1
|
Saleem F, Li E, Edge TA, Tran KL, Schellhorn HE. Identification of potential microbial risk factors associated with fecal indicator exceedances at recreational beaches. ENVIRONMENTAL MICROBIOME 2024; 19:4. [PMID: 38225663 PMCID: PMC10790499 DOI: 10.1186/s40793-024-00547-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/02/2024] [Indexed: 01/17/2024]
Abstract
BACKGROUND Fecal bacterial densities are proxy indicators of beach water quality, and beach posting decisions are made based on Beach Action Value (BAV) exceedances for a beach. However, these traditional beach monitoring methods do not reflect the full extent of microbial water quality changes associated with BAV exceedances at recreational beaches (including harmful cyanobacteria). This proof of concept study evaluates the potential of metagenomics for comprehensively assessing bacterial community changes associated with BAV exceedances compared to non-exceedances for two urban beaches and their adjacent river water sources. RESULTS Compared to non-exceedance samples, BAV exceedance samples exhibited higher alpha diversity (diversity within the sample) that could be further differentiated into separate clusters (Beta-diversity). For Beach A, Cyanobacterial sequences (resolved as Microcystis and Pseudanabaena at genus level) were significantly more abundant in BAV non-exceedance samples. qPCR validation supported the Cyanobacterial abundance results from metagenomic analysis and also identified saxitoxin genes in 50% of the non-exceedance samples. Microcystis sp and saxitoxin gene sequences were more abundant on non-exceedance beach days (when fecal indicator data indicated the beach should be open for water recreational purposes). For BAV exceedance days, Fibrobacteres, Pseudomonas, Acinetobacter, and Clostridium sequences were significantly more abundant (and positively correlated with fecal indicator densities) for Beach A. For Beach B, Spirochaetes (resolved as Leptospira on genus level) Burkholderia and Vibrio sequences were significantly more abundant in BAV exceedance samples. Similar bacterial diversity and abundance trends were observed for river water sources compared to their associated beaches. Antibiotic Resistance Genes (ARGs) were also consistently detected at both beaches. However, we did not observe a significant difference or correlation in ARGs abundance between BAV exceedance and non-exceedance samples. CONCLUSION This study provides a more comprehensive analysis of bacterial community changes associated with BAV exceedances for recreational freshwater beaches. While there were increases in bacterial diversity and some taxa of potential human health concern associated with increased fecal indicator densities and BAV exceedances (e.g. Pseudomonas), metagenomics analyses also identified other taxa of potential human health concern (e.g. Microcystis) associated with lower fecal indicator densities and BAV non-exceedances days. This study can help develop more targeted beach monitoring strategies and beach-specific risk management approaches.
Collapse
Affiliation(s)
- Faizan Saleem
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Enze Li
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Thomas A Edge
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Kevin L Tran
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada
| | - Herb E Schellhorn
- Department of Biology, McMaster University, 1280 Main St W., Hamilton, ON, L8S 4L8, Canada.
| |
Collapse
|
2
|
Burakova I, Gryaznova M, Smirnova Y, Morozova P, Mikhalev V, Zimnikov V, Latsigina I, Shabunin S, Mikhailov E, Syromyatnikov M. Association of milk microbiome with bovine mastitis before and after antibiotic therapy. Vet World 2023; 16:2389-2402. [PMID: 38328355 PMCID: PMC10844787 DOI: 10.14202/vetworld.2023.2389-2402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 10/26/2023] [Indexed: 02/09/2024] Open
Abstract
Background and Aim Mastitis is recognized as the most common disease in cattle and causes economic losses in the dairy industry. A number of opportunistic bacterial taxa have been identified as causative agents for this disease. Conventionally, antibiotics are used to treat mastitis; however, most bacteria are resistant to the majority of antibiotics. This study aimed to use molecular methods to identify milk microbiome patterns characteristic of mastitis that can help in the early diagnosis of this disease and in the development of new treatment strategies. Materials and Methods To evaluate the microbiome composition, we performed NGS sequencing of the 16S rRNA gene of the V3 region. Results An increase in the abundance of the bacterial genera Hymenobacter and Lachnospiraceae NK4A136 group is associated with the development of subclinical and clinical mastitis in dairy cows. These bacteria can be added to the list of markers used to detect mastitis in cows. Furthermore, a decrease in the abundance of Ralstonia, Lachnospiraceae NK3A20 group, Acetitomaculum, Massilia, and Atopostipes in cows with mastitis may indicate their role in maintaining a healthy milk microbiome. Antibiotics reduced the levels of Streptococcus in milk compared to those in the healthy group and cows before antibiotic treatment. Antibiotic therapy also contributed to an increase in the abundance of beneficial bacteria of the genus Asticcacaulis. Conclusion This study expands our understanding of the association between milk microbiota and mastitis.
Collapse
Affiliation(s)
- Inna Burakova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Mariya Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Yuliya Smirnova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
| | - Polina Morozova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Vitaliy Mikhalev
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Vitaliy Zimnikov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Irina Latsigina
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Sergey Shabunin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Evgeny Mikhailov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| | - Mikhail Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia
| |
Collapse
|
3
|
St-Pierre B, Perez Palencia JY, Samuel RS. Impact of Early Weaning on Development of the Swine Gut Microbiome. Microorganisms 2023; 11:1753. [PMID: 37512925 PMCID: PMC10385335 DOI: 10.3390/microorganisms11071753] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
Considering that pigs are naturally weaned between 12 and 18 weeks of age, the common practice in the modern swine industry of weaning as early as between two and four weeks of age increases challenges during this transition period. Indeed, young pigs with an immature gut are suddenly separated from the sow, switched from milk to a diet consisting of only solid ingredients, and subjected to a new social hierarchy from mixing multiple litters. From the perspective of host gut development, weaning under these conditions causes a regression in histological structure as well as in digestive and barrier functions. While the gut is the main center of immunity in mature animals, the underdeveloped gut of early weaned pigs has yet to contribute to this function until seven weeks of age. The gut microbiota or microbiome, an essential contributor to the health and nutrition of their animal host, undergoes dramatic alterations during this transition, and this descriptive review aims to present a microbial ecology-based perspective on these events. Indeed, as gut microbial communities are dependent on cross-feeding relationships, the change in substrate availability triggers a cascade of succession events until a stable composition is reached. During this process, the gut microbiota is unstable and prone to dysbiosis, which can devolve into a diseased state. One potential strategy to accelerate maturation of the gut microbiome would be to identify microbial species that are critical to mature swine gut microbiomes, and develop strategies to facilitate their establishment in early post-weaning microbial communities.
Collapse
Affiliation(s)
- Benoit St-Pierre
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Jorge Yair Perez Palencia
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| | - Ryan S Samuel
- Department of Animal Science, South Dakota State University, Animal Science Complex, Box 2170, Brookings, SD 57007, USA
| |
Collapse
|
4
|
Wu R, Wang L, Xie J, Zhang Z. Diversity and Function of Wolf Spider Gut Microbiota Revealed by Shotgun Metagenomics. Front Microbiol 2021; 12:758794. [PMID: 34975785 PMCID: PMC8718803 DOI: 10.3389/fmicb.2021.758794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/23/2021] [Indexed: 11/29/2022] Open
Abstract
Wolf spiders (Lycosidae) are crucial component of integrated pest management programs and the characteristics of their gut microbiota are known to play important roles in improving fitness and survival of the host. However, there are only few studies of the gut microbiota among closely related species of wolf spider. Whether wolf spiders gut microbiota vary with habitats remains unknown. Here, we used shotgun metagenomic sequencing to compare the gut microbiota of two wolf spider species, Pardosa agraria and P. laura from farmland and woodland ecosystems, respectively. The results show that the gut microbiota of Pardosa spiders is similar in richness and abundance. Approximately 27.3% of the gut microbiota of P. agraria comprises Proteobacteria, and approximately 34.4% of the gut microbiota of P. laura comprises Firmicutes. We assembled microbial genomes and found that the gut microbiota of P. laura are enriched in genes for carbohydrate metabolism. In contrast, those of P. agraria showed a higher proportion of genes encoding acetyltransferase, an enzyme involved in resistance to antibiotics. We reconstructed three high-quality and species-level microbial genomes: Vulcaniibacterium thermophilum, Anoxybacillus flavithermus and an unknown bacterium belonging to the family Simkaniaceae. Our results contribute to an understanding of the diversity and function of gut microbiota in closely related spiders.
Collapse
Affiliation(s)
- Runbiao Wu
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Luyu Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Jianping Xie
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
| | - Zhisheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), School of Life Sciences, Southwest University, Chongqing, China
- *Correspondence: Zhisheng Zhang, , orcid.org/0000-0002-9304-1789
| |
Collapse
|
5
|
Luo X, Xiang X, Huang G, Song X, Wang P, Yang Y, Fu K, Che R. Bacterial community structure upstream and downstream of cascade dams along the Lancang River in southwestern China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:42933-42947. [PMID: 32725556 PMCID: PMC7603470 DOI: 10.1007/s11356-020-10159-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Extensive construction of dams by humans has caused alterations in flow regimes and concomitant alterations in river ecosystems. Even so, bacterioplankton diversity in large rivers influenced by cascade dams has been largely ignored. In this study, bacterial community diversity and profiles of seven cascade dams along the720 km of the Lancang River were studied using Illumina sequencing of the V3-V4 hypervariable region of the 16S rRNA gene. Spatiotemporal variations of bacterial communities in sediment and water of the Gongguoqiao hydroelectric dam and factors affecting these variations were also examined. Microbial diversity and richness in surface water increased slightly from upstream toward downstream along the river. A significant positive correlation between spatial distance and dissimilarities in bacterial community structure was confirmed (Mantel test, r = 0.4826, p = 0.001). At the Gongguoqiao hydroelectric dam, temporal differences in water overwhelmed spatial variability in bacterial communities. Temperature, precipitation, and nutrient levels were major drivers of seasonal microbial changes. Most functional groups associated with carbon cycling in sediment samples decreased from winter to summer. Our findings improve our understanding of associations, compositions, and predicted functional profiles of microbial communities in a large riverine ecosystem influenced by multiple cascade dams.
Collapse
Affiliation(s)
- Xia Luo
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China
| | - Xinyi Xiang
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China
| | - Guoyi Huang
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China
| | - Xiaorui Song
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China
| | - Peijia Wang
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China
| | - Yuanhao Yang
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China
| | - Kaidao Fu
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China.
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China.
| | - Rongxiao Che
- Institute of International Rivers and Eco-Security, Yunnan University, Chenggong University Town, Chenggong New District, Kunming, 650500, Yunnan Province, China.
- Yunnan Key Laboratory of International Rivers and Transboundary Eco-Security, Kunming, 650500, China.
| |
Collapse
|
6
|
Welch CB, Lourenco JM, Davis DB, Krause TR, Carmichael MN, Rothrock MJ, Pringle TD, Callaway TR. The impact of feed efficiency selection on the ruminal, cecal, and fecal microbiomes of Angus steers from a commercial feedlot. J Anim Sci 2020; 98:5873892. [PMID: 32687166 DOI: 10.1093/jas/skaa230] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 07/13/2020] [Indexed: 02/06/2023] Open
Abstract
Feed is the greatest cost of animal production, so reducing it is critical to increase producer profits. In ruminants, the microbial population within the gastrointestinal tract (GIT) is critical to nutrient digestion and absorption in both the rumen and the hindgut. The objective of this study was to determine the bacterial taxonomic profile of the rumen, cecum, and feces of feedlot steers at slaughter in order to link feed efficiency and the GIT bacterial populations from these three locations. Twenty commercial Angus steers were selected and divided into two groups according to their residual feed intake (RFI) classification determined during the feedlot-finishing period: high-RFI (n = 10) and low-RFI (n = 10). After the ruminal, cecal, and fecal samples were collected at slaughter, DNA extraction and 16S rRNA gene sequencing were performed on them to determine their bacterial composition. One-way ANOVA was performed on the animal performance data, alpha diversities, and bacterial abundances using RFI classification as the fixed effect. Overall, the ruminal bacterial population was the most different in terms of taxonomic profile compared with the cecal and fecal populations as revealed by beta diversity analysis (P < 0.001). Moreover, bacterial richness (Chao1) was greatest (P = 0.01) in the rumen of the high-RFI group compared with the low-RFI group. In contrast, bacterial richness and diversity in the intestinal environment showed that Chao1 was greater (P = 0.01) in the cecum, and the Shannon diversity index was greater in both the cecum and feces of low-RFI compared with high-RFI steers (P = 0.01 and P < 0.001, respectively). Ruminococcaceae was more abundant in the low-RFI group in the cecum and feces (P = 0.01); fecal Bifidobacteriaceae was more abundant in high-RFI steers (P = 0.03). No correlations (P ≥ 0.13) between any ruminal bacterial family and RFI were detected; however, Ruminococcaceae, Mogibacteriaceae, Christensenellaceae, and BS11 were negatively correlated with RFI (P < 0.05) in the cecum and feces. Succinivibrionaceae in the cecum was positively correlated with RFI (P = 0.05), and fecal Bifidobacteriaceae was positively correlated with RFI (P = 0.03). Results collectively indicate that in addition to the ruminal bacteria, the lower gut bacterial population has a significant impact on feed efficiency and nutrient utilization in feedlot steers; therefore, the intestinal bacteria should also be considered when examining the basis of ruminant feed efficiency.
Collapse
Affiliation(s)
- Christina B Welch
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | | | - Dylan B Davis
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Taylor R Krause
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Mia N Carmichael
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Michael J Rothrock
- Egg Safety and Quality Research Unit, Richard B. Russell Research Center, Agricultural Research Service, USDA, Athens, GA
| | - T Dean Pringle
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| | - Todd R Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, GA
| |
Collapse
|
7
|
Li W, Su H, Cao Y, Wang L, Hu X, Xu W, Xu Y, Li Z, Wen G. Antibiotic resistance genes and bacterial community dynamics in the seawater environment of Dapeng Cove, South China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138027. [PMID: 32224396 DOI: 10.1016/j.scitotenv.2020.138027] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 06/10/2023]
Abstract
In recent years, the propagation of antibiotic resistance genes (ARGs) and increased antibiotic resistance in pathogens have gained serious attention. Numerous reports have investigated the influence of domestic sewage discharge, medical wastewater and aquaculture wastewater on rivers and lakes, while the dynamics of ARGs in seawater and the relationships between ARGs, bacterial community structure and environmental factors have been less thoroughly described. In this study, the abundance, distribution and source of ARGs, as well as the relationships between ARGs, bacterial community changes and environmental factors in the seawater environment and sediment of Dapeng Cove, were investigated. Real-time quantitative PCR and Illumina Miseq sequencing technology were applied to determine the effects of the production cycle of cage culture, tourism and seasonality on ARGs. Chloramphenicol resistance genes (floR, cmlA) and sulfonamide resistance genes (sul1) were the dominant resistance genes in water and sediment. Pearson's correlation analysis showed that the abundance of all ARGs and the integrase I gene intI1 was positively correlated with chemical oxygen demand and suspended solids. Class 1 integrons might facilitate the dissemination of ARGs, and intI1 was detected in all samples at high concentrations. In aqueous environments, Cyanobacteria, Proteobacteria and Bacteroidetes were the dominant phyla, among which Proteobacteria and Bacteroidetes were positively correlated with the concentration of target ARGs. In the sediment, Proteobacteria, Bacteroidetes, Chloroflexi, Acidobacteria and Planctomycetes were the dominant phyla, among which Bacteroidetes and Planctomycetes were positively correlated with most of the target ARGs and had a significant influence on changes in the abundance of ARGs. The domestic sewage was the main source of ARGs in the seawater. Our results showed that bacterial community structure and environmental factors affected the distributional dynamics of ARGs. Anthropogenic activities played significant roles in promoting ARGs abundance in the seawater environments.
Collapse
Affiliation(s)
- Wenjun Li
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Haochang Su
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yucheng Cao
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Linglong Wang
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiaojuan Hu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Wujie Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Yu Xu
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; Shenzhen Base South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Shenzhen 518121, China
| | - Zhuojia Li
- Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Guoliang Wen
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of South China Sea Fishery Resources Exploitation & Utilization, Ministry of Agriculture and Rural Affairs, Key Laboratory of Fishery Ecology and Environment, Guangdong Province, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China.
| |
Collapse
|
8
|
Metataxonomic analyses reveal differences in aquifer bacterial community as a function of creosote contamination and its potential for contaminant remediation. Sci Rep 2019; 9:11731. [PMID: 31409826 PMCID: PMC6692397 DOI: 10.1038/s41598-019-47921-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/20/2019] [Indexed: 01/07/2023] Open
Abstract
Metataxonomic approach was used to describe the bacterial community from a creosote-contaminated aquifer and to access the potential for in situ bioremediation of the polycyclic aromatic hydrocarbons (PAHs) by biostimulation. In general, the wells with higher PAH contamination had lower richness and diversity than others, using the Shannon and Simpson indices. By the principal coordinate analysis (PCoA) it was possible to observe the clustering of the bacterial community of most wells in response of the presence of PAH contamination. The significance analysis using edgeR package of the R program showed variation in the abundance of some Operational Taxonomic Units (OTUs) of contaminated wells compared to uncontaminated ones. Taxons enriched in the contaminated wells were correlated positively (p < 0.05) with the hydrocarbons, according to redundancy analysis (RDA). All these enriched taxa have been characterized as PAH degrading agents, such as the genus Comamonas, Geobacter, Hydrocarboniphaga, Anaerolinea and Desulfomonile. Additionally, it was possible to predict, with the PICRUSt program, a greater proportion of pathways and genes related to the degradation of PAHs in the wells with higher contamination levels. We conclude that the contaminants promoted the enrichment of several groups of degrading bacteria in the area, which strengthens the feasibility of applying biostimulation as an aquifer remediation strategy.
Collapse
|
9
|
Nakatsu CH, Byappanahalli MN, Nevers MB. Bacterial Community 16S rRNA Gene Sequencing Characterizes Riverine Microbial Impact on Lake Michigan. Front Microbiol 2019; 10:996. [PMID: 31139161 PMCID: PMC6527805 DOI: 10.3389/fmicb.2019.00996] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 04/18/2019] [Indexed: 11/13/2022] Open
Abstract
Restoration of degraded aquatic habitats is critical to preserve and maintain ecosystem processes and economic viability. Effective restoration requires contaminant sources identification. Microbial communities are increasingly used to characterize fecal contamination sources. The objective was to determine whether nearshore and adjacent beach bacterial contamination originated from the Grand Calumet River, a highly urbanized aquatic ecosystem, and to determine if there were correlations between pathogens/feces associated bacteria in any of the samples to counts of the pathogen indicator species Escherichia coli. Water samples were collected from the river, river mouth, nearshore, and offshore sites along southern Lake Michigan. Comparisons among communities were made using beta diversity distances (weighted and unweighted Unifrac, and Bray Curtis) and Principal Coordinate Analysis of 16S rRNA gene Illumina sequence data that indicated river bacterial communities differed significantly from the river mouth, nearshore lake, and offshore lake samples. These differences were further supported using Source Tracker software that indicated nearshore lake communities differed significantly from river and offshore samples. Among locations, there was separation by sampling date that was associated with environmental factors (e.g., water and air temperature, water turbidity). Although about half the genera (48.1%) were common to all sampling sites, linear discriminant analysis effect size indicated there were several taxa that differed significantly among sites; there were significant positive correlations of feces-associated genera with E. coli most probable numbers. Results collectively highlight that understanding microbial communities, rather than relying solely on select fecal indicators with uncertain origin, are more useful for developing strategies to restore degraded aquatic habitats.
Collapse
Affiliation(s)
- Cindy H Nakatsu
- Department of Agronomy, Purdue University, West Lafayette, IN, United States
| | | | - Meredith B Nevers
- Great Lakes Science Center, United States Geological Survey, Chesterton, IN, United States
| |
Collapse
|
10
|
Bach A, López-García A, González-Recio O, Elcoso G, Fàbregas F, Chaucheyras-Durand F, Castex M. Changes in the rumen and colon microbiota and effects of live yeast dietary supplementation during the transition from the dry period to lactation of dairy cows. J Dairy Sci 2019; 102:6180-6198. [PMID: 31056321 DOI: 10.3168/jds.2018-16105] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 03/12/2019] [Indexed: 01/04/2023]
Abstract
The first objective of this study was to evaluate the dynamics and their potential association with animal performance of the microbiota in both the rumen and colon of dairy cows as they move from a nonlactation to a lactation ration. The second objective was to assess the potential effects on the microbiota of live yeast supplementation. Twenty-one Holstein cows were split in 2 treatments consisting of 1 × 1010 cfu/d of live yeast (LY; n = 10) or no supplementation (control; n = 11) starting 21 d before until 21 d after calving. At 14 d before and 7 and 21 d after calving, samples of rumen and colon digesta were obtained from each cow using an endoscope. Total DNA was extracted and submitted to high-throughput sequencing. Shannon diversity index, in both the rumen and colon, was unaffected by LY; however, in the rumen it was lowest 7 d after calving and returned to precalving values at 21 d in milk, whereas in the colon it was greatest 14 d before calving but decreased after calving. In the rumen, LY supplementation increased the relative abundance (RA) of Bacteroidales (group UCG-001), Lachnospiracea (groups UCG-002 and UCG-006), and Flexilinea 14 d before calving, and increased RA of Streptococcus 21 d after calving compared with control cows. However, changes in the ruminal microbiota were more drastic across days relative to calving than as influenced by the dietary treatment, and the effect of LY in the colon was milder than in the rumen. The ruminal RA of several genera was associated with postcalving DMI, and that of Gastranaerophilales was the only order positively associated with milk yield. Several genera were positively correlated with feed efficiency, with Clostridiales (unclassified) being the only genus negatively associated with feed efficiency. In the colon, Prevotellaceae (group Ga6A1) was the only genus positively associated with feed efficiency. The ruminal RA of Prevotella 7 and Ruminobacter 14 d precalving was negatively correlated with dry matter intake and milk yield postcalving. The RA of Parabacteroides in the colon 14 d before calving was negatively correlated with milk yield, whereas the RA of Eggerthellaceae (unclassified) and Erysipelotrichaceae (groups c and unclassified) were positively correlated with feed efficiency. Interestingly, LY supplementation doubled the RA of Eggerthellaceae (unclassified) in the colon. It is concluded that microbial diversity in the rumen experiences a transient reduction after calving, whereas in the colon, the reduction is maintained at least until 21 d in milk. Most of the effects of LY on rumen microbiota were observed before calving, whereas in the colon, LY effects were more moderate but consistent and independent of the stage of production. The microbial community of the rumen after calving is more associated with feed intake, milk yield, and feed efficiency than that of the colon. However, the colon microbiota before calving is more associated with feed efficiency after calving than that of the rumen.
Collapse
Affiliation(s)
- A Bach
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain; Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain.
| | - A López-García
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain
| | - O González-Recio
- Departamento de Mejora Genética Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), 28040 Madrid, Spain; Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), 28040 Madrid, Spain
| | - G Elcoso
- Blanca from the Pyrenees, 25795 Hostalets de Tost, Spain
| | - F Fàbregas
- Department of Ruminant Production, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), 08140 Caldes de Montbui, Spain
| | - F Chaucheyras-Durand
- Université Clermont Auvergne, Unité de Recherche Microbiologie (UMR454 MEDIS), Institut National de la Recherche Agronomique (INRA-UCA), 63000 Clermont-Ferrand, France; Lallemand Animal Nutrition, SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| | - M Castex
- Lallemand Animal Nutrition, SAS, 19 Rue des Briquetiers, 31702 Blagnac, France
| |
Collapse
|
11
|
Pang M, Xie X, Bao H, Sun L, He T, Zhao H, Zhou Y, Zhang L, Zhang H, Wei R, Xie K, Wang R. Insights Into the Bovine Milk Microbiota in Dairy Farms With Different Incidence Rates of Subclinical Mastitis. Front Microbiol 2018; 9:2379. [PMID: 30459717 PMCID: PMC6232673 DOI: 10.3389/fmicb.2018.02379] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 09/18/2018] [Indexed: 12/18/2022] Open
Abstract
Bovine mastitis continues to be a complex disease associated with significant economic loss in dairy industries worldwide. The incidence rate of subclinical mastitis (IRSCM) can show substantial variation among different farms; however, the milk microbiota, which have a direct influence on bovine mammary gland health, have never been associated with the IRSCM. Here, we aimed to use high-throughput DNA sequencing to describe the milk microbiota from two dairy farms with different IRSCMs and to identify the predominant mastitis pathogens along with commensal or potential beneficial bacteria. Our study showed that Klebsiella, Escherichia-Shigella, and Streptococcus were the mastitis-causing pathogens in farm A (with a lower IRSCM), while Streptococcus and Corynebacterium were the mastitis-causing pathogens in farm B (with a higher IRSCM). The relative abundance of all pathogens in farm B (22.12%) was higher than that in farm A (9.82%). However, the genus Bacillus was more prevalent in farm A. These results may be helpful for explaining the lower IRSCM in farm A. Additionally, the gut-associated genera Prevotella, Ruminococcus, Bacteroides, Rikenella, and Alistipes were prevalent in all milk samples, suggesting gut bacteria can be one of the predominant microbial contamination in milk. Moreover, Listeria monocytogenes (a foodborne pathogen) was found to be prevalent in farm A, even though it had a lower IRSCM. Overall, our study showed complex diversity between the milk microbiota in dairy farms with different IRSCMs. This suggests that variation in IRSCMs may not only be determined by the heterogeneity and prevalence of mastitis-causing pathogens but also be associated with potential beneficial bacteria. In the future, milk microbiota should be considered in bovine mammary gland health management. This would be helpful for both the establishment of a targeted mastitis control system and the control of the safety and quality of dairy products.
Collapse
Affiliation(s)
- Maoda Pang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xing Xie
- Key Laboratory of Veterinary Biological Engineering and Technology, Institute of Veterinary Medicine, Ministry of Agriculture, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongduo Bao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lichang Sun
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Tao He
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hang Zhao
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yan Zhou
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Lili Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hui Zhang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Ruicheng Wei
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Kaizhou Xie
- Key Laboratory for Animal Genetics, Breeding, Reproduction and Molecular Design of Jiangsu Province, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ran Wang
- Key Laboratory of Control Technology and Standard for Agro-product Safety and Quality, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
12
|
Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers. BMC Microbiol 2017; 17:97. [PMID: 28431497 PMCID: PMC5401608 DOI: 10.1186/s12866-017-1011-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 04/17/2017] [Indexed: 11/21/2022] Open
Abstract
Background Here, we aimed to investigate the effects of ensiled mulberry leaves (EML) and sun-dried mulberry fruit pomace (SMFP) on fecal bacterial communities in Simmental crossbred finishing steers. To this end, the steers were reared on a standard TMR diet, standard diet containing EML, and standard diet containing SMFP. The protein and energy levels of all the diets were similar. Illumina MiSeq sequencing of the V4 region of the 16S rRNA gene and quantitative real-time PCR were used to analyze and detect the fecal bacterial community. Results Most of the sequences were assigned to Firmicutes (56.67%) and Bacteroidetes (35.90%), followed by Proteobacteria (1.87%), Verrucomicrobia (1.80%) and Tenericutes (1.37%). The predominant genera were 5-7 N15 (5.91%), CF231 (2.49%), Oscillospira (2.33%), Paludibacter (1.23%) and Akkermansia (1.11%). No significant differences were observed in the numbers of Firmicutes (p = 0.28), Bacteroidetes (p = 0.63), Proteobacteria (p = 0.46), Verrucomicrobia (p = 0.17), and Tenericutes (p = 0.75) populations between the treatment groups. At the genus level, genera classified with high abundance (more than 0.1%) belonged primarily to Bacteroidetes and Firmicutes. Furthermore, no differences were observed at the genus level: 5-7 N15, CF231, Oscillospira, Paludibacter, and Akkermansia (p > 0.05 in all cases), except that rc4–4 was lower in the CON and SMFP groups than in the EML group (p = 0.02). There were no significant differences in the richness estimate and diversity indices between the groups (p > 0.16), and the different diets did not significantly influence most selected fecal bacterial species (p > 0.06), except for Ruminococcus albus, which was higher in the EML group (p < 0.01) and Streptococcus bovis, which was lower in the CON group (p < 0.01) relative to the other groups. Conclusions In conclusion, diets supplemented with EML and SMFP have little influence on the fecal bacterial community composition in finishing steers. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1011-9) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Leknoi Y, Mongkolsuk S, Sirikanchana K. Assessment of swine-specific bacteriophages of Bacteroides fragilis in swine farms with different antibiotic practices. JOURNAL OF WATER AND HEALTH 2017; 15:251-261. [PMID: 28362306 DOI: 10.2166/wh.2016.069] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We assessed the occurrence and specificity of bacteriophages of Bacteroides fragilis in swine farms for their potential application in microbial source tracking. A local B. fragilis host strain, SP25 (DSM29413), was isolated from a pooled swine feces sample taken from a non-antibiotic farm. This strain was highly specific to swine fecal materials because it did not detect bacteriophages in any samples from human sewage, sheep, goats, cattle, dogs, and cats. The reference B. fragilis strain, RYC2056, could detect phages in swine samples but also detected phages in most human sewage and polluted urban canal samples. Phages of SP25 exist in the proximity of certain swine farms, regardless of their antibiotic use (p > 0.05). B. fragilis strain SP25 exhibited relatively high resistance to most of the veterinary antimicrobial agents tested. Interestingly, most farms that were positive for SP25 phages were also positive for RYC2056 phages. In conclusion, the swine-specific SP25 strain has the potential to indicate swine fecal contamination in certain bodies of water. Bacterial isolates with larger distributions are being studied and validated. This study highlights the importance of assessing the abundance of phages in local swine populations before determining their potential applicability for source tracking in local surface waters.
Collapse
Affiliation(s)
- Yuranan Leknoi
- Inter-University Program on Environmental Toxicology, Technology and Management, Asian Institute of Technology, Chulabhorn Research Institute and Mahidol University, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology and Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand 10400; Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand 10210 and Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand 10400 E-mail:
| | - Kwanrawee Sirikanchana
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand 10210 and Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, Bangkok, Thailand 10400 E-mail:
| |
Collapse
|
14
|
A Community Multi-Omics Approach towards the Assessment of Surface Water Quality in an Urban River System. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14030303. [PMID: 28335448 PMCID: PMC5369139 DOI: 10.3390/ijerph14030303] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/17/2017] [Accepted: 03/08/2017] [Indexed: 02/04/2023]
Abstract
A multi-omics approach was applied to an urban river system (the Brisbane River (BR), Queensland, Australia) in order to investigate surface water quality and characterize the bacterial population with respect to water contaminants. To do this, bacterial metagenomic amplicon-sequencing using Illumina next-generation sequencing (NGS) of the V5-V6 hypervariable regions of the 16S rRNA gene and untargeted community metabolomics using gas chromatography coupled with mass spectrometry (GC-MS) were utilized. The multi-omics data, in combination with fecal indicator bacteria (FIB) counts, trace metal concentrations (by inductively coupled plasma mass spectrometry (ICP-MS)) and in-situ water quality measurements collected from various locations along the BR were then used to assess the health of the river ecosystem. Sites sampled represented the transition from less affected (upstream) to polluted (downstream) environments along the BR. Chemometric analysis of the combined datasets indicated a clear separation between the sampled environments. Burkholderiales and Cyanobacteria were common key factors for differentiation of pristine waters. Increased sugar alcohol and short-chain fatty acid production was observed by Actinomycetales and Rhodospirillaceae that are known to form biofilms in urban polluted and brackish waters. Results from this study indicate that a multi-omics approach enables a deep understanding of the health of an aquatic ecosystem, providing insight into the bacterial diversity present and the metabolic output of the population when exposed to environmental contaminants.
Collapse
|
15
|
Wang P, Chen B, Yuan R, Li C, Li Y. Characteristics of aquatic bacterial community and the influencing factors in an urban river. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:382-389. [PMID: 27348702 DOI: 10.1016/j.scitotenv.2016.06.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2016] [Revised: 06/16/2016] [Accepted: 06/17/2016] [Indexed: 05/23/2023]
Abstract
Bacteria play a critical role in environmental and ecological processes in river ecosystems. We studied the bacterial community in the Ganjiang River, a major tributary of the Yangtze River, as it flowed through Nanchang, the largest city in the Ganjiang River basin. Water was sampled at five sites monthly during the wet season, and the bacterial community was characterized using Illumina high-throughput sequencing. A total of 811 operational taxonomic units (OTUs) were observed for all samples, ranging from 321 to 519 for each sample. The bacterial communities were maintained by a core of OTUs that persisted longitudinally and monthly. Actinobacteria (41.17% of total sequences) and Proteobacteria (31.80%) were the dominant phyla, while Firmicutes (mostly genus Lactococcus) became most abundant during flooding. Temperature and flow rate, rather than water chemistry, were the main factors influencing the bacterial community in river water. Temperature was the best individual parameter explaining the variations in OTU abundance, while flow rate was the best individual parameter explaining the variations in phylum abundance. Except for Proteobacteria, the relative abundance of bacterial phyla did not differ significantly between sites, and the degrees of influence of urban landscape on the bacterial community were estimated to be 17%-34%.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China; Jiangxi Provincial Key Laboratory of Soil Erosion and Prevention, Jiangxi Institute of Soil and Water Conservation, Nanchang 330029, China.
| | - Bo Chen
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Ruiqiang Yuan
- School of Environment and Resource, Shanxi University, Taiyuan 030006, China
| | - Chuangqiong Li
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| | - Yan Li
- Key Laboratory of Poyang Lake Wetland and Watershed Research, Ministry of Education, Jiangxi Normal University, Nanchang 330022, China; School of Geography and Environment, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
16
|
Wong K, Shaw TI, Oladeinde A, Glenn TC, Oakley B, Molina M. Rapid Microbiome Changes in Freshly Deposited Cow Feces under Field Conditions. Front Microbiol 2016; 7:500. [PMID: 27148189 PMCID: PMC4830129 DOI: 10.3389/fmicb.2016.00500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 03/28/2016] [Indexed: 01/04/2023] Open
Abstract
Although development of next generation sequencing (NGS) has substantially improved our understanding of the microbial ecology of animal feces, previous studies have mostly focused on freshly excreted feces. There is still limited understanding of the aging process dynamics of fecal microbiomes in intact cowpats exposed to natural environments. Fresh cowpats were sampled at multiple time points for 57 days under field conditions; half the samples were exposed to sunlight (unshaded) while the other half was protected from sunlight (shaded). The 16SRNA hypervariable region 4 was amplified from each sample and sequenced on an Illumina MiSeq Platform. While Clostridia, Bacteroidia, and Sphingobacteria were dominant classes of bacteria in fresh cowpats, Alphaproteobacteria, Betaproteobacteria, Actinobacteria, and Bacilli were the dominant classes by the end of the study, indicating a general shift from anaerobic to aerobic bacterial populations. This change was most likely influenced by the shift from cattle gut (anaerobic) to pasture ground (aerobic). Reduced moisture in cowpats may also contribute to the community shift since air can penetrate the dryer cowpat more easily. Twelve genera consisting pathogenic bacteria were detected, with Mycobacterium, Bacillus, and Clostridium being the most abundant; their combined abundance accounts for 90% of the total pathogenic genera. Taxonomic richness and diversity increased throughout the study for most samples, which could be due to bacteria regrowth and colonization of bacteria from the environment. In contrast to the high taxonomic diversity, the changes of PICRUSt inferred function profile were minimal for all cowpats throughout the study, which suggest that core functions predicted by PICRUSt may be too conserved to distinguish differences between aerobe and anaerobe. To the best of our knowledge, this is the first study demonstrating that cowpat exposure to air and sunlight can cause drastic microbiome changes soon after deposition in natural environments. Our findings offer important insights for future research characterizing the microbiome of feces collected in natural environments and the impact of cattle fecal contamination on water resources.
Collapse
Affiliation(s)
- Kelvin Wong
- Ecosystems Research Division, United States Environmental Protection Agency, AthensGA, USA; Oak Ridge Institute for Science and Education, Oak RidgeTN, USA
| | - Timothy I Shaw
- Institute of Bioinformatics, University of Georgia, AthensGA, USA; Department of Computational Biology, St Jude Children's Research Hospital, MemphisTN, USA
| | - Adelumola Oladeinde
- Ecosystems Research Division, United States Environmental Protection Agency, AthensGA, USA; Department of Environmental Health Science, University of Georgia, AthensGA, USA
| | - Travis C Glenn
- Department of Environmental Health Science, University of Georgia, Athens GA, USA
| | - Brian Oakley
- College of Veterinary Medicine, Western University of Health Sciences, Pomona CA, USA
| | - Marirosa Molina
- Ecosystems Research Division, United States Environmental Protection Agency, Athens GA, USA
| |
Collapse
|
17
|
Sun D, Duan C, Shang Y, Ma Y, Tan L, Zhai J, Gao X, Guo J, Wang G. Application of Faecalibacterium 16S rDNA genetic marker for accurate identification of duck faeces. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:7639-7647. [PMID: 26743644 DOI: 10.1007/s11356-015-6024-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/28/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to judge the legal duty of pollution liabilities by assessing a duck faeces-specific marker, which can exclude distractions of residual bacteria from earlier contamination accidents. With the gene sequencing technology and bioinformatics method, we completed the comparative analysis of Faecalibacterium sequences, which were associated with ducks and other animal species, and found the sequences unique to duck faeces. Polymerase chain reaction (PCR) and agarose gel electrophoresis techniques were used to verify the reliability of both human and duck faeces-specific primers. The duck faeces-specific primers generated an amplicon of 141 bp from 43.3 % of duck faecal samples, 0 % of control samples and 100 % of sewage wastewater samples that contained duck faeces. We present here the initial evidence of Faecalibacterium-based applicability as human faeces-specificity in China. Meanwhile, this study represents the initial report of a Faecalibacterium marker for duck faeces and suggests an independent or supplementary environmental biotechnology of microbial source tracking (MST).
Collapse
Affiliation(s)
- Da Sun
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing University, Chongqing, China
| | - Chuanren Duan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing University, Chongqing, China.
| | - Yaning Shang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing University, Chongqing, China
| | - Yunxia Ma
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing University, Chongqing, China
| | - Lili Tan
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing University, Chongqing, China
| | - Jun Zhai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
| | - Xu Gao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, College of Urban Construction and Environmental Engineering, Chongqing University, Chongqing, China
| | - Jingsong Guo
- Key Laboratory of Reservoir Aquatic Environment of CAS, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), State and Local Joint Engineering Laboratory for Vascular Implants (Chongqing), Bioengineering College of Chongqing University, Chongqing University, Chongqing, China.
| |
Collapse
|
18
|
Kim M, Wells JE. A Meta-analysis of Bacterial Diversity in the Feces of Cattle. Curr Microbiol 2015; 72:145-151. [PMID: 26542532 DOI: 10.1007/s00284-015-0931-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/26/2015] [Indexed: 12/29/2022]
Abstract
In this study, we conducted a meta-analysis on 16S rRNA gene sequences of bovine fecal origin that are publicly available in the RDP database. A total of 13,663 sequences including 603 isolate sequences were identified in the RDP database (Release 11, Update 1), where 13,447 sequences were assigned to 10 phyla, 17 classes, 28 orders, 59 families, and 110 genera, while the remaining 216 sequences could not be assigned to a known phylum. Firmicutes and Bacteroidetes were the first and the second predominant phyla, respectively. About 41 % of the total sequences could not be assigned to a known genus. The total sequences were assigned to 1252 OTUs at 97 % sequence similarity. A small number of OTUs shared among datasets indicate that fecal bacterial communities of cattle are greatly affected by various factors, specifically diet. This study may guide future studies to further analyze fecal bacterial communities of cattle.
Collapse
Affiliation(s)
- Minseok Kim
- U.S. Department of Agriculture, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, NE, 68933, USA
- Animal Nutrition and Physiology Team, National Institute of Animal Science, RDA, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - James E Wells
- U.S. Department of Agriculture, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, NE, 68933, USA.
| |
Collapse
|
19
|
Myer PR, Wells JE, Smith TPL, Kuehn LA, Freetly HC. Microbial community profiles of the colon from steers differing in feed efficiency. SPRINGERPLUS 2015; 4:454. [PMID: 26322260 PMCID: PMC4549364 DOI: 10.1186/s40064-015-1201-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 07/30/2015] [Indexed: 12/29/2022]
Abstract
Ruminal microbial fermentation plays an essential role in host nutrition, and as a result, the rumen microbiota have been a major focus of research examining bovine feed efficiency. Microbial communities within other sections of the gastrointestinal tract may also be important with regard to feed efficiency, since it is critical to the health and nutrition of the host. The objective of this study was to characterize the microbial communities of the colon among steers differing in feed efficiency. Individual feed intake (FI) and body weight (BW) gain were determined from animals fed the same ration, within two contemporary groups of steers. Four steers from each contemporary group within each Cartesian quadrant were sampled (n = 16/group) from the bivariate distribution of average daily BW gain and average daily FI. Bacterial 16S rRNA gene amplicons were sequenced from the colon content using next-generation sequencing technology. Within the colon content, UniFrac principal coordinate analyses did not detect any separation of microbial communities, and bacterial diversity or richness did not differ between efficiency groups. Relative abundances of microbial populations and operational taxonomic units did reveal significant differences between efficiency groups. The phylum Firmicutes accounted for up to 70% of the populations within all samples, and families Ruminococcaceae and Clostridiaceae were highly abundant. Significant population shifts in taxa were detected, including the families Ruminococcaceae, Lachnospiraceae, and Sphingomonadaceae, and the genera Butyrivibrio, Pseudobutyrivibrio, Prevotella, Faecalibacterium and Oscillospira. This study suggests the association of the colon microbial communities as a factor influencing feed efficiency at the 16S level.
Collapse
Affiliation(s)
- Phillip R Myer
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933 USA ; Department of Animal Science, The University of Tennessee, Knoxville, TN USA
| | - James E Wells
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933 USA
| | - Timothy P L Smith
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933 USA
| | - Larry A Kuehn
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933 USA
| | - Harvey C Freetly
- USDA, ARS, U.S. Meat Animal Research Center, Clay Center, NE 68933 USA
| |
Collapse
|
20
|
Toolbox Approaches Using Molecular Markers and 16S rRNA Gene Amplicon Data Sets for Identification of Fecal Pollution in Surface Water. Appl Environ Microbiol 2015; 81:7067-77. [PMID: 26231650 DOI: 10.1128/aem.02032-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 07/27/2015] [Indexed: 11/20/2022] Open
Abstract
In this study, host-associated molecular markers and bacterial 16S rRNA gene community analysis using high-throughput sequencing were used to identify the sources of fecal pollution in environmental waters in Brisbane, Australia. A total of 92 fecal and composite wastewater samples were collected from different host groups (cat, cattle, dog, horse, human, and kangaroo), and 18 water samples were collected from six sites (BR1 to BR6) along the Brisbane River in Queensland, Australia. Bacterial communities in the fecal, wastewater, and river water samples were sequenced. Water samples were also tested for the presence of bird-associated (GFD), cattle-associated (CowM3), horse-associated, and human-associated (HF183) molecular markers, to provide multiple lines of evidence regarding the possible presence of fecal pollution associated with specific hosts. Among the 18 water samples tested, 83%, 33%, 17%, and 17% were real-time PCR positive for the GFD, HF183, CowM3, and horse markers, respectively. Among the potential sources of fecal pollution in water samples from the river, DNA sequencing tended to show relatively small contributions from wastewater treatment plants (up to 13% of sequence reads). Contributions from other animal sources were rarely detected and were very small (<3% of sequence reads). Source contributions determined via sequence analysis versus detection of molecular markers showed variable agreement. A lack of relationships among fecal indicator bacteria, host-associated molecular markers, and 16S rRNA gene community analysis data was also observed. Nonetheless, we show that bacterial community and host-associated molecular marker analyses can be combined to identify potential sources of fecal pollution in an urban river. This study is a proof of concept, and based on the results, we recommend using bacterial community analysis (where possible) along with PCR detection or quantification of host-associated molecular markers to provide information on the sources of fecal pollution in waterways.
Collapse
|
21
|
Neave M, Luter H, Padovan A, Townsend S, Schobben X, Gibb K. Multiple approaches to microbial source tracking in tropical northern Australia. Microbiologyopen 2014; 3:860-74. [PMID: 25224738 PMCID: PMC4263510 DOI: 10.1002/mbo3.209] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 07/14/2014] [Accepted: 07/25/2014] [Indexed: 11/10/2022] Open
Abstract
Microbial source tracking is an area of research in which multiple approaches are used to identify the sources of elevated bacterial concentrations in recreational lakes and beaches. At our study location in Darwin, northern Australia, water quality in the harbor is generally good, however dry-season beach closures due to elevated Escherichia coli and enterococci counts are a cause for concern. The sources of these high bacteria counts are currently unknown. To address this, we sampled sewage outfalls, other potential inputs, such as urban rivers and drains, and surrounding beaches, and used genetic fingerprints from E. coli and enterococci communities, fecal markers and 454 pyrosequencing to track contamination sources. A sewage effluent outfall (Larrakeyah discharge) was a source of bacteria, including fecal bacteria that impacted nearby beaches. Two other treated effluent discharges did not appear to influence sites other than those directly adjacent. Several beaches contained fecal indicator bacteria that likely originated from urban rivers and creeks within the catchment. Generally, connectivity between the sites was observed within distinct geographical locations and it appeared that most of the bacterial contamination on Darwin beaches was confined to local sources.
Collapse
Affiliation(s)
- Matthew Neave
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityCasuarina, Northern Territory, Australia
| | - Heidi Luter
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityCasuarina, Northern Territory, Australia
- Northern Australian Marine Research Alliance, Arafura Timor Research Facility DarwinBrinkin, Northern Territory, Australia
| | - Anna Padovan
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityCasuarina, Northern Territory, Australia
| | - Simon Townsend
- Department of Land Resource Management, Northern Territory GovernmentPalmerston, Northern Territory, Australia
| | - Xavier Schobben
- Department of Health, Northern Territory GovernmentCasuarina, Northern Territory, Australia
| | - Karen Gibb
- Research Institute for the Environment and Livelihoods, Charles Darwin UniversityCasuarina, Northern Territory, Australia
| |
Collapse
|
22
|
Pajarillo EAB, Chae JP, Balolong MP, Kim HB, Seo KS, Kang DK. Pyrosequencing-based analysis of fecal microbial communities in three purebred pig lines. J Microbiol 2014; 52:646-51. [PMID: 25047525 DOI: 10.1007/s12275-014-4270-2] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 06/16/2014] [Accepted: 06/18/2014] [Indexed: 10/25/2022]
Abstract
This study examined the fecal bacterial diversity of 15-week-old pigs from three purebred lines: Duroc, Landrace, and Yorkshire. Taxon-dependent and -independent analyses were performed to evaluate differences in the fecal bacterial communities and to identify bacterial genera that can be used to discriminate breeds, following high-throughput pyrosequencing of 16S rRNA genes. Among the breeds evaluated, Landrace had the most diverse bacterial community composition. Prevotella, Blautia, Oscillibacter, and Clostridium were detected in all samples regardless of breed. On the other hand, Catenibacterium, Blautia, Dialister, and Sphaerochaeta were differentially detected among breeds, as demonstrated by the canonical loading plot. The discriminant analysis of principal components plot also showed clear separation of the three purebred pig lines, with a certain degree of similarity between Landrace and Yorkshire pigs and a distinct separation between Duroc pigs and the other two breeds. Other factors not related to breed, such as season or time of sampling and pen effects, may contribute to shaping the gut microbiota of pigs.
Collapse
|
23
|
Abstract
Although the composition of the human microbiome is now well-studied, the microbiota's >8 million genes and their regulation remain largely uncharacterized. This knowledge gap is in part because of the difficulty of acquiring large numbers of samples amenable to functional studies of the microbiota. We conducted what is, to our knowledge, one of the first human microbiome studies in a well-phenotyped prospective cohort incorporating taxonomic, metagenomic, and metatranscriptomic profiling at multiple body sites using self-collected samples. Stool and saliva were provided by eight healthy subjects, with the former preserved by three different methods (freezing, ethanol, and RNAlater) to validate self-collection. Within-subject microbial species, gene, and transcript abundances were highly concordant across sampling methods, with only a small fraction of transcripts (<5%) displaying between-method variation. Next, we investigated relationships between the oral and gut microbial communities, identifying a subset of abundant oral microbes that routinely survive transit to the gut, but with minimal transcriptional activity there. Finally, systematic comparison of the gut metagenome and metatranscriptome revealed that a substantial fraction (41%) of microbial transcripts were not differentially regulated relative to their genomic abundances. Of the remainder, consistently underexpressed pathways included sporulation and amino acid biosynthesis, whereas up-regulated pathways included ribosome biogenesis and methanogenesis. Across subjects, metatranscriptional profiles were significantly more individualized than DNA-level functional profiles, but less variable than microbial composition, indicative of subject-specific whole-community regulation. The results thus detail relationships between community genomic potential and gene expression in the gut, and establish the feasibility of metatranscriptomic investigations in subject-collected and shipped samples.
Collapse
|
24
|
Shen Z, Duan C, Zhang C, Carson A, Xu D, Zheng G. Using an intervening sequence of Faecalibacterium 16S rDNA to identify poultry feces. WATER RESEARCH 2013; 47:6415-6422. [PMID: 24011842 DOI: 10.1016/j.watres.2013.08.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 08/06/2013] [Accepted: 08/08/2013] [Indexed: 06/02/2023]
Abstract
This study was designed to identify poultry feces-specific marker(s) within sequences of Faecalibacterium 16S rDNA for detecting poultry fecal pollution in water. Bioinformatics tools were used in the comparative analysis of 7,458 sequences of Faecalibacterium 16S rDNA, reportedly associated with various poultry (chicken and turkey) and animal species. One intervening sequence (IVS) within between the hypervariable region 1 and the conserved region 2, designated as IVS-p, was found to be unique to poultry feces. Based on this sequence, a PCR assay (PCR-p) was developed. The PCR-p produced an amplicon of 132 bp only in the test when fecal or wastewater samples from poultry were used, but not when using fecal or wastewater samples from other sources. The non-poultry sources included feces of beef or dairy cattle, dog, horse, human, domestic or wild geese, seagull, sheep, swine, and wild turkey. These data indicate that IVS-p may prove to be a useful genetic marker for the specific identification of poultry fecal pollution in environmental waterways. Furthermore, results of data mining and PCR assay indicate that the IVS-p may have a broad geographic distribution. This report represents initial evidence of the potential utility of ribosomal intervening sequences as genetic markers for tracking host sources of fecal pollution in waterways.
Collapse
Affiliation(s)
- Zhenyu Shen
- Department of Agriculture and Environmental Sciences, Lincoln University, 904 Chestnut Street, Jefferson City, MO 65101, USA
| | | | | | | | | | | |
Collapse
|
25
|
Dubinsky EA, Esmaili L, Hulls JR, Cao Y, Griffith JF, Andersen GL. Application of phylogenetic microarray analysis to discriminate sources of fecal pollution. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:4340-4347. [PMID: 22360280 DOI: 10.1021/es2040366] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Conventional methods for fecal source tracking typically use single biomarkers to systematically identify or exclude sources. High-throughput DNA sequence analysis can potentially identify all sources of microbial contaminants in a single test by measuring the total diversity of fecal microbial communities. In this study, we used phylogenetic microarray analysis to determine the comprehensive suite of bacteria that define major sources of fecal contamination in coastal California. Fecal wastes were collected from 42 different populations of humans, birds, cows, horses, elk, and pinnipeds. We characterized bacterial community composition using a DNA microarray that probes for 16S rRNA genes of 59,316 different bacterial taxa. Cluster analysis revealed strong differences in community composition among fecal wastes from human, birds, pinnipeds, and grazers. Actinobacteria, Bacilli, and many Gammaproteobacteria taxa discriminated birds from mammalian sources. Diverse families within the Clostridia and Bacteroidetes taxa discriminated human wastes, grazers, and pinnipeds from each other. We found 1058 different bacterial taxa that were unique to either human, grazing mammal, or bird fecal wastes. These OTUs can serve as specific identifier taxa for these sources in environmental waters. Two field tests in marine waters demonstrate the capacity of phylogenetic microarray analysis to track multiple sources with one test.
Collapse
Affiliation(s)
- Eric A Dubinsky
- Lawrence Berkeley National Laboratory, Earth Sciences Division, Berkeley, CA, USA
| | | | | | | | | | | |
Collapse
|
26
|
General and rare bacterial taxa demonstrating different temporal dynamic patterns in an activated sludge bioreactor. Appl Microbiol Biotechnol 2012; 97:1755-65. [DOI: 10.1007/s00253-012-4002-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Revised: 02/29/2012] [Accepted: 03/01/2012] [Indexed: 10/28/2022]
|