1
|
Aleksic Sabo V, Škorić D, Jovanović-Šanta S, Knezevic P. Exploring Biofilm-Related Traits and Bile Salt Efficacy as Anti-Biofilm Agents in MDR Acinetobacter baumannii. Antibiotics (Basel) 2024; 13:880. [PMID: 39335053 PMCID: PMC11428928 DOI: 10.3390/antibiotics13090880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Acinetobacter baumannii has been designated as a critical priority pathogen by the World Health Organization for the development of novel antimicrobial agents. This study aimed to investigate both the phenotypic and genotypic traits of multidrug-resistant (MDR) A. baumannii strains, along with the effects of natural bile salts on biofilm formation. The research analyzed phenotypic traits, including autoaggregation, hydrophobicity, twitching motility, lectin production, and biofilm formation, as well as genotypic traits such as the presence of bap and blaPER-1 genes in twenty wound and eight environmental MDR A. baumannii isolates. While all strains were identified as good biofilm producers, no statistically significant correlation was detected between the examined traits and biofilm formation. However, differences in biofilm production were observed between environmental and wound isolates. The natural bile salts Na-cholate, Na-deoxycholate, and Na-chenodeoxycholate demonstrated effective anti-A. baumannii activity (MIC = 0.25-10 mg mL-1), with significant anti-biofilm effects. Na-deoxycholate and Na-chenodeoxycholate inhibited 94-100% of biofilm formation at super-MIC concentrations (8-32 mg mL-1). This study underscores the urgent need for innovative strategies to combat antibiotic resistance and biofilm formation in A. baumannii, highlighting the potential of natural bile salts as promising biofilm inhibitors and encouraging further research into their modification and combination with other antimicrobials.
Collapse
Affiliation(s)
- Verica Aleksic Sabo
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia;
| | - Dušan Škorić
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; (D.Š.); (S.J.-Š.)
| | - Suzana Jovanović-Šanta
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21000 Novi Sad, Serbia; (D.Š.); (S.J.-Š.)
| | - Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 2, 21000 Novi Sad, Serbia;
| |
Collapse
|
2
|
Pleskova SN, Bezrukov NA, Nikolaeva ED, Boryakov AV, Kuzina OV. Rapid Detection of Acinetobacter baumannii Suspension and Biofilm Nanomotion and Antibiotic Resistance Estimation. Biomedicines 2024; 12:2034. [PMID: 39335547 PMCID: PMC11429443 DOI: 10.3390/biomedicines12092034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
OBJECTIVES To develop a system for the rapid detection of Acinetobacter baumannii 173-p1 antibiotic resistance (to ensure reliable fixation of bacteria on a cantilever without losing their nanomotion, to show that nanomotion is due to bacterial metabolism, to compare the nanomotion of bacteria in suspension form and inside of the biofilms), to study the sensitivity/resistance of A. baumannii 173-p1 to antibiotics (lincomycin, ceftriaxone and doxycycline) using the oscillation method of atomic force microscopy and to evaluate the sensitivity and speed of the method in comparison with the classical disk diffusion method. METHODS The oscillation mode of atomic force microscopy, scanning electron microscopy and the classical disk diffusion method were used for a complex parallel study of A. baumannii 173-p1 antibiotic resistance, which included testing of fixing agents (poly-L-lysine, rosin and fibronectin), comparison of bacterial metabolism in a set of media (normal saline solution, meat-peptone broth and lysogeny broth) and assessment of antibiotic sensitivity/resistance per se. RESULTS A method for express testing of Acinetobacter baumannii antibiotic resistance using AFM was developed; it is shown that bacterial nanomotion directly correlates with bacteria metabolic activity and that bacterial nanomotion is more easily detected in suspension form, rather than in biofilms. CONCLUSION The express testing method gave results that are completely comparable with the classical disk diffusion test and with the results of morphology studies by the SEM method, but it significantly exceeded them in speed, allowing a conclusion to be made on the sensitivity/resistance of bacteria less than an hour after the start of the diagnostics.
Collapse
Affiliation(s)
- Svetlana N. Pleskova
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia; (N.A.B.)
- Department “Nanotechnology and Biotechnology”, Nizhny Novgorod State Technical University named after Alekseev R.E., 603155 Nizhny Novgorod, Russia
| | - Nikolay A. Bezrukov
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia; (N.A.B.)
| | - Ekaterina D. Nikolaeva
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia; (N.A.B.)
- Department “Nanotechnology and Biotechnology”, Nizhny Novgorod State Technical University named after Alekseev R.E., 603155 Nizhny Novgorod, Russia
| | - Alexey V. Boryakov
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia; (N.A.B.)
| | - Olga V. Kuzina
- Research Laboratory of Scanning Probe Microscopy, Lobachevsky State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia; (N.A.B.)
- Department “Nanotechnology and Biotechnology”, Nizhny Novgorod State Technical University named after Alekseev R.E., 603155 Nizhny Novgorod, Russia
| |
Collapse
|
3
|
Amaral SC, Pruski BB, de Freitas SB, Dos Santos LM, Hartwig DD. Biofilm formation in drug-resistant Acinetobacter baumannii and Acinetobacter nosocomialis isolates obtained from a university hospital in Pelotas, RS, Brazil. Lett Appl Microbiol 2023; 76:ovad094. [PMID: 37563082 DOI: 10.1093/lambio/ovad094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/29/2023] [Accepted: 08/03/2023] [Indexed: 08/12/2023]
Abstract
This study aimed to investigate the antibiotic resistance and biofilm formation of Acinetobacter calcoaceticus-A. baumannii (ACB) complex isolates recovered from a university hospital in Pelotas, RS, Brazil. The species were confirmed using gyrB multiplex and blaOXA-51-like genes PCR. The presence of the bfmRS virulence gene was evaluated by the PCR, and the isolates were classified based on their biofilm-forming ability on polystyrene (PO) and glass surfaces (TM). Out of 50 ACB complex isolates evaluated, 41 were identified as A. baumannii and nine as A. nosocomialis. The bfmRS gene was detected in 97.6% (40/41) of A. baumannii and 33.3% (3/9) of A. nosocomialis species. Forty-nine isolates exhibited a multidrug-resistant (MDR) profile, while one A. nosocomialis isolate presented an extensively drug-resistant (XDR) profile. All isolates were able of forming biofilms on PO surfaces and 98% (49/50) on TM surfaces. A significant correlation was observed between biofilm production on PO and TM surfaces (P < 0.05). However, no correlation was found between biofilms forming and the presence of the bfmRS gene or displaying a certain antibiotic resistance profile. In conclusion, A. baumannii and A. nosocomialis are frequent species causing nosocomial infections in a hospital in Pelotas, RS, Brazil, and both are capable of forming biofilms.
Collapse
Affiliation(s)
- Suélen Cavalheiro Amaral
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Beatriz Bohns Pruski
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Stella Buchhorn de Freitas
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Lucas Moreira Dos Santos
- Center of Technological Development, Biotechnology, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| | - Daiane Drawanz Hartwig
- Laboratory of Bacteriology and Bioassays (LaBBio), Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas, Pelotas, 96010900, RS, Brazil
| |
Collapse
|
4
|
Cui B, Guo Q, Li X, Song S, Wang M, Wang G, Yan A, Zhou J, Deng Y. A response regulator controls Acinetobacter baumannii virulence by acting as an indole receptor. PNAS NEXUS 2023; 2:pgad274. [PMID: 37649583 PMCID: PMC10465187 DOI: 10.1093/pnasnexus/pgad274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 08/18/2023] [Indexed: 09/01/2023]
Abstract
Indole is an important signal employed by many bacteria to modulate intraspecies signaling and interspecies or interkingdom communication. Our recent study revealed that indole plays a key role in regulating the physiology and virulence of Acinetobacter baumannii. However, it is not clear how A. baumannii perceives and responds to the indole signal in modulating biological functions. Here, we report that indole controls the physiology and virulence of A. baumannii through a previously uncharacterized response regulator designated as AbiR (A1S_1394), which contains a cheY-homologous receiver (REC) domain and a helix-turn-helix (HTH) DNA-binding domain. AbiR controls the same biological functions as the indole signal, and indole-deficient mutant phenotypes were rescued by in trans expression of AbiR. Intriguingly, unlike other response regulators that commonly interact with signal ligands through the REC domain, AbiR binds to indole with a high affinity via an unusual binding region, which is located between its REC and HTH domains. This interaction substantially enhances the activity of AbiR in promoter binding and in modulation of target gene expression. Taken together, our results present a widely conserved regulator that controls bacterial physiology and virulence by sensing the indole signal in a unique mechanism.
Collapse
Affiliation(s)
- Binbin Cui
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Quan Guo
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Xia Li
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Shihao Song
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
- School of Pharmaceutical Sciences, Hainan University, Renmin Avenue, Meilan District, Haikou 570228, China
| | - Mingfang Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Gerun Wang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
| | - Aixin Yan
- School of Biological Sciences, The University of Hong Kong, University Road, Pok Fu Lam Estate, Central and Western District, Hong Kong 999077, China
| | - Jianuan Zhou
- Integrative Microbiology Research Center, South China Agricultural University, Wushan Road, Wushan Street, Tianhe District Guangzhou 510642, China
| | - Yinyue Deng
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, Gongchang Road, Guangming District, Shenzhen 518107, China
- School of Pharmaceutical Sciences, Hainan University, Renmin Avenue, Meilan District, Haikou 570228, China
| |
Collapse
|
5
|
Boulesnam SL, Hamaidi-Chergui F, Benamara M, Azrou S. Phenotypical Comparison between Environmental and Clinical Acinetobacter baumannii Strains Isolated from an Intensive Care Unit. Malays J Med Sci 2023; 30:85-93. [PMID: 37655144 PMCID: PMC10467598 DOI: 10.21315/mjms2023.30.4.8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/05/2022] [Indexed: 09/02/2023] Open
Abstract
Background Acinetobacter baumannii (A. baumannii) causes a variety of nosocomial infections that mainly affect critically ill patients in intensive care units (ICUs). The objective of this study was to assess the prevalence of A. baumannii in the ICU environment and evaluate the antibiotic resistance and biofilm formation ability of the environmental isolates compared to those isolated from ICU patients simultaneously. Methods A total of 166 non-duplicate ICU samples (80 environmental and 86 clinical) were collected between January 2019 and January 2020. Antimicrobial susceptibility detection was determined using the disc diffusion method, and the strains were evaluated for the minimum inhibitory concentration (MIC) of imipenem (IMP) using broth microdilution or metallo-β-lactamase (MBL) detection according to the Clinical and Laboratory Standards Institute (CLSI) guidelines. The isolates' capacity to produce biofilms was evaluated using the tube method and the crystal violet microtitre plate-based method. Results A. baumannii was identified in 25 (31.25%) environmental and 30 (34.88%) clinical samples, and beds were the most infected (60%). Both types of isolate demonstrated a rate surpassing 80% resistance to the tested antibiotics. Phenotypically, the environmental and clinical strains were found to be MBL producers. Fourteen environmental (56%) and 15 clinical (50%) strains were found to be moderate biofilm producers, indicating that each isolate has a high biofilm-forming capacity. Conclusion These results show that the spread of multidrug-resistant (MDR) A. baumannii in an ICU setting emphasises the necessity of disinfecting and cleaning medical devices and surfaces to prevent and restrict cross-transmission. Intensive surveillance and infection control methods are also of paramount importance.
Collapse
Affiliation(s)
- Saliha Lydia Boulesnam
- Biotechnology, Environment and Health Laboratory, Biology Department, Blida 1 University, Algeria
| | - Fella Hamaidi-Chergui
- Biotechnology, Environment and Health Laboratory, Biology Department, Blida 1 University, Algeria
| | | | - Sihem Azrou
- Microbiology Laboratory, Faculty of Pharmacy of Algiers, Algeria
- Central Laboratory, Beni Messous EPH, Algeria
| |
Collapse
|
6
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Comparative Transcriptomic Profiling of Pellicle and Planktonic Cells from Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1185. [PMID: 37508281 PMCID: PMC10375965 DOI: 10.3390/antibiotics12071185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii forms air-liquid interface pellicles that boost its ability to withstand desiccation and increase survival under antibiotic pressure. This study aims to delve into the transcriptomic profiles of pellicle cells from clinical strains of carbapenem-resistant A. baumannii (CRAB). The total RNA was extracted from pellicle cells from three pellicle-forming CRAB strains and planktonic cells from three non-pellicle-forming CRAB strains, subject to RNA sequencing using Illumina HiSeq 2500 system. A transcriptomic analysis between pellicle and planktonic cells, along with differential expression genes (DEGs) analysis and enrichment analysis of annotated COGs, GOs, and KEGGs, was performed. Our analysis identified 366 DEGs in pellicle cells: 162 upregulated genes and 204 downregulated genes. The upregulated ABUW_1624 (yiaY) gene and downregulated ABUW_1550 gene indicated potential involvement in fatty acid degradation during pellicle formation. Another upregulated ABUW_2820 (metQ) gene, encoding the D-methionine transporter system, hinted at its contribution to pellicle formation. The upregulation of two-component systems, CusSR and KdpDE, which implies the regulation of copper and potassium ions in a CRAB pellicle formation was also observed. These findings provide valuable insights into the regulation of gene expression during the formation of pellicles in CRAB, and these are potential targets that may aid in the eradication of CRAB infections.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
7
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Characterisation of pellicle-forming ability in clinical carbapenem-resistant Acinetobacter baumannii. PeerJ 2023; 11:e15304. [PMID: 37214089 PMCID: PMC10194081 DOI: 10.7717/peerj.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability. Methods The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA). Results All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development. Conclusion These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
He Y, Wang Y, Ma X, Zhao L, Guan J, Zhao J, Yu W, Li Y, Ni W, Gao Z. Resistance to Cefiderocol Involved Expression of PER-1 β-Lactamase and Downregulation of Iron Transporter System in Carbapenem-Resistant Acinetobacter baumannii. Infect Drug Resist 2022; 15:7177-7187. [PMID: 36514799 PMCID: PMC9741825 DOI: 10.2147/idr.s392241] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
Background Cefiderocol (CFDC) is a promising antimicrobial agent against multidrug resistant Gram-negative bacteria. However, CFDC resistance has emerged in carbapenem-resistant Acinetobacter baumannii (CR-AB) but the underlying mechanisms remain unclear. Methods Whole-genome sequencing and transcriptome sequencing were performed on CFDC-non-susceptible and CFDC-susceptible isolates. Two different recombinant plasmids was electro-transformed into the E. coli BL21 strain to determine the impact of blaPER and the combined impact of blaPER-1 and blaOXA-23 on CFDC resistance. Results Fifty-five CR-AB isolates with minimum inhibitory concentrations (MICs) ranged from 0.06 mg/L to >256 mg/L were sequenced, including 47 CFDC-non-susceptible and eight CFDC-susceptible isolates. Two CFDC-non-susceptible isolates belonged to ST104 whereas the remaining isolates belonged to ST2, and blaPER-1 was present only in CFDC-non-susceptible isolates. Amino acid substitutions were noted in penicillin-binding proteins (PBPs) in four CFDC-susceptible isolates, with slightly elevated MICs. The MICs of recombinant E. coli BL21 carrying the blaPER-1 gene increased 64-fold and recombinant E. coli BL21 carrying both the blaPER-1 and blaOXA-23 genes increased 8-fold but both remained within the susceptibility range. Transcriptome sequencing of 17 CFDC-non-susceptible isolates and eight CFDC-susceptible isolates revealed that transcriptional levels of various iron transport proteins, such as fiu, feoA, and feoB, and the energy transduction system, TonB-ExbB-ExbD, were relatively downregulated in CFDC-non-susceptible isolates. GO enrichment analysis revealed that the upregulated genes in CFDC-non-susceptible isolates were mainly associated with redox homeostasis and stress response. Besides, the expression levels of the blaOXA-23 and exbD genes were negatively correlated with the MICs. Conclusion PER-1 production, iron transport system downregulation, and mutations in PBPs may synergistically impart high-level resistance to CFDC in CR-AB.
Collapse
Affiliation(s)
- Yukun He
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yifan Wang
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Xinqian Ma
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Lili Zhao
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Jie Guan
- Clinical Laboratory, Peking University First Hospital, Beijing, People’s Republic of China
| | - Jin Zhao
- Department of Respiratory Diseases, Air Force Medical Center, Chinese People’s Liberation Army, Beijing, People’s Republic of China
| | - Wenyi Yu
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| | - Yanjun Li
- Clinical Laboratory, The Sixth Medical Center of PLA General Hospital, Beijing, People’s Republic of China
| | - Wentao Ni
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China,Correspondence: Wentao Ni; Zhancheng Gao, Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China, Email ;
| | - Zhancheng Gao
- Department of Pulmonary and Critical Care Medicine, Peking University People’s Hospital, Beijing, People’s Republic of China
| |
Collapse
|
9
|
Decoding Acinetobacter baumannii biofilm dynamics and associated protein markers: proteomic and bioinformatics approach. Arch Microbiol 2022; 204:200. [PMID: 35239017 DOI: 10.1007/s00203-022-02807-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 01/27/2022] [Accepted: 02/15/2022] [Indexed: 12/11/2022]
Abstract
Biofilm formation by Acinetobacter baumannii is one of the major cause of its persistence in hospital environment. Biofilm phenotypes are more resistant to physical as well as chemical stresses than their planktonic counterparts. The present study was carried in quest of biofilm-associated protein markers and their association with various biological pathways of A. baumannii. The study was designed with an aim to highlight the crucial common factor present in the majority of the A. baumannii strains irrespective of its resistance nature. A label-free proteome comparison of biofilm and planktonic phenotypes of A. baumannii was done using QExactive tandem mass spectrometry. Our investigation suggests key elevation of adhesion factors, acetate metabolism, nutrient transporters, and secretion system proteins are required for biofilm formation in A. baumannii. Elevation of biofilm-associated proteins revealed that biofilm is the unique phenotype with the potential to form robust matrix-embedded colonies and defeat stress condition. Further, core protein markers of biofilm phenotypes could be used as targets for new clinical interventions to combat biofilm-associated infections.
Collapse
|
10
|
Pan P, Wang X, Chen Y, Chen Q, Yang Y, Wei C, Cheng T, Wan H, Yu D. Effect of Hcp Iron Ion Regulation on the Interaction Between Acinetobacter baumannii With Human Pulmonary Alveolar Epithelial Cells and Biofilm Formation. Front Cell Infect Microbiol 2022; 12:761604. [PMID: 35281445 PMCID: PMC8905654 DOI: 10.3389/fcimb.2022.761604] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/31/2022] [Indexed: 11/15/2022] Open
Abstract
Acinetobacter baumannii is a type of bacterial nosocomial infection with severe drug resistance. Hemolysin co-regulated protein (Hcp) is a marker of activated type VI secretion system (T6SS), a key secretory system that promotes Gram-negative bacteria colonization, adhesion, and invasion of host cells. Hcp is also regulated by iron ions (Fe). In this study, an ATCC17978 hcp deletion strain (ATCC17978Δhcp), an hcp complement strain (ATCC17978Δhcp+), and an A. baumannii–green fluorescent protein (GFP) strain were constructed and used to investigate the role of hcp in bacterial adhesion to cells (human pulmonary alveolar epithelial cells (HPAEpiC)) and biofilm formation. Our results indicate that the inhibitory concentrations of the three A. baumannii strains (ATCC17978 wild type, ATCC17978Δhcp, and ATCC17978Δhcp+) were drug-sensitive strains. A. baumannii hcp gene and iron ions might be involved in promoting the formation of a biofilm and host–bacteria interaction. Iron ions affected the ability of A. baumannii to adhere to cells, as there was no significant difference in the bacterial numbers when assessing the adhesion of the three strains to HPAEpiC in the presence of iron ion concentrations of 0 μM (F = 3.1800, p = 0.1144), 25 μM (F = 2.067, p = 0.2075), 100 μM (F = 30.52, p = 0.0007), and 400 μM (F = 17.57, p = 0.0031). The three strains showed significant differences in their ability to adhere to HPAEpiC. The numbers of bacteria adhesion to HPAEpiC were ATCC17978Δhcp>ATCC17978Δhcp+>ATCC17978 in descending order. Hcp gene was positively regulated by iron ions in the bacteria–cells’ co-culture. It is speculated that the effect of iron ions on the interaction between A. baumannii and HPAEpiC might be related to the transport function of hcp and bacterial immune escape mechanisms.
Collapse
Affiliation(s)
- Ping Pan
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Medical Laboratory, Hangzhou Women’s Hospital, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolei Wang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Department of Medical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Qiong Chen
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yunxing Yang
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chenxing Wei
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tongtong Cheng
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| | - Daojun Yu
- Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Haitong Wan, ; Daojun Yu,
| |
Collapse
|
11
|
Romero-Severson J, Moran TE, Shrader DG, Fields FR, Pandey-Joshi S, Thomas CL, Palmer EC, Shrout JD, Pfrender ME, Lee SW. A Seed-Endophytic Bacillus safensis Strain With Antimicrobial Activity Has Genes for Novel Bacteriocin-Like Antimicrobial Peptides. Front Microbiol 2021; 12:734216. [PMID: 34646254 PMCID: PMC8503640 DOI: 10.3389/fmicb.2021.734216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/20/2021] [Indexed: 12/04/2022] Open
Abstract
Bacteriocins are a highly diverse group of antimicrobial peptides that have been identified in a wide range of commensal and probiotic organisms, especially those resident in host microbiomes. Rising antibiotic resistance have fueled renewed research into new drug scaffolds such as antimicrobial peptides for use in therapeutics. In this investigation, we examined mung bean seeds for endophytes possessing activity against human and plant pathogens. We isolated a novel strain of Bacillus safensis, from the contents of surface-sterilized mung bean seed, which we termed B. safensis C3. Genome sequencing of C3 identified three distinct biosynthetic systems that produce bacteriocin-based peptides. C3 exhibited antibacterial activity against Escherichia coli, Xanthomonas axonopodis, and Pseudomonas syringae. Robust antimicrobial activity of B. safensis C3 was observed when C3 was co-cultured with Bacillus subtilis. Using the cell-free supernatant of C3 and cation exchange chromatography, we enriched a product that retained antimicrobial activity against B. subtilis. The peptide was found to be approximately 3.3 kDa in size by mass spectrometry, and resistant to proteolysis by Carboxypeptidase Y and Endoproteinase GluC, suggesting that it is a modified variant of an AS-48 like bacteriocin. Our findings open new avenues into further development of novel bacteriocin-based scaffolds for therapeutic development, as well as further investigations into how our discoveries of bacteriocin-producing plant commensal microorganisms may have the potential for an immediate impact on the safety of food supplies.
Collapse
Affiliation(s)
- Jeanne Romero-Severson
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Donna G Shrader
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Francisco R Fields
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Susan Pandey-Joshi
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Clayton L Thomas
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Emily C Palmer
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Department of Civil and Environmental Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Joshua D Shrout
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States.,Department of Civil and Environmental Engineering, University of Notre Dame, Notre Dame, IN, United States
| | - Michael E Pfrender
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States
| |
Collapse
|
12
|
Rodgers D, Le C, Pimentel C, Tuttobene MR, Subils T, Escalante J, Nishimura B, Vescovi EG, Sieira R, Bonomo RA, Tolmasky ME, Ramirez MS. Histone-like nucleoid-structuring protein (H-NS) regulatory role in antibiotic resistance in Acinetobacter baumannii. Sci Rep 2021; 11:18414. [PMID: 34531538 PMCID: PMC8446060 DOI: 10.1038/s41598-021-98101-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 09/03/2021] [Indexed: 12/20/2022] Open
Abstract
In the multidrug resistant (MDR) pathogen Acinetobacter baumannii the global repressor H-NS was shown to modulate the expression of genes involved in pathogenesis and stress response. In addition, H-NS inactivation results in an increased resistance to colistin, and in a hypermotile phenotype an altered stress response. To further contribute to the knowledge of this key transcriptional regulator in A. baumannii behavior, we studied the role of H-NS in antimicrobial resistance. Using two well characterized A. baumannii model strains with distinctive resistance profile and pathogenicity traits (AB5075 and A118), complementary transcriptomic and phenotypic approaches were used to study the role of H-NS in antimicrobial resistance, biofilm and quorum sensing gene expression. An increased expression of genes associated with β-lactam resistance, aminoglycosides, quinolones, chloramphenicol, trimethoprim and sulfonamides resistance in the Δhns mutant background was observed. Genes codifying for efflux pumps were also up-regulated, with the exception of adeFGH. The wild-type transcriptional level was restored in the complemented strain. In addition, the expression of biofilm related genes and biofilm production was lowered when the transcriptional repressor was absent. The quorum network genes aidA, abaI, kar and fadD were up-regulated in Δhns mutant strains. Overall, our results showed the complexity and scope of the regulatory network control by H-NS (genes involved in antibiotic resistance and persistence). These observations brings us one step closer to understanding the regulatory role of hns to combat A. baumannii infections.
Collapse
Affiliation(s)
- Deja Rodgers
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Casin Le
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Camila Pimentel
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | | | - Rodrigo Sieira
- Fundación Instituto Leloir - IIBBA CONICET, Buenos Aires, Argentina
| | - Robert A Bonomo
- Research Service and GRECC, Department of Veterans Affairs Medical Center, Louis Stokes Cleveland, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, 92831, USA.
| |
Collapse
|
13
|
Li Z, Ding Z, Liu Y, Jin X, Xie J, Li T, Zeng Z, Wang Z, Liu J. Phenotypic and Genotypic Characteristics of Biofilm Formation in Clinical Isolates of Acinetobacter baumannii. Infect Drug Resist 2021; 14:2613-2624. [PMID: 34262306 PMCID: PMC8274629 DOI: 10.2147/idr.s310081] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 06/17/2021] [Indexed: 12/14/2022] Open
Abstract
Background Acinetobacter baumannii is an important pathogen in clinical infections, and biofilm formation is an effective way for A. baumannii to survive under external pressures. In this study, the aims were to examine the antimicrobial resistance, biofilm formation, and biofilm-specific resistance in clinical isolates of A. baumannii. Materials and Methods A total of 104 clinical A. baumannii isolates were collected from a large teaching hospital in Southwest China. The antibiotics susceptibilities were tested, and biofilm-forming ability was evaluated by crystal violet staining by confocal laser scanning microscopy (CLSM). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), minimum biofilm inhibitory concentration (MBIC), and minimum biofilm eradication concentration (MBEC) of ciprofloxacin, meropenem, and ceftazidime were tested on selected strains by broth microdilution method. Biofilm-associated genes were detected by polymerase chain reaction (PCR), and expression of genes at planktonic stage and biofilm stage were analyzed by real-time reverse transcription PCR (RT-PCR). Results Multidrug-resistant (MDR) isolates accounted for 65.4%, but no strain was resistant to tigecycline and polymyxin B. Moreover, non-MDR strains tended to form stronger biofilms than MDR strains, and a negative correlation between biofilm-forming ability and resistance profiles to each of tested antimicrobials were observed. The MBECs and MBICs of ciprofloxacin, ceftazidime, and meropenem were evidently increased compared with MICs and MBCs among all tested strains. Additionally, the biofilm formation ability of the csuD-positive strains was stronger than that of the csuD-negative strains. The strains in MDR group had higher carrying rate of csuA and csuD genes than non-MDR group, while non-MDR strains possessed more ompA gene than MDR group. Finally, abaI gene was significantly up-regulated after biofilm formation. Conclusion These results revealed valuable data for the negative correlation between antimicrobial resistance and biofilm formation, as well as phenotypic and genotypic characteristics of biofilm formation in A. baumannii.
Collapse
Affiliation(s)
- Zhaoyinqian Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zixuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yao Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xinrui Jin
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jingling Xie
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Tingting Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Zhibin Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| |
Collapse
|
14
|
Pompilio A, Scribano D, Sarshar M, Di Bonaventura G, Palamara AT, Ambrosi C. Gram-Negative Bacteria Holding Together in a Biofilm: The Acinetobacter baumannii Way. Microorganisms 2021; 9:1353. [PMID: 34206680 PMCID: PMC8304980 DOI: 10.3390/microorganisms9071353] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/14/2021] [Accepted: 06/18/2021] [Indexed: 12/24/2022] Open
Abstract
Bacterial biofilms are a serious public-health problem worldwide. In recent years, the rates of antibiotic-resistant Gram-negative bacteria associated with biofilm-forming activity have increased worrisomely, particularly among healthcare-associated pathogens. Acinetobacter baumannii is a critically opportunistic pathogen, due to the high rates of antibiotic resistant strains causing healthcare-acquired infections (HAIs). The clinical isolates of A. baumannii can form biofilms on both biotic and abiotic surfaces; hospital settings and medical devices are the ideal environments for A. baumannii biofilms, thereby representing the main source of patient infections. However, the paucity of therapeutic options poses major concerns for human health infections caused by A. baumannii strains. The increasing number of multidrug-resistant A. baumannii biofilm-forming isolates in association with the limited number of biofilm-eradicating treatments intensify the need for effective antibiofilm approaches. This review discusses the mechanisms used by this opportunistic pathogen to form biofilms, describes their clinical impact, and summarizes the current and emerging treatment options available, both to prevent their formation and to disrupt preformed A. baumannii biofilms.
Collapse
Affiliation(s)
- Arianna Pompilio
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy;
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| | - Meysam Sarshar
- Research Laboratories, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy;
| | - Giovanni Di Bonaventura
- Center for Advanced Studies and Technology (CAST), Department of Medical, Oral and Biotechnological Sciences, Service of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.P.); (G.D.B.)
| | - Anna Teresa Palamara
- Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy;
- Laboratory Affiliated to Institute Pasteur Italia-Cenci Bolognetti Foundation, Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Cecilia Ambrosi
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Open University, IRCCS, 00166 Rome, Italy
| |
Collapse
|
15
|
Mannix-Fisher E, McLean S. The antimicrobial activity of silver acetate against Acinetobacter baumannii in a Galleria mellonella infection model. PeerJ 2021; 9:e11196. [PMID: 33981496 PMCID: PMC8071075 DOI: 10.7717/peerj.11196] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 03/09/2021] [Indexed: 11/24/2022] Open
Abstract
Background The increasing prevalence of bacterial infections that are resistant to antibiotic treatment has caused the scientific and medical communities to look for alternate remedies aimed at prevention and treatment. In addition to researching novel antimicrobials, there has also been much interest in revisiting some of the earliest therapies used by man. One such antimicrobial is silver; its use stretches back to the ancient Greeks but interest in its medicinal properties has increased in recent years due to the rise in antibiotic resistance. Currently antimicrobial silver is found in everything from lunch boxes to medical device implants. Though much is claimed about the antimicrobial efficacy of silver salts the research in this area is mixed. Methods Herein we investigated the efficacy of silver acetate against a carbapenem resistant strain of Acinetobacter baumannii to determine the in vitro activity of this silver salt against a World Health Organisation designated category I critical pathogen. Furthermore, we use the Galleria mellonella larvae model to assess toxicity of the compound and its efficacy in treating infections in a live host. Results We found that silver acetate can be delivered safely to Galleria at medically relevant and antimicrobial levels without detriment to the larvae and that administration of silver acetate to an infection model significantly improved survival. This demonstrates the selective toxicity of silver acetate for bacterial pathogens but also highlights the need for administration of well-defined doses of the antimicrobial to provide an efficacious treatment.
Collapse
Affiliation(s)
- Eden Mannix-Fisher
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Samantha McLean
- School of Science and Technology, Nottingham Trent University, Nottingham, UK
| |
Collapse
|
16
|
Chen CL, Dudek A, Liang YH, Janapatla RP, Lee HY, Hsu L, Kuo HY, Chiu CH. d-mannose-sensitive pilus of Acinetobacter baumannii is linked to biofilm formation and adherence onto respiratory tract epithelial cells. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2021; 55:69-79. [PMID: 33610507 DOI: 10.1016/j.jmii.2021.01.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND/PURPOSE Acinetobacter baumannii is an important nosocomial pathogen. To better understand the role of CsuA/BABCDE pilus of A. baumannii in virulence, bacterial biofilm formation, adherence and carbohydrate-mediated inhibition were conducted. METHODS CsuA/BABCDE pilus-producing (abbreviated Csu pilus) operon of A. baumannii ATCC17978 was cloned for analysis of biofilm formation on an abiotic plastic plate, bacterial adherence to respiratory epithelial human A549 cells and carbohydrate-mediated inhibition. The carbohydrates used for inhibition of biofilm formation and adherence to A549 cells included monosaccharides, pyranosides, and mannose-polymers. RESULTS The Csu pilus of A. baumannii ATCC17978 was cloned and expressed into a non-pilus-producing Escherichia coli JM109, and was knocked out as well. The recombinant Csu (rCsu) pilus on E. coli JM109/rCsu pilus-producing clone observed by both electro-microscopy and atomic force microscopy showed abundant, while Csu-knockout A. baumannii ATCC17978 mutant appeared less or no pilus production. The E. coli JM109/rCsu pilus-producing clone significantly increased biofilm formation and adherence to A549 cells; however, the Csu-knockout mutant dramatically lost biofilm-making ability but, in contrast, increased adherence. Moreover, both of biofilm formation and adherence could be significantly inhibited by d-mannose and methyl-α-d-mannopyranoside in Csu pilus-producing E. coli JM109, whereas in A. baumannii ATCC17978, high concentration of carbohydrates was required for the inhibition, suggesting that Csu pilus is sensitive to d-mannose. CONCLUSION This is the first study confirming that Csu pilus of A. baumannii belongs to mannose-sensitive type 1 pilus family and contributes to biofilm formation and bacterial adherence to human epithelial cells.
Collapse
Affiliation(s)
- Chyi-Liang Chen
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Anna Dudek
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Yi-Hua Liang
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Hao-Yuan Lee
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan; Department of Pediatrics, Wei Gong Memorial Hospital, Miaoli, Taiwan; School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei, Taiwan
| | - Long Hsu
- Department of Electrophysics, National Chiao Tung University, Hsinchu, Taiwan
| | - Han-Yueh Kuo
- Division of Infectious Disease, Department of Internal Medicine, National Taiwan University Hospital, Hsinchu Branch, Hsinchu, Taiwan
| | - Cheng-Hsun Chiu
- Molecular Infectious Disease Research Center, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Taoyuan, Taiwan.
| |
Collapse
|
17
|
Boone RL, Whitehead B, Avery TM, Lu J, Francis JD, Guevara MA, Moore RE, Chambers SA, Doster RS, Manning SD, Townsend SD, Dent L, Marshall D, Gaddy JA, Damo SM. Analysis of virulence phenotypes and antibiotic resistance in clinical strains of Acinetobacter baumannii isolated in Nashville, Tennessee. BMC Microbiol 2021; 21:21. [PMID: 33422000 PMCID: PMC7796680 DOI: 10.1186/s12866-020-02082-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Accepted: 12/27/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii is a gram-negative bacterium which causes opportunistic infections in immunocompromised hosts. Genome plasticity has given rise to a wide range of strain variation with respect to antimicrobial resistance profiles and expression of virulence factors which lead to altered phenotypes associated with pathogenesis. The purpose of this study was to analyze clinical strains of A. baumannii for phenotypic variation that might correlate with virulence phenotypes, antimicrobial resistance patterns, or strain isolation source. We hypothesized that individual strain virulence phenotypes might be associated with anatomical site of isolation or alterations in susceptibility to antimicrobial interventions. METHODOLOGY A cohort of 17 clinical isolates of A. baumannii isolated from diverse anatomical sites were evaluated to ascertain phenotypic patterns including biofilm formation, hemolysis, motility, and antimicrobial resistance. Antibiotic susceptibility/resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin was determined. RESULTS Antibiotic resistance was prevalent in many strains including resistance to ampicillin-sulbactam, amikacin, ceftriaxone, ceftazidime, cefotaxime, ciprofloxacin, cefepime, gentamicin, levofloxacin, meropenem, piperacillin, trimethoprim-sulfamethoxazole, ticarcillin- K clavulanate, tetracyclin, and tobramycin. All strains tested induced hemolysis on agar plate detection assays. Wound-isolated strains of A. baumannii exhibited higher motility than strains isolated from blood, urine or Foley catheter, or sputum/bronchial wash. A. baumannii strains isolated from patient blood samples formed significantly more biofilm than isolates from wounds, sputum or bronchial wash samples. An inverse relationship between motility and biofilm formation was observed in the cohort of 17 clinical isolates of A. baumannii tested in this study. Motility was also inversely correlated with induction of hemolysis. An inverse correlation was observed between hemolysis and resistance to ticarcillin-k clavulanate, meropenem, and piperacillin. An inverse correlation was also observed between motility and resistance to ampicillin-sulbactam, ceftriaxone, ceftoxamine, ceftazidime, ciprofloxacin, or levofloxacin. CONCLUSIONS Strain dependent variations in biofilm and motility are associated with anatomical site of isolation. Biofilm and hemolysis production both have an inverse association with motility in the cohort of strains utilized in this study, and motility and hemolysis were inversely correlated with resistance to numerous antibiotics.
Collapse
Affiliation(s)
- Ranashia L Boone
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA
| | - Briana Whitehead
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA
| | - Tyra M Avery
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA
| | - Jacky Lu
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Jamisha D Francis
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Miriam A Guevara
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Rebecca E Moore
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA
| | | | - Ryan S Doster
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, A2200 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA
| | - Shannon D Manning
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | | | - Leon Dent
- Department of Pathology, Anatomy, and Physiology, Meharry Medical College, Nashville, TN, USA
- Trauma Services, Phoebe Putney Memorial Hospital, Albany, GA, USA
| | - Dana Marshall
- Department of Pathology, Anatomy, and Physiology, Meharry Medical College, Nashville, TN, USA
| | - Jennifer A Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Department of Medicine, Division of Infectious Diseases, Vanderbilt University Medical Center, A2200 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232, USA.
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, TN, USA.
| | - Steven M Damo
- Department of Life and Physical Sciences, Fisk University, Talley-Brady Hall, 1000 17th Ave. N, Nashville, TN, 37208, USA.
- Department of Biochemistry, Vanderbilt University, Nashville, TN, USA.
- Center for Structural Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
18
|
Ušjak D, Dinić M, Novović K, Ivković B, Filipović N, Stevanović M, Milenković MT. Methoxy-Substituted Hydroxychalcone Reduces Biofilm Production, Adhesion and Surface Motility of Acinetobacter baumannii by Inhibiting ompA Gene Expression. Chem Biodivers 2020; 18:e2000786. [PMID: 33188577 DOI: 10.1002/cbdv.202000786] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022]
Abstract
An increasing lack of available therapeutic options against Acinetobacter baumannii urged researchers to seek alternative ways to fight this extremely resistant nosocomial pathogen. Targeting its virulence appears to be a promising strategy, as it offers considerably reduced selection of resistant mutants. In this study, we tested antibiofilm potential of four synthetic chalcone derivatives against A. baumannii. Compound that showed the greatest activity was selected for further evaluation of its antivirulence properties. Real-time PCR was used to evaluate mRNA expression of biofilm-associated virulence factor genes (ompA, bap, abaI) in treated A. baumannii strains. Also, we examined virulence properties related to the expression of these genes, such as fibronectin- and collagen-mediated adhesion, surface motility, and quorum-sensing activity. The results revealed that the expression of all tested genes is downregulated together with the reduction of adhesion and motility. The conclusion is that 2'-hydroxy-2-methoxychalcone exhibits antivirulence activity against A. baumannii by inhibiting the expression of ompA and bap genes, which is reflected in reduced biofilm formation, adhesion, and surface motility.
Collapse
Affiliation(s)
- Dušan Ušjak
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Miroslav Dinić
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, 11010, Belgrade, Serbia
| | - Katarina Novović
- Laboratory for Molecular Microbiology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444/a, 11010, Belgrade, Serbia
| | - Branka Ivković
- Department of Pharmaceutical Chemistry, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| | - Nenad Filipović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| | - Magdalena Stevanović
- Institute of Technical Sciences of the Serbian Academy of Sciences and Arts, Knez Mihailova 35/IV, 11000, Belgrade, Serbia
| | - Marina T Milenković
- Department of Microbiology and Immunology, University of Belgrade - Faculty of Pharmacy, Vojvode Stepe 450, 11221, Belgrade, Serbia
| |
Collapse
|
19
|
Evaluation of non-traditional visualization methods to detect surface attachment of biofilms. Colloids Surf B Biointerfaces 2020; 196:111320. [PMID: 32956995 DOI: 10.1016/j.colsurfb.2020.111320] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 11/24/2022]
Abstract
In food safety and food quality, biofilm research is of great importance for mitigating food-borne pathogens in food processing environments. To supplement the traditional staining techniques for biofilm characterization, we introduce several non-traditional imaging methods for detecting biofilm attachment to the solid-liquid and air-liquid interfaces. For strains of Pseudomonas aeruginosa (the positive control), Acinetobacter baumanii, Listeria monocytogenes and Salmonella enterica, the traditional crystal violet assay showed evidence of biofilm attachment to the well plate base as well as inferred the presence of an air-liquid biofilm attached on the upper well walls where the meniscus was present. However, air-liquid biofilms and solid-surface-attached biofilms were not detected for all of these strains using the non-traditional imaging methods. For L. monocytogenes, we were unable to detect biofilms at a particle-laden, air-liquid interface as evidenced through microscopy, which contradicts the meniscus staining test and suggests that the coffee-ring effect may lead to false positives when using meniscus staining. Furthermore, when L. monocytogenes was cultivated in a pendant droplet in air, only microbial sediment at the droplet apex was observed without any apparent bacterial colonization of the droplet surface. All other strains showed clear evidence of air-liquid biofilms at the air-liquid interface of a pendant droplet. To non-invasively detect if and when air-liquid pellicles form in a well plate, we also present a novel in situ reflection assay that demonstrates the capacity to do this quantitatively.
Collapse
|
20
|
Liu W, Wu Z, Mao C, Guo G, Zeng Z, Fei Y, Wan S, Peng J, Wu J. Antimicrobial Peptide Cec4 Eradicates the Bacteria of Clinical Carbapenem-Resistant Acinetobacter baumannii Biofilm. Front Microbiol 2020; 11:1532. [PMID: 32849322 PMCID: PMC7431629 DOI: 10.3389/fmicb.2020.01532] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 06/12/2020] [Indexed: 11/25/2022] Open
Abstract
The drug resistance rate of Acinetobacter baumannii increases year on year, and the drugs available for the treatment of carbapenem-resistant A. baumannii (CRAB) infection are extremely limited. A. baumannii, which forms biofilms, protects itself by secreting substrates such as exopolysaccharides, allowing it to survive under adverse conditions and increasing drug resistance. Antimicrobial peptides are small molecular peptides with broad-spectrum antibacterial activity and immunomodulatory function. Previous studies have shown that the antimicrobial peptide Cec4 has a strong effect on A. baumannii, but the antibacterial and biofilm inhibition of this antimicrobial peptide on clinical carbapenem resistance A. baumannii is not thoroughly understood. In this study, it was indicated that most of the 200 strains of CRAB were susceptible to Cec4 with a MIC of 4 μg/ml. Cec4 has a strong inhibitory and eradication effect on the CRAB biofilm; the minimum biofilm inhibition concentration (MBIC) was 64–128 μg/ml, and the minimum biofilm eradication concentration (MBEC) was 256–512 μg/ml. It was observed that Cec4 disrupted the structure of the biofilm using scanning electron microscopy (SEM) and confocal laser scanning microscopy (CLSM). A comparative transcriptome analysis of the effects of the antimicrobial peptide Cec4 on CRAB biofilm, identified 185 differentially expressed genes, including membrane proteins, bacterial resistance genes, and pilus-related genes. The results show that multiple metabolic pathways, two-component regulation systems, quorum sensing, and antibiotic synthesis-related pathways in A. baumannii biofilms were affected after Cec4 treatment. In conclusion, Cec4 may represent a new choice for the prevention and treatment of clinical infections, and may also provide a theoretical basis for the development of antimicrobial peptide drugs.
Collapse
Affiliation(s)
- Weiwei Liu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhaoying Wu
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Chengju Mao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Guo Guo
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Zhu Zeng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Ying Fei
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Shan Wan
- The Center for Clinical Laboratories, The Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Jian Peng
- Immune Cells and Antibody Engineering Research Center of Guizhou Province, Guizhou Medical University, Guiyang, China.,Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, China.,The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| | - Jianwei Wu
- The Key and Characteristic Laboratory of Modern Pathogen Biology, Basic Medical College, Guizhou Medical University, Guiyang, China
| |
Collapse
|
21
|
A Cyclic-di-GMP signalling network regulates biofilm formation and surface associated motility of Acinetobacter baumannii 17978. Sci Rep 2020; 10:1991. [PMID: 32029764 PMCID: PMC7005169 DOI: 10.1038/s41598-020-58522-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/16/2020] [Indexed: 11/30/2022] Open
Abstract
Acinetobacter baumannii has emerged as an increasing multidrug-resistant threat in hospitals and a common opportunistic nosocomial pathogen worldwide. However, molecular details of the pathogenesis and physiology of this bacterium largely remain to be elucidated. Here we identify and characterize the c-di-GMP signalling network and assess its role in biofilm formation and surface associated motility. Bioinformatic analysis revealed eleven candidate genes for c-di-GMP metabolizing proteins (GGDEF/EAL domain proteins) in the genome of A. baumannii strain 17978. Enzymatic activity of the encoded proteins was assessed by molecular cloning and expression in the model organisms Salmonella typhimurium and Vibrio cholerae. Ten of the eleven GGDEF/EAL proteins altered the rdar morphotype of S. typhimurium and the rugose morphotype of V. cholerae. The over expression of three GGDEF proteins exerted a pronounced effect on colony formation of A. baumannii on Congo Red agar plates. Distinct panels of GGDEF/EAL proteins were found to alter biofilm formation and surface associated motility of A. baumannii upon over expression. The GGDEF protein A1S_3296 appeared as a major diguanylate cyclase regulating macro-colony formation, biofilm formation and the surface associated motility. AIS_3296 promotes Csu pili mediated biofilm formation. We conclude that a functional c-di-GMP signalling network in A. baumannii regulates biofilm formation and surface associated motility of this increasingly important opportunistic bacterial pathogen.
Collapse
|
22
|
Ramirez MS, Penwell WF, Traglia GM, Zimbler DL, Gaddy JA, Nikolaidis N, Arivett BA, Adams MD, Bonomo RA, Actis LA, Tolmasky ME. Identification of Potential Virulence Factors in the Model Strain Acinetobacter baumannii A118. Front Microbiol 2019; 10:1599. [PMID: 31396168 PMCID: PMC6663985 DOI: 10.3389/fmicb.2019.01599] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 06/26/2019] [Indexed: 11/13/2022] Open
Abstract
Acinetobacter baumannii A118, a strain isolated from the blood of an infected patient, is naturally competent and unlike most clinical strains, is susceptible to a variety of different antibiotics including those usually used for selection in genetic manipulations. These characteristics make strain A118 a convenient model for genetic studies of A. baumannii. To identify potential virulence factors, its complete genome was analyzed and compared to other A. baumannii genomes. A. baumannii A118 includes gene clusters coding for the acinetobactin and baumannoferrin iron acquisition systems. Iron-regulated expression of the BauA outer membrane receptor for ferric-acinetobactin complexes was confirmed as well as the utilization of acinetobactin. A. baumannii A118 also possesses the feoABC genes, which code for the main bacterial ferrous uptake system. The functionality of baumannoferrin was suggested by the ability of A. baumannii A118 culture supernatants to cross feed an indicator BauA-deficient strain plated on iron-limiting media. A. baumannii A118 behaved as non-motile but included the csuA/BABCDE chaperone-usher pilus assembly operon and produced biofilms on polystyrene and glass surfaces. While a known capsular polysaccharide (K) locus was identified, the outer core polysaccharide (OC) locus, which belongs to group B, showed differences with available sequences. Our results show that despite being susceptible to most antibiotics, strain A118 conserves known virulence-related traits enhancing its value as model to study A. baumannii pathogenicity.
Collapse
Affiliation(s)
- Maria S Ramirez
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University, Fullerton, Fullerton, CA, United States
| | - William F Penwell
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - German M Traglia
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas "José de San Martín", Buenos Aires, Argentina
| | - Daniel L Zimbler
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Jennifer A Gaddy
- Department of Microbiology, Miami University, Oxford, OH, United States.,Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Nikolas Nikolaidis
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University, Fullerton, Fullerton, CA, United States
| | - Brock A Arivett
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Mark D Adams
- Department of Genetics, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Robert A Bonomo
- Departments of Pharmacology and Molecular Biology and Microbiology, Louis Stokes Cleveland Veterans Affairs Medical Center, School of Medicine, Case Western Reserve University, Cleveland, OH, United States
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, OH, United States
| | - Marcelo E Tolmasky
- Department of Biological Science, Center for Applied Biotechnology Studies, California State University, Fullerton, Fullerton, CA, United States
| |
Collapse
|
23
|
Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol 2019; 9:3116. [PMID: 30671029 PMCID: PMC6331429 DOI: 10.3389/fmicb.2018.03116] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The A. baumannii strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread A. baumannii clones are not thoroughly explored. In this study we have investigated a set of cell surface-related features of A. baumannii IC I (n = 20) and IC II (n = 16) lineage strains, representing 30 distinct pulsed-field gel electrophoresis types in the collection of clinical isolates obtained in Lithuanian tertiary care hospitals. We show that A. baumannii IC II strains are non-motile, do not form pellicle and display distinct capsular polysaccharide profile compared with the IC I strains. Moreover, in contrast to the overall highly hydrophobic IC I strains, IC II strains showed a greater variation in cell surface hydrophobicity. Within the IC II lineage, hydrophilic strains demonstrated reduced ability to form biofilm and adhere to the abiotic surfaces, also possessed twofold thicker cell wall and exhibited higher resistance to desiccation. Furthermore, these strains showed increased adherence to the lung epithelial cells and were more virulent in nematode and mouse infection model compared with the hydrophobic IC II strains. According to the polymerase chain reaction-based locus-typing, the reduction in hydrophobicity of IC II strains was not capsule or lipooligosaccharide locus type-dependent. Hence, this study shows that the most widespread A. baumannii clonal lineages I and II markedly differ in the series of cell surface-related phenotypes including the considerable phenotypic diversification of IC II strains at the intra-lineage level. These findings suggest that the genotypically related A. baumannii strains might evolve the features which could provide an advantage at the specific conditions outside or within the host.
Collapse
Affiliation(s)
- Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Saulius Kulakauskas
- INRA, MICALIS Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
24
|
Ranin J, Šmitran A, Gajić I. Biofilm production and twitching and swarming motility of clinical isolates Acinetobacter baumannii. MEDICINSKI PODMLADAK 2019. [DOI: 10.5937/mp70-17903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
25
|
Abstract
Bacteria belonging to genus Acinetobacter do not encode flagella and are characterized as a non-motile organism. However, several recent studies have demonstrated that Acinetobacter spp. display two types of motility: twitching and swarming. Twitching motility requires the presence of functional type IV pili and occurs on solid surfaces under humid conditions. The extension and the retraction of the pili allows the bacterium to move and spread. In contrast the exact molecular mechanism for swarming motility in Acinetobacter spp. is currently unknown; but it requires semisolid surfaces and humid conditions. Motility has been associated with the bacterial virulence; however, motility appears to be highly dependent on the experimental conditions and the isolate understudy. In this chapter we attempt to provide detailed methods for twitching and swarming motilities that are specific for Acinetobacter spp.
Collapse
|
26
|
Reichler SJ, Trmčić A, Martin NH, Boor KJ, Wiedmann M. Pseudomonas fluorescens group bacterial strains are responsible for repeat and sporadic postpasteurization contamination and reduced fluid milk shelf life. J Dairy Sci 2018; 101:7780-7800. [PMID: 29960782 DOI: 10.3168/jds.2018-14438] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 05/11/2018] [Indexed: 01/18/2023]
Abstract
Postpasteurization contamination (PPC) of high temperature, short time-pasteurized fluid milk by gram-negative (GN) bacteria continues to be an issue for processors. To improve PPC control, a better understanding of PPC patterns in dairy processing facilities over time and across equipment is needed. We thus collected samples from 10 fluid milk processing facilities to (1) detect and characterize PPC patterns over time, (2) determine the efficacy of different media to detect PPC, and (3) characterize sensory defects associated with PPC. Specifically, we collected 280 samples of high temperature, short time-pasteurized milk representing different products (2%, skim, and chocolate) and different fillers over 4 samplings performed over 11 mo at each of the 10 facilities. Standard plate count (SPC) as well as total GN, coliform, and Enterobacteriaceae (EB) counts were performed upon receipt and after 7, 10, 14, 17, and 21 d of storage at 6°C. We used 16S rDNA sequencing to characterize representative bacterial isolates from (1) test days with SPC >20,000 cfu/mL and (2) all samples with presumptive GN, coliforms, or EB. Day-21 samples were also evaluated by a trained defect judging panel. By d 21, 226 samples had SPC >20,000 cfu/mL on at least 1 d of shelf life; GN bacteria were found in 132 of these 226 samples, indicating PPC. Crystal violet tetrazolium agar detected PPC with the greatest sensitivity. Spoilage due to PPC was predominantly associated with Pseudomonas (isolated from 101 of the 132 samples with PPC); coliforms and EB were found in 27 and 37 samples with spoilage due to PPC, respectively. Detection of Pseudomonas and Acinetobacter was associated with lower flavor scores; coagulated, fruity fermented, and unclean defects were more prevalent in d-21 samples with PPC. Repeat isolation of Pseudomonas fluorescens group strains with identical partial 16S rDNA sequence types was observed in 8 facilities. In several facilities, specific lines, products, or processing days were linked to repeat product contamination with Pseudomonas with identical sequence types. Our data show that PPC due to Pseudomonas remains a major challenge for fluid milk processors; the inability of coliform and EB tests to detect Pseudomonas may contribute to this. Our data also provide important initial insights into PPC patterns (e.g., line-specific contamination), supporting the importance of molecular subtyping methods for identification of PPC sources.
Collapse
Affiliation(s)
- S J Reichler
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - A Trmčić
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - N H Martin
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - K J Boor
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853
| | - M Wiedmann
- Milk Quality Improvement Program, Department of Food Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
27
|
Phenotypic and Genotypic Investigation of Biofilm Formation in Clinical and Environmental Isolates of Acinetobacter baumannii. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2018. [DOI: 10.5812/archcid.12914] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
28
|
Bardbari AM, Arabestani MR, Karami M, Keramat F, Aghazadeh H, Alikhani MY, Bagheri KP. Highly synergistic activity of melittin with imipenem and colistin in biofilm inhibition against multidrug-resistant strong biofilm producer strains of Acinetobacter baumannii. Eur J Clin Microbiol Infect Dis 2018; 37:443-454. [DOI: 10.1007/s10096-018-3189-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 01/08/2018] [Indexed: 01/10/2023]
|
29
|
Nicol M, Alexandre S, Luizet JB, Skogman M, Jouenne T, Salcedo SP, Dé E. Unsaturated Fatty Acids Affect Quorum Sensing Communication System and Inhibit Motility and Biofilm Formation of Acinetobacter baumannii. Int J Mol Sci 2018; 19:ijms19010214. [PMID: 29320462 PMCID: PMC5796163 DOI: 10.3390/ijms19010214] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/07/2018] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
The increasing threat of Acinetobacter baumannii as a nosocomial pathogen is mainly due to the occurrence of multidrug-resistant strains that are associated with the real problem of its eradication from hospital wards. The particular ability of this pathogen to form biofilms contributes to its persistence, increases antibiotic resistance, and promotes persistent/device-related infections. We previously demonstrated that virstatin, which is a small organic compound known to decrease virulence of Vibrio cholera via an inhibition of T4-pili expression, displayed very promising activity to prevent A. baumannii biofilm development. Here, we examined the antibiofilm activity of mono-unsaturated chain fatty acids, palmitoleic (PoA), and myristoleic (MoA) acids, presenting similar action on V. cholerae virulence. We demonstrated that PoA and MoA (at 0.02 mg/mL) were able to decrease A. baumannii ATCC 17978 biofilm formation up to 38% and 24%, respectively, presented a biofilm dispersing effect and drastically reduced motility. We highlighted that these fatty acids decreased the expression of the regulator abaR from the LuxIR-type quorum sensing (QS) communication system AbaIR and consequently reduced the N-acyl-homoserine lactone production (AHL). This effect can be countered by addition of exogenous AHLs. Besides, fatty acids may have additional non-targeted effects, independent from QS. Atomic force microscopy experiments probed indeed that PoA and MoA could also act on the initial adhesion process in modifying the material interface properties. Evaluation of fatty acids effect on 22 clinical isolates showed a strain-dependent antibiofilm activity, which was not correlated to hydrophobicity or pellicle formation ability of the tested strains, and suggested a real diversity in cell-to-cell communication systems involved in A. baumannii biofilm formation.
Collapse
Affiliation(s)
- Marion Nicol
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| | - Stéphane Alexandre
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| | - Jean-Baptiste Luizet
- Laboratory of Molecular Microbiology and Structural Biochemistry, University of Lyon, Centre National de la Recherche Scientifique, F-69367 Lyon, France.
| | - Malena Skogman
- Department of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5E, FI-00014 Helsinki, Finland.
| | - Thierry Jouenne
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| | - Suzana P Salcedo
- Laboratory of Molecular Microbiology and Structural Biochemistry, University of Lyon, Centre National de la Recherche Scientifique, F-69367 Lyon, France.
| | - Emmanuelle Dé
- Normandie University, Unirouen, 76000 Rouen, France.
- CNRS, UMR 6270, Polymers, Biopolymers, Surfaces Laboratory, F-76821 Mont-Saint-Aignan, France.
| |
Collapse
|
30
|
Aagesen AM, Phuvasate S, Su YC, Häse CC. Characterizing the Adherence Profiles of Virulent Vibrio parahaemolyticus Isolates. MICROBIAL ECOLOGY 2018; 75:152-162. [PMID: 28717834 DOI: 10.1007/s00248-017-1025-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 06/27/2017] [Indexed: 06/07/2023]
Abstract
The human pathogen Vibrio parahaemolyticus is a leading cause of seafood-borne illness in the USA, and infections with V. parahaemolyticus typically result from eating raw or undercooked oysters. V. parahaemolyticus has been shown to be highly resistant to oyster depuration, suggesting that the bacterium possesses specific mechanisms or factors for colonizing oysters and persisting during depuration. In this study, we characterized eight different V. parahaemolyticus strains for differences in resistance to oyster depuration, biofilm formation, and motility. While each strain exhibited distinct phenotypes in the various assays, we determined that biofilm formation on abiotic surfaces, such as glass or plastic, does not directly correlate with bacterial retention in oysters during depuration. However, we did observe that the motility phenotype of a strain appeared to be a better indicator for persistence in the oyster. Further studies examining the molecular mechanisms underlying the observed colonization differences by these and other V. parahaemolyticus strains may provide beneficial insights into what critical factors are required for proficient colonization of the Pacific oyster.
Collapse
Affiliation(s)
- Alisha M Aagesen
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA
| | - Sureerat Phuvasate
- Seafood Research and Education Center, Oregon State University, Astoria, OR, 97103, USA
| | - Yi-Cheng Su
- Seafood Research and Education Center, Oregon State University, Astoria, OR, 97103, USA
| | - Claudia C Häse
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
31
|
Gala VC, John NR, Bhagwat AM, Datar AG, Kharkar PS, Desai KB. Attenuation of quorum sensing-regulated behaviour by Tinospora cordifolia extract & identification of its active constituents. Indian J Med Res 2017; 144:92-103. [PMID: 27834332 PMCID: PMC5116906 DOI: 10.4103/0971-5916.193295] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Background & objectives: The pathogenicity of the nosocomial pathogens, Pseudomonas aeruginosa and Acinetobacter baumannii is regulated by their quorum sensing (QS) systems. The objective of the present study was to examine the effect of the cold ethyl acetate extract of Tinospora cordifolia stem on virulence and biofilm development in the wild type and clinical strains of P. aeruginosa and A. baumannii. The study was further aimed to identify the probable active constituents in the plant extract. Methods: P. aeruginosa virulence factors viz., LasA protease, LasB elastase and pyocyanin production were analyzed spectrophotometrically. Biofilm formation was studied using crystal violet staining-microtitre plate assay. The plant extract was fractionated using silica gel column chromatography and the most active fraction was derivatized using silylation and analyzed by gas chromatography-mass spectrometry (GC-MS). In silico testing of the molecules identified in GC-MS was performed, for binding to the P. aeruginosa LasI and LasR proteins, to predict the QS inhibitory molecules. Results: The plant extract inhibited three major virulence factors in P. aeruginosa; it exhibited enhanced biofilm formation in P. aeruginosa while decreased biofilm development in A. baumannii. The most active fraction obtained from column chromatography, exhibited suppression of virulence as well as biofilm in both the organisms. Docking scores were calculated for all the molecules identified in GC-MS, and high docking scores were obtained for 2,3,4-triacetyloxybutyl acetate, methyl 16-methyl heptadecanoate, 2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-ol, methyl hexadecanoate and 2-methoxy-4-vinyl phenol. Interpretation & conclusions: The compounds showing high docking scores could probably be the QS inhibitors. These molecules can be screened further for the development of new anti-infective drugs.
Collapse
Affiliation(s)
- Viraj C Gala
- Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Nithya R John
- Sunandan Divatia School of Science, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | | | - Ajit G Datar
- Shimadzu Analytical (India) Pvt. Ltd., Mumbai, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy & Technology Management, SVKM's Narsee Monjee Institute of Management Studies, Mumbai, India
| | - Krutika B Desai
- Department of Microbiology, SVKM's Mithibai College of Arts & Science & Amrutben Jivanlal College of Commerce & Economics, Mumbai, India
| |
Collapse
|
32
|
Li S, Li H, Qi T, Yan X, Wang B, Guan J, Li Y. Comparative transcriptomics analyses of the different growth states of multidrug-resistant Acinetobacter baumannii. Biomed Pharmacother 2016; 85:564-574. [PMID: 27916419 DOI: 10.1016/j.biopha.2016.11.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/03/2016] [Accepted: 11/14/2016] [Indexed: 11/30/2022] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii is an important bacterial pathogen commonly associated with hospital acquired infections. A. baumannii can remain viable and hence virulent in the environment for a long period of time due primarily to its ability to form biofilms. A total of 459 cases of MDR A. baumannii our hospital collected from March 2014 to March 2015 were examined in this study, and a representative isolate selected for high-throughput mRNA sequencing and comparison of gene expression profiles under the biofilm and exponential growth conditions. Our study found that the same bacteria indeed exhibited differential mRNA expression under different conditions. Compared to the rapidly growing bacteria, biofilm bacteria had 106 genes upregulated and 92 genes downregulated. Bioinformatics analyses suggested that many of these genes are involved in the formation and maintenance of biofilms, whose expression also depends on the environment and specific signaling pathways and transcription factors that are absent in the log phase bacteria. These differentially expressed mRNAs might contribute to A. baumannii's unique pathogenicity and ability to inflict chronic and recurrent infections.
Collapse
Affiliation(s)
- Shuai Li
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua, Shijiazhuang, Hebei Province 050000, China
| | - Haitao Li
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua, Shijiazhuang, Hebei Province 050000, China
| | - Tianjie Qi
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua, Shijiazhuang, Hebei Province 050000, China
| | - Xixin Yan
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua, Shijiazhuang, Hebei Province 050000, China.
| | - Boli Wang
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua, Shijiazhuang, Hebei Province 050000, China
| | - Jitao Guan
- Department of Respiratory Medicine, The Second Hospital of Hebei Medical University, No. 215 Heping West Road, Xinhua, Shijiazhuang, Hebei Province 050000, China
| | - Yu Li
- Hebei Medical University, No. 48 Donggang Road, Yuhua, Shijiazhuang, Hebei 050000, China
| |
Collapse
|
33
|
Selasi GN, Nicholas A, Jeon H, Na SH, Kwon HI, Kim YJ, Heo ST, Oh MH, Lee JC. Differences in Biofilm Mass, Expression of Biofilm-Associated Genes, and Resistance to Desiccation between Epidemic and Sporadic Clones of Carbapenem-Resistant Acinetobacter baumannii Sequence Type 191. PLoS One 2016; 11:e0162576. [PMID: 27622249 PMCID: PMC5021322 DOI: 10.1371/journal.pone.0162576] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/24/2016] [Indexed: 11/18/2022] Open
Abstract
Understanding the biology behind the epidemicity and persistence of Acinetobacter baumannii in the hospital environment is critical to control outbreaks of infection. This study investigated the contributing factors to the epidemicity of carbapenem-resistant A. baumannii (CRAB) sequence type (ST) 191 by comparing the differences in biofilm formation, expression of biofilm-associated genes, and resistance to desiccation between major epidemic (n = 16), minor epidemic (n = 12), and sporadic (n = 12) clones. Biofilm mass was significantly greater in the major epidemic than the minor epidemic and sporadic clones. Major and minor epidemic clones expressed biofilm-associated genes, abaI, bap, pgaABCD, and csuA/BABCDE, higher than the sporadic clones in sessile conditions. The csuC, csuD, and csuE genes were more highly expressed in the major epidemic than minor epidemic clones. Interestingly, minor epidemic clones expressed more biofilm-associated genes than the major epidemic clone under planktonic conditions. Major epidemic clones were more resistant to desiccation than minor epidemic and sporadic clones on day 21. In conclusion, the epidemic CRAB ST191 clones exhibit a higher capacity to form biofilms, express the biofilm-associated genes under sessile conditions, and resist desiccation than sporadic clones. These phenotypic and genotypic characteristics of CRAB ST191 may account for the epidemicity of specific CRAB ST191 clones in the hospital.
Collapse
Affiliation(s)
- Gati Noble Selasi
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Asiimwe Nicholas
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyejin Jeon
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seok Hyeon Na
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Hyo Il Kwon
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Yoo Jeong Kim
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Sang Taek Heo
- Department of Internal Medicine, Jeju National University School of Medicine, Jeju, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, Republic of Korea
| | - Je Chul Lee
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
- * E-mail:
| |
Collapse
|
34
|
Greene C, Wu J, Rickard AH, Xi C. Evaluation of the ability of Acinetobacter baumannii to form biofilms on six different biomedical relevant surfaces. Lett Appl Microbiol 2016; 63:233-9. [PMID: 27479925 DOI: 10.1111/lam.12627] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Revised: 06/07/2016] [Accepted: 06/29/2016] [Indexed: 12/17/2022]
Abstract
UNLABELLED The human opportunistic pathogen, Acinetobacter baumannii, has the propensity to form biofilms and frequently cause medical device-related infections in hospitals. However, the physio-chemical properties of medical surfaces, in addition to bacterial surface properties, will affect colonization and biofilm development. The objective of this study was to compare the ability of A. baumannii to form biofilms on six different materials common to the hospital environment: glass, porcelain, stainless steel, rubber, polycarbonate plastic and polypropylene plastic. Biofilms were developed on material coupons in a CDC biofilm reactor. Biofilms were visualized and quantified using fluorescent staining and imaged using confocal laser scanning microscopy (CLSM) and by direct viable cell counts. Image analysis of CLSM stacks indicated that the mean biomass values for biofilms grown on glass, rubber, porcelain, polypropylene, stainless steel and polycarbonate were 0·04, 0·26, 0·62, 1·00, 2·08 and 2·70 μm(3) /μm(2) respectively. Polycarbonate developed statistically more biofilm mass than glass, rubber, porcelain and polypropylene. Viable cell counts data were in agreement with the CLSM-derived data. In conclusion, polycarbonate was the most accommodating surface for A. baumannii ATCC 17978 to form biofilms while glass was least favourable. Alternatives to polycarbonate for use in medical and dental devices may need to be considered. SIGNIFICANCE AND IMPACT OF THE STUDY In the hospital environment, Acinetobacter baumannii is one of the most persistent and difficult to control opportunistic pathogens. The persistence of A. baumannii is due, in part, to its ability to colonize surfaces and form biofilms. This study demonstrates that A. baumannii can form biofilms on a variety of different surfaces and develops substantial biofilms on polycarbonate - a thermoplastic material that is often used in the construction of medical devices. The findings highlight the need to further study the in vitro compatibility of medical materials that could be colonized by A. baumannii and allow it to persist in hospital settings.
Collapse
Affiliation(s)
- C Greene
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA
| | - J Wu
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA
| | - A H Rickard
- Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - C Xi
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
35
|
Biofilm may not be Necessary for the Epidemic Spread of Acinetobacter baumannii. Sci Rep 2016; 6:32066. [PMID: 27558010 PMCID: PMC4997352 DOI: 10.1038/srep32066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/27/2016] [Indexed: 01/28/2023] Open
Abstract
Biofilm is recognized as a contributing factor to the capacity of Acinetobacter baumannii to persist and prosper in medical settings, but it is still unknown whether biofilms contribute to the spread of A. baumannii. In this study, the biofilm formation of 114 clinical A. baumannii isolates and 32 non-baumannii Acinetobacter isolates was investigated using a microtiter plate assay. The clonal relationships among A. baumannii isolates were assessed using pulsed-field gel electrophoresis and multilocus sequence typing, and one major outbreak clone and 5 other epidemic clones were identified. Compared with the epidemic or outbreak A. baumannii isolates, the sporadic isolates had significantly higher biofilm formation, but no significant difference was observed between the sporadic A. baumannii isolates and the non-baumannii Acinetobacter isolates, suggesting that biofilm is not important for the epidemic spread of A. baumannii. Of the multidrug-resistant (MDR) A. baumannii isolates in this study, 95.7% were assigned to international clone 2 (IC2) and showed significantly lower biofilm formations than the other isolates, suggesting that biofilm did not contribute to the high success of IC2. These findings have increased our understanding of the potential relationship between biofilm formation and the epidemic capacity of A. baumannii.
Collapse
|
36
|
Greene C, Vadlamudi G, Newton D, Foxman B, Xi C. The influence of biofilm formation and multidrug resistance on environmental survival of clinical and environmental isolates of Acinetobacter baumannii. Am J Infect Control 2016; 44:e65-71. [PMID: 26851196 PMCID: PMC6993530 DOI: 10.1016/j.ajic.2015.12.012] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 12/06/2015] [Accepted: 12/08/2015] [Indexed: 02/01/2023]
Abstract
BACKGROUND Acinetobacter baumannii is a gram-negative, opportunistic pathogen. Its ability to form biofilm and increasing resistance to antibiotic agents present challenges for infection control. A better understanding of the influence of biofilm formation and antibiotic resistance on environmental persistence of A baumannii in hospital settings is needed for more effective infection control. METHODS A baumannii strains isolated from patients and the hospital environment were identified via Matrix Assisted Laser Desorption Ionization Time-of-Flight (MALDI-TOF) mass spectrometry (Bruker Daltonics, Bellerica, MA), repetitive extragenic palindromic polymerase chain reaction genotyped, and antibiotic resistance was determined using Vitek 2 (bioMérieux, Inc, Durham NC). Biofilm mass was quantified via microtiter plate method and desiccation tolerance determined up to 56 days. RESULTS High biofilm forming, clinical, multidrug-resistant- (MDR) positive strains were 50% less likely to die of desiccation than low biofilm, non-MDR strains. In contrast, environmental, MDR-positive, low biofilm forming strains had a 2.7 times increase in risk of cell death due to desiccation compared with their MDR-negative counterparts. MDR-negative, high biofilm forming environmental strains had a 60% decrease in risk compared with their low biofilm forming counterparts. CONCLUSION The MDR-positive phenotype was deleterious for environmental strains and the high biofilm phenotype was critical for survival. This study provides evidence of the trade-off between antibiotic resistance and desiccation tolerance, driven by condition-dependent adaptation, and establishes rationale for research into the genetic basis of the variation in fitness cost between clinical and environmental isolates.
Collapse
Affiliation(s)
- Christine Greene
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI
| | - Gayathri Vadlamudi
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI
| | - Duane Newton
- Department of Epidemiology, University of Michigan, Ann Arbor, MI; Department of Pathology, University of Michigan, Ann Arbor, MI
| | - Betsy Foxman
- Department of Epidemiology, University of Michigan, Ann Arbor, MI
| | - Chuanwu Xi
- Department of Environmental Health and Science, University of Michigan, Ann Arbor, MI.
| |
Collapse
|
37
|
Dahdouh E, Orgaz B, Gómez-Gil R, Mingorance J, Daoud Z, Suarez M, San Jose C. Patterns of biofilm structure and formation kinetics among Acinetobacter baumannii clinical isolates with different antibiotic resistance profiles. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00377f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study evaluates the rates of biofilm formation in light of the different characteristics of twelve A. baumannii clinical isolates.
Collapse
Affiliation(s)
- E. Dahdouh
- Faculty of Veterinary
- Department of Animal Health
- University Complutense of Madrid
- Madrid
- Spain
| | - B. Orgaz
- Faculty of Veterinary
- Department of Food Science and Technology
- University Complutense of Madrid
- Madrid
- Spain
| | - R. Gómez-Gil
- Servicio de Microbiología
- Hospital Universitario La Paz
- IdiPAZ
- Madrid
- Spain
| | - J. Mingorance
- Servicio de Microbiología
- Hospital Universitario La Paz
- IdiPAZ
- Madrid
- Spain
| | - Z. Daoud
- Faculty of Medicine and Medical Sciences
- Department of Clinical Microbiology
- University of Balamand
- Amioun
- Lebanon
| | - M. Suarez
- Faculty of Veterinary
- Department of Animal Health
- University Complutense of Madrid
- Madrid
- Spain
| | - C. San Jose
- Faculty of Veterinary
- Department of Food Science and Technology
- University Complutense of Madrid
- Madrid
- Spain
| |
Collapse
|
38
|
Ramírez MS, Müller GL, Pérez JF, Golic AE, Mussi MA. More Than Just Light: Clinical Relevance of Light Perception in the Nosocomial PathogenAcinetobacter baumanniiand Other Members of the GenusAcinetobacter. Photochem Photobiol 2015; 91:1291-301. [DOI: 10.1111/php.12523] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/21/2015] [Indexed: 12/31/2022]
Affiliation(s)
- María Soledad Ramírez
- Facultad de Ciencias Médicas; Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM-CONICET); Universidad de Buenos Aires; Buenos Aires Argentina
- Department of Biological Science; Center for Applied Biotechnology Studies; California State University Fullerton; Fullerton CA
| | - Gabriela Leticia Müller
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| | - Jorgelina Fernanda Pérez
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
| | | | - María Alejandra Mussi
- Facultad de Ciencias Bioquímicas y Farmacéuticas; Universidad Nacional de Rosario; Rosario Argentina
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Rosario Argentina
| |
Collapse
|
39
|
A novel method of consensus pan-chromosome assembly and large-scale comparative analysis reveal the highly flexible pan-genome of Acinetobacter baumannii. Genome Biol 2015. [PMID: 26195261 PMCID: PMC4507327 DOI: 10.1186/s13059-015-0701-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background Infections by pan-drug resistant Acinetobacter baumannii plague military and civilian healthcare systems. Previous A. baumannii pan-genomic studies used modest sample sizes of low diversity and comparisons to a single reference genome, limiting our understanding of gene order and content. A consensus representation of multiple genomes will provide a better framework for comparison. A large-scale comparative study will identify genomic determinants associated with their diversity and adaptation as a successful pathogen. Results We determine draft-level genomic sequence of 50 diverse military isolates and conduct the largest bacterial pan-genome analysis of 249 genomes. The pan-genome of A. baumannii is open when the input genomes are normalized for diversity with 1867 core proteins and a paralog-collapsed pan-genome size of 11,694 proteins. We developed a novel graph-based algorithm and use it to assemble the first consensus pan-chromosome, identifying both the order and orientation of core genes and flexible genomic regions. Comparative genome analyses demonstrate the existence of novel resistance islands and isolates with increased numbers of resistance island insertions over time, from single insertions in the 1950s to triple insertions in 2011. Gene clusters responsible for carbon utilization, siderophore production, and pilus assembly demonstrate frequent gain or loss among isolates. Conclusions The highly variable and dynamic nature of the A. baumannii genome may be the result of its success in rapidly adapting to both abiotic and biotic environments through the gain and loss of gene clusters controlling fitness. Importantly, some archaic adaptation mechanisms appear to have reemerged among recent isolates. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0701-6) contains supplementary material, which is available to authorized users.
Collapse
|
40
|
Giles SK, Stroeher UH, Eijkelkamp BA, Brown MH. Identification of genes essential for pellicle formation in Acinetobacter baumannii. BMC Microbiol 2015; 15:116. [PMID: 26047954 PMCID: PMC4457973 DOI: 10.1186/s12866-015-0440-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 05/11/2015] [Indexed: 12/11/2022] Open
Abstract
Background Acinetobacter baumannii is an opportunistic pathogen, which has the ability to persist in the clinical environment, causing acute and chronic infections. A possible mechanism contributing to survival of A. baumannii is its ability to form a biofilm-like structure at the air/liquid interface, known as a pellicle. This study aimed to identify and characterise the molecular mechanisms required for pellicle formation in A. baumannii and to assess a broad range of clinical A. baumannii strains for their ability to form these multicellular structures. Results Random transposon mutagenesis was undertaken on a previously identified hyper-motile variant of A. baumannii ATCC 17978 designated 17978hm. In total three genes critical for pellicle formation were identified; cpdA, a phosphodiesterase required for degradation of cyclic adenosine monophosphate (cAMP), and A1S_0112 and A1S_0115 which are involved in the production of a secondary metabolite. While motility of the A1S_0112::Tn and A1S_0115::Tn mutant strains was abolished, the cpdA::Tn mutant strain displayed a minor alteration in its motility pattern. Determination of cAMP levels in the cpdA::Tn strain revealed a ~24-fold increase in cellular cAMP, confirming the role CpdA plays in catabolising this secondary messenger molecule. Interestingly, transcriptional analysis of the cpdA::Tn strain showed significant down-regulation of the operon harboring the A1S_0112 and A1S_0115 genes, revealing a link between these three genes and pellicle formation. Examination of our collection of 54 clinical A. baumannii strains revealed that eight formed a measurable pellicle; all of these strains were motile. Conclusions This study shows that pellicle formation is a rare trait in A. baumannii and that a limited number of genes are essential for the expression of this phenotype. Additionally, an association between pellicle formation and motility was identified. The level of the signalling molecule cAMP was found to be controlled, in part, by the cpdA gene product, in addition to playing a critical role in pellicle formation, cellular hydrophobicity and motility. Furthermore, cAMP was identified as a novel regulator of the operon A1S_0112-0118. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0440-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarah K Giles
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, SA, Australia.
| | - Uwe H Stroeher
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, SA, Australia.
| | - Bart A Eijkelkamp
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, SA, Australia. .,Research Centre for Infectious Diseases, School of Biological Sciences University of Adelaide, Adelaide, Australia.
| | - Melissa H Brown
- School of Biological Sciences, Flinders University, GPO Box 2100, 5001, Adelaide, SA, Australia.
| |
Collapse
|
41
|
Biswas I. Genetic tools for manipulating Acinetobacter baumannii genome: an overview. J Med Microbiol 2015; 64:657-669. [PMID: 25948809 DOI: 10.1099/jmm.0.000081] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen involved in a variety of infections ranging from minor soft-tissue infections to more severe infections such as ventilator-associated pneumonia and bacteraemia. A. baumannii has become resistant to most of the commonly used antibiotics and multidrug-resistant isolates are becoming a severe problem in the healthcare setting. In the past few years, whole-genome sequences of >200 A. baumannii isolates have been generated. Several methods and molecular tools have been used for genetic manipulation of various Acinetobacter spp. Here, we review recent developments of various genetic tools used for modification of the A. baumannii genome, including various ways to inactivate gene function, chromosomal integration and transposon mutagenesis.
Collapse
Affiliation(s)
- Indranil Biswas
- Department of Microbiology, Molecular Genetics and Immunology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| |
Collapse
|
42
|
Sambanthamoorthy K, Hickman M, Pattabiraman N, Palys T, Wagar EJ. Modulating Acinetobacter baumannii biofilm development with molecules containing 3,4,5-trimethoxy-N,N',N'-trimethylbenzohydrazide moiety. Bioorg Med Chem Lett 2015; 25:2238-42. [PMID: 25881818 DOI: 10.1016/j.bmcl.2015.03.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 03/01/2015] [Accepted: 03/03/2015] [Indexed: 01/27/2023]
Abstract
In recent years, Acinetobacter baumannii has emerged as a major cause of nosocomial infections, including infections of implanted medical devices. The treatment of infections caused by A. baumannii has been severely hampered due to their frequent resistance to currently available antibiotics, and most importantly the ability of A. baumannii to form biofilms, which plays a significant role in both persistence and antibiotic resistance. The inherent resistance of A. baumannii biofilms to host defenses and antimicrobial agents necessitates the search for novel approaches to deter biofilm formation. Here, we report our findings on nine compounds identified from structure-activity relationship (SAR) studies on an antibiofilm compound LP3134 that was reported earlier by Biofouling2014, 30, 17. Compounds were evaluated for antibiofilm and anti-adherence activities against A. baumannii. The ability of the compounds to prevent biofilm development on urinary catheters was studied. Growth curve experiments indicated that compounds did not affect the planktonic growth of A. baumannii. All compounds inhibited A. baumannii biofilm development as well as impacting early adhesion on abiotic surfaces. Seven compounds were able to deter biofilm development on silicone catheters. Due to the continued rise of emerging multidrug-resistant A. baumannii, results from this study provide foundation for further development of these molecules to treat A. baumannii infections in wounds and medical devices.
Collapse
Affiliation(s)
- Karthik Sambanthamoorthy
- Wound Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA.
| | - Mark Hickman
- Division of Experimental Therapeutics, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | | | - Thomas Palys
- Wound Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Eric J Wagar
- Wound Infections, Bacterial Diseases Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| |
Collapse
|
43
|
Eijkelkamp BA, Stroeher UH, Hassan KA, Paulsen IT, Brown MH. Comparative analysis of surface-exposed virulence factors of Acinetobacter baumannii. BMC Genomics 2014; 15:1020. [PMID: 25422040 PMCID: PMC4256060 DOI: 10.1186/1471-2164-15-1020] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/14/2014] [Indexed: 01/19/2023] Open
Abstract
Background Acinetobacter baumannii is a significant hospital pathogen, particularly due to the dissemination of highly multidrug resistant isolates. Genome data have revealed that A. baumannii is highly genetically diverse, which correlates with major variations seen at the phenotypic level. Thus far, comparative genomic studies have been aimed at identifying resistance determinants in A. baumannii. In this study, we extend and expand on these analyses to gain greater insight into the virulence factors across eight A. baumannii strains which are clonally, temporally and geographically distinct, and includes an isolate considered non-pathogenic and a community-acquired A. baumannii. Results We have identified a large number of genes in the A. baumannii genomes that are known to play a role in virulence in other pathogens, such as the recently studied proline-alanine-alanine-arginine (PAAR)-repeat domains of the type VI secretion systems. Not surprising, many virulence candidates appear to be part of the A. baumannii core genome of virulent isolates but were often found to be insertionally disrupted in the avirulent A. baumannii strain SDF. Our study also reveals that many known or putative virulence determinants are restricted to specific clonal lineages, which suggests that these virulence determinants may be crucial for the success of these widespread common clones. It has previously been suggested that the high level of intrinsic and adaptive resistance has enabled the widespread presence of A. baumannii in the hospital environment. This appears to have facilitated the expansion of its repertoire of virulence traits, as in general, the nosocomial strains in this study possess more virulence genes compared to the community-acquired isolate. Conclusions Major genetic variation in known or putative virulence factors was seen across the eight strains included in this study, suggesting that virulence mechanisms are complex and multifaceted in A. baumannii. Overall, these analyses increase our understanding of A. baumannii pathogenicity and will assist in future studies determining the significance of virulence factors within clonal lineages and/or across the species. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1020) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Melissa H Brown
- School of Biological Sciences, Flinders University, Adelaide, Australia.
| |
Collapse
|
44
|
Nait Chabane Y, Marti S, Rihouey C, Alexandre S, Hardouin J, Lesouhaitier O, Vila J, Kaplan JB, Jouenne T, Dé E. Characterisation of pellicles formed by Acinetobacter baumannii at the air-liquid interface. PLoS One 2014; 9:e111660. [PMID: 25360550 PMCID: PMC4216135 DOI: 10.1371/journal.pone.0111660] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/25/2014] [Indexed: 11/18/2022] Open
Abstract
The clinical importance of Acinetobacter baumannii is partly due to its natural ability to survive in the hospital environment. This persistence may be explained by its capacity to form biofilms and, interestingly, A. baumannii can form pellicles at the air-liquid interface more readily than other less pathogenic Acinetobacter species. Pellicles from twenty-six strains were morphologically classified into three groups: I) egg-shaped (27%); II) ball-shaped (50%); and III) irregular pellicles (23%). One strain representative of each group was further analysed by Brewster’s Angle Microscopy to follow pellicle development, demonstrating that their formation did not require anchoring to a solid surface. Total carbohydrate analysis of the matrix showed three main components: Glucose, GlcNAc and Kdo. Dispersin B, an enzyme that hydrolyzes poly-N-acetylglucosamine (PNAG) polysaccharide, inhibited A. baumannii pellicle formation, suggesting that this exopolysaccharide contributes to pellicle formation. Also associated with the pellicle matrix were three subunits of pili assembled by chaperon-usher systems: the major CsuA/B, A1S_1510 (presented 45% of identity with the main pilin F17-A from enterotoxigenic Escherichia coli pili) and A1S_2091. The presence of both PNAG polysaccharide and pili systems in matrix of pellicles might contribute to the virulence of this emerging pathogen.
Collapse
Affiliation(s)
- Yassine Nait Chabane
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
| | - Sara Marti
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
- * E-mail: (SM); (ED)
| | - Christophe Rihouey
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
| | - Stéphane Alexandre
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
| | - Julie Hardouin
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
| | - Olivier Lesouhaitier
- Laboratory of “Microbiologie Signaux et Micro-Environnement” - Equipe d’Accueil 4312, University of Rouen, Evreux, France
| | - Jordi Vila
- Department of Microbiology, Hospital Clinic, Barcelona, Spain
| | - Jeffrey B. Kaplan
- Department of Biology, American University, Washington, District of Columbia, United States of America
| | - Thierry Jouenne
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
| | - Emmanuelle Dé
- Unité Mixte de Recherche 6270 CNRS - Laboratory “Polymères, Biopolymères, Surfaces”, University of Rouen, Mont-Saint-Aignan, France
- * E-mail: (SM); (ED)
| |
Collapse
|
45
|
Tiwari V, Tiwari M. Quantitative proteomics to study carbapenem resistance in Acinetobacter baumannii. Front Microbiol 2014; 5:512. [PMID: 25309531 PMCID: PMC4176082 DOI: 10.3389/fmicb.2014.00512] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 09/11/2014] [Indexed: 12/28/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen causing pneumonia, respiratory infections and urinary tract infections. The prevalence of this lethal pathogen increases gradually in the clinical setup where it can grow on artificial surfaces, utilize ethanol as a carbon source. Moreover it resists desiccation. Carbapenems, a β-lactam, are the most commonly prescribed drugs against A. baumannii. Resistance against carbapenem has emerged in Acinetobacter baumannii which can create significant health problems and is responsible for high morbidity and mortality. With the development of quantitative proteomics, a considerable progress has been made in the study of carbapenem resistance of Acinetobacter baumannii. Recent updates showed that quantitative proteomics has now emerged as an important tool to understand the carbapenem resistance mechanism in Acinetobacter baumannii. Present review also highlights the complementary nature of different quantitative proteomic methods used to study carbapenem resistance and suggests to combine multiple proteomic methods for understanding the response to antibiotics by Acinetobacter baumannii.
Collapse
Affiliation(s)
- Vishvanath Tiwari
- Department of Biochemistry, Central University of RajasthanAjmer, India
| | | |
Collapse
|
46
|
Gentile V, Frangipani E, Bonchi C, Minandri F, Runci F, Visca P. Iron and Acinetobacter baumannii Biofilm Formation. Pathogens 2014; 3:704-19. [PMID: 25438019 PMCID: PMC4243436 DOI: 10.3390/pathogens3030704] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/09/2014] [Accepted: 08/12/2014] [Indexed: 01/19/2023] Open
Abstract
Acinetobacter baumannii is an emerging nosocomial pathogen, responsible for infection outbreaks worldwide. The pathogenicity of this bacterium is mainly due to its multidrug-resistance and ability to form biofilm on abiotic surfaces, which facilitate long-term persistence in the hospital setting. Given the crucial role of iron in A. baumannii nutrition and pathogenicity, iron metabolism has been considered as a possible target for chelation-based antibacterial chemotherapy. In this study, we investigated the effect of iron restriction on A. baumannii growth and biofilm formation using different iron chelators and culture conditions. We report substantial inter-strain variability and growth medium-dependence for biofilm formation by A. baumannii isolates from veterinary and clinical sources. Neither planktonic nor biofilm growth of A. baumannii was affected by exogenous chelators. Biofilm formation was either stimulated by iron or not responsive to iron in the majority of isolates tested, indicating that iron starvation is not sensed as an overall biofilm-inducing stimulus by A. baumannii. The impressive iron withholding capacity of this bacterium should be taken into account for future development of chelation-based antimicrobial and anti-biofilm therapies.
Collapse
Affiliation(s)
- Valentina Gentile
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Emanuela Frangipani
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Carlo Bonchi
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Fabrizia Minandri
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Federica Runci
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| | - Paolo Visca
- Department of Sciences, Roma Tre University, Viale Marconi 446, 00146 Rome, Italy.
| |
Collapse
|
47
|
Nait Chabane Y, Mlouka MB, Alexandre S, Nicol M, Marti S, Pestel-Caron M, Vila J, Jouenne T, Dé E. Virstatin inhibits biofilm formation and motility of Acinetobacter baumannii. BMC Microbiol 2014; 14:62. [PMID: 24621315 PMCID: PMC4007623 DOI: 10.1186/1471-2180-14-62] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/25/2014] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Acinetobacter baumannii has emerged as an opportunistic nosocomial pathogen causing infections worldwide. One reason for this emergence is due to its natural ability to survive in the hospital environment, which may be explained by its capacity to form biofilms. Cell surface appendages are important determinants of the A. baumannii biofilm formation and as such constitute interesting targets to prevent the development of biofilm-related infections. A chemical agent called virstatin was recently described to impair the virulence of Vibrio cholerae by preventing the expression of its virulence factor, the toxin coregulated pilus (type IV pilus). The objective of this work was to investigate the potential effect of virstatin on A. baumannii biofilms. RESULTS After a dose-response experiment, we determined that 100 μM virstatin led to an important decrease (38%) of biofilms formed by A. baumannii ATCC17978 grown under static mode. We demonstrated that the production of biofilms grown under dynamic mode was also delayed and reduced. The biofilm susceptibility to virstatin was then tested for 40 clinical and reference A. baumannii strains. 70% of the strains were susceptible to virstatin (with a decrease of 10 to 65%) when biofilms grew in static mode, whereas 60% of strains respond to the treatment when their biofilms grew in dynamic mode. As expected, motility and atomic force microscopy experiments showed that virstatin acts on the A. baumannii pili biogenesis. CONCLUSIONS By its action on pili biogenesis, virstatin demonstrated a very promising antibiofilm activity affecting more than 70% of the A. baumannii clinical isolates.
Collapse
|
48
|
Brust R, Haigney A, Lukacs A, Gil A, Hossain S, Addison K, Lai CT, Towrie M, Greetham G, Clark IP, Illarionov B, Bacher A, Kim RR, Fischer M, Simmerling C, Meech SR, Tonge PJ. Ultrafast Structural Dynamics of BlsA, a Photoreceptor from the Pathogenic Bacterium Acinetobacter baumannii. J Phys Chem Lett 2014; 5:220-224. [PMID: 24723998 PMCID: PMC3977573 DOI: 10.1021/jz4023738] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 12/06/2013] [Indexed: 06/03/2023]
Abstract
Acinetobacter baumannii is an important human pathogen that can form biofilms and persist under harsh environmental conditions. Biofilm formation and virulence are modulated by blue light, which is thought to be regulated by a BLUF protein, BlsA. To understand the molecular mechanism of light sensing, we have used steady-state and ultrafast vibrational spectroscopy to compare the photoactivation mechanism of BlsA to the BLUF photosensor AppA from Rhodobacter sphaeroides. Although similar photocycles are observed, vibrational data together with homology modeling identify significant differences in the β5 strand in BlsA caused by photoactivation, which are proposed to be directly linked to downstream signaling.
Collapse
Affiliation(s)
- Richard Brust
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Allison Haigney
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Andras Lukacs
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
- Department
of Biophysics, Medical School, University
of Pecs, Pecs, Hungary
| | - Agnieszka Gil
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Shahrier Hossain
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Kiri Addison
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Cheng-Tsung Lai
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Michael Towrie
- Central Laser
Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Gregory
M. Greetham
- Central Laser
Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Ian P. Clark
- Central Laser
Facility, Research Complex at Harwell, Harwell Science and Innovation Campus, Didcot, Oxon OX11 0QX, United Kingdom
| | - Boris Illarionov
- Institut für
Biochemie und Lebensmittelchemie, Universität
Hamburg, Grindelallee
117, D-20146 Hamburg, Germany
| | - Adelbert Bacher
- Institut für
Biochemie und Lebensmittelchemie, Universität
Hamburg, Grindelallee
117, D-20146 Hamburg, Germany
| | - Ryu-Ryun Kim
- Institut für
Biochemie und Lebensmittelchemie, Universität
Hamburg, Grindelallee
117, D-20146 Hamburg, Germany
| | - Markus Fischer
- Institut für
Biochemie und Lebensmittelchemie, Universität
Hamburg, Grindelallee
117, D-20146 Hamburg, Germany
| | - Carlos Simmerling
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Stephen R. Meech
- School
of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | - Peter J. Tonge
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
49
|
Rumbo-Feal S, Gómez MJ, Gayoso C, Álvarez-Fraga L, Cabral MP, Aransay AM, Rodríguez-Ezpeleta N, Fullaondo A, Valle J, Tomás M, Bou G, Poza M. Whole transcriptome analysis of Acinetobacter baumannii assessed by RNA-sequencing reveals different mRNA expression profiles in biofilm compared to planktonic cells. PLoS One 2013; 8:e72968. [PMID: 24023660 PMCID: PMC3758355 DOI: 10.1371/journal.pone.0072968] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/15/2013] [Indexed: 11/18/2022] Open
Abstract
Acinetobacterbaumannii has emerged as a dangerous opportunistic pathogen, with many strains able to form biofilms and thus cause persistent infections. The aim of the present study was to use high-throughput sequencing techniques to establish complete transcriptome profiles of planktonic (free-living) and sessile (biofilm) forms of A. baumannii ATCC 17978 and thereby identify differences in their gene expression patterns. Collections of mRNA from planktonic (both exponential and stationary phase cultures) and sessile (biofilm) cells were sequenced. Six mRNA libraries were prepared following the mRNA-Seq protocols from Illumina. Reads were obtained in a HiScanSQ platform and mapped against the complete genome to describe the complete mRNA transcriptomes of planktonic and sessile cells. The results showed that the gene expression pattern of A. baumannii biofilm cells was distinct from that of planktonic cells, including 1621 genes over-expressed in biofilms relative to stationary phase cells and 55 genes expressed only in biofilms. These differences suggested important changes in amino acid and fatty acid metabolism, motility, active transport, DNA-methylation, iron acquisition, transcriptional regulation, and quorum sensing, among other processes. Disruption or deletion of five of these genes caused a significant decrease in biofilm formation ability in the corresponding mutant strains. Among the genes over-expressed in biofilm cells were those in an operon involved in quorum sensing. One of them, encoding an acyl carrier protein, was shown to be involved in biofilm formation as demonstrated by the significant decrease in biofilm formation by the corresponding knockout strain. The present work serves as a basis for future studies examining the complex network systems that regulate bacterial biofilm formation and maintenance.
Collapse
Affiliation(s)
- Soraya Rumbo-Feal
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Manuel J. Gómez
- Department of Molecular Evolution, Center for Astrobiology, INTA-CSIC, Madrid, Spain
| | - Carmen Gayoso
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Laura Álvarez-Fraga
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - María P. Cabral
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Ana M. Aransay
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Derio, Spain
| | - Naiara Rodríguez-Ezpeleta
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Derio, Spain
- Marine Research Division, AZTI, Tecnalia, Sukarrieta, Spain
| | - Ane Fullaondo
- Genome Analysis Platform, CIC bioGUNE & CIBERehd, Derio, Spain
| | - Jaione Valle
- Department of Microbial biofilms, Agrobiotechnology Institute, Navarra, Spain
| | - María Tomás
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
| | - Germán Bou
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
- * E-mail: (MP); (GB)
| | - Margarita Poza
- Department of Microbiology, Biomedical Research Institute, University Hospital, A Coruña, Spain
- * E-mail: (MP); (GB)
| |
Collapse
|
50
|
Feng SH, Stojadinovic A, Izadjoo M. Distinctive stages and strain variations of A. baumannii biofilm development under shear flow. J Wound Care 2013; 22:173-4, 176-8, 180-1. [PMID: 23702669 DOI: 10.12968/jowc.2013.22.4.173] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE To examine and characterise the process of Acinetocbacter baumannii biofilm development under shear flow. METHOD Using an automated flow-cell system with microfluidic channels connected to an imaging system, I 0 clinical wound isolates of A. baumannii were examined for their ability to form biofilms under shear flow, on the glass surface of the flow through device. Flow biofilm development by this organism was observed to comprise four stages: attachment, microcolony formation, maturation with three dimensional structures, and dispersion. RESULTS A. baumannii adheres readily to glass surfaces and quickly forms biofilm. Significant variations were observed among these I 0 clinical strains in their ability to attach and form flow biofilms. CONCLUSION These specific characteristics in biofilm formation may contribute to this organism's ability to disseminate within health-care environments.
Collapse
Affiliation(s)
- S H Feng
- Henry M. Jackson Foundation for theAdvancement of Military Medicine, Gaithersburg, MD, USA.
| | | | | |
Collapse
|