiency and strong operability. By coupling with advanced fluorescent microscopy and mass spectroscopy techniques, these strategies not only allow us to visualize the subcellular locations and monitor the functions of protein of interest (POI) in real time, but also enable the profiling and identification of potential unknown interacting partners in high-throughput manner, which greatly facilitates the elucidation of molecular mechanisms underlying numerous pathophysiological processes. In this review, we will summarize the typical methods for PPIs identification in living cells and their principles, advantages and limitations will also be discussed in detail.
Collapse
Affiliation(s)
- You‐Yu Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| | - Wenyi Li
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular ScienceLa Trobe UniversityVictoria3086Australia
| | - Bang‐Ce Ye
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| | - Xiao‐Bao Bi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical SciencesZhejiang University of TechnologyHangzhou310014, Zhejiang ProvinceP. R. China
| |
Collapse
|
6
|
Kümmerlin M, Mazumder A, Kapanidis AN. Bleaching-resistant, Near-continuous Single-molecule Fluorescence and FRET Based on Fluorogenic and Transient DNA Binding. Chemphyschem 2023; 24:e202300175. [PMID: 37043705 PMCID: PMC10946581 DOI: 10.1002/cphc.202300175] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Photobleaching of fluorescent probes limits the observation span of typical single-molecule fluorescence measurements and hinders observation of dynamics at long timescales. Here, we present a general strategy to circumvent photobleaching by replenishing fluorescent probes via transient binding of fluorogenic DNAs to complementary DNA strands attached to a target molecule. Our strategy allows observation of near-continuous single-molecule fluorescence for more than an hour, a timescale two orders of magnitude longer than the typical photobleaching time of single fluorophores under our conditions. Using two orthogonal sequences, we show that our method is adaptable to Förster Resonance Energy Transfer (FRET) and that can be used to study the conformational dynamics of dynamic structures, such as DNA Holliday junctions, for extended periods. By adjusting the temporal resolution and observation span, our approach enables capturing the conformational dynamics of proteins and nucleic acids over a wide range of timescales.
Collapse
Affiliation(s)
- Mirjam Kümmerlin
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| | - Abhishek Mazumder
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
- Structural Biology and Bioinformatics DivisionCSIR-Indian Institute of Chemical Biology4, Raja S. C. Mullick RoadKolkata700 032India
| | - Achillefs N. Kapanidis
- Department of PhysicsUniversity of OxfordOxfordOX1 3PUUK
- Kavli Institute for Nanoscience DiscoveryUniversity of OxfordDorothy Crowfoot Hodgkin BuildingOxfordOX1 3QUUK
| |
Collapse
|
7
|
Wen C, Bertosin E, Shi X, Dekker C, Schmid S. Orientation-Locked DNA Origami for Stable Trapping of Small Proteins in the Nanopore Electro-Osmotic Trap. NANO LETTERS 2023; 23:788-794. [PMID: 36507712 PMCID: PMC9912335 DOI: 10.1021/acs.nanolett.2c03569] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Indexed: 06/18/2023]
Abstract
Nanopores are versatile single-molecule sensors offering a simple label-free readout with great sensitivity. We recently introduced the nanopore electro-osmotic trap (NEOtrap) which can trap and sense single unmodified proteins for long times. The trapping is achieved by the electro-osmotic flow (EOF) generated from a DNA-origami sphere docked onto the pore, but thermal fluctuations of the origami limited the trapping of small proteins. Here, we use site-specific cholesterol functionalization of the origami sphere to firmly link it to the lipid-coated nanopore. We can lock the origami in either a vertical or horizontal orientation which strongly modulates the EOF. The optimized EOF greatly enhances the trapping capacity, yielding reduced noise, reduced measurement heterogeneity, an increased capture rate, and 100-fold extended observation times. We demonstrate the trapping of a variety of single proteins, including small ones down to 14 kDa. The cholesterol functionalization significantly expands the application range of the NEOtrap technology.
Collapse
Affiliation(s)
- Chenyu Wen
- NanoDynamicsLab,
Laboratory of Biophysics, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Eva Bertosin
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Xin Shi
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Cees Dekker
- Department
of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Van der Maasweg 9, Delft, 2629 HZ, The Netherlands
| | - Sonja Schmid
- NanoDynamicsLab,
Laboratory of Biophysics, Wageningen University, Stippeneng 4, Wageningen, 6708 WE, The Netherlands
| |
Collapse
|