1
|
Zhao J, Wang Q, Ni X, Shen S, Nan C, Li X, Chen X, Yang F. Dissecting the essential role of N-glycosylation in catalytic performance of xanthan lyase. BIORESOUR BIOPROCESS 2022; 9:129. [PMID: 38647758 PMCID: PMC10992191 DOI: 10.1186/s40643-022-00620-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
Modified xanthan produced by xanthan lyase has broad application prospects in the food industry. However, the catalytic performance of xanthan lyase still needs to be improved through rational design. To address this problem, in this work, the glycosylation and its influences on the catalytic performance of a xanthan lyase (EcXly), which was heterologously expressed in Escherichia coli, were reported. Liquid chromatography coupled to tandem mass spectrometry analysis revealed that the N599 site of EcXly was modified by a single N-glycan chain. Based on sequence alignment and three-dimensional structure prediction, it could be deduced that the N599 site was located in the catalytic domain of EcXly and in close proximity to the catalytic residues. After site-directed mutagenesis of N599 with alanine, aspartic acid and glycine, respectively, the EcXly and its mutants were characterized and compared. The results demonstrated that elimination of the N-glycosylation had diminished the specific activity, pH stability, and substrate affinity of EcXly. Fluorescence spectra further revealed that the glycosylation could significantly affect the overall tertiary structure of EcXly. Therefore, in prokaryotic hosts, the N-glycosylation could influence the catalytic performance of the enzyme by changing its structure. To the best of our knowledge, this is the first report about the post-translational modification of xanthan lyase in prokaryotes. Overall, our work enriched research on the role of glycan chains in the functional performance of proteins expressed in prokaryotes and should be valuable for the rational design of xanthan lyase to produce modified xanthan for industrial application.
Collapse
Affiliation(s)
- Jingjing Zhao
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China
| | - Qian Wang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, People's Republic of China
| | - Xin Ni
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China
| | - Shaonian Shen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China
| | - Chenchen Nan
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China
| | - Xianzhen Li
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China
| | - Xiaoyi Chen
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China.
| | - Fan Yang
- School of Biological Engineering, Dalian Polytechnic University, Ganjingziqu, 116034, Dalian, People's Republic of China.
| |
Collapse
|
2
|
Liu Y, Ma K, Qi Y, Lv G, Ren X, Liu Z, Ma F. Transcriptional Regulation of Anthocyanin Synthesis by MYB-bHLH-WDR Complexes in Kiwifruit ( Actinidia chinensis). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3677-3691. [PMID: 33749265 DOI: 10.1021/acs.jafc.0c07037] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The anthocyanin synthetic pathway is regulated centrally by an MYB-bHLH-WD40 (MBW) complex. Anthocyanin pigmentation is an important fruit quality trait in red-fleshed kiwifruit; however, the underlying regulatory mechanisms involving the MBW complex are not well understood. In this study, one R2R3MYB (AcMYBF110 expressed in fruit characteristically), one bHLH (AcbHLH1), two upstream regulators of AcbHLH1 (AcbHLH4 and AcbHLH5), and one WDR (AcWDR1) are characterized as being involved in the regulation of anthocyanin synthesis in kiwifruit. AcMYBF110 plays an important role in the regulation of anthocyanin accumulation by specifically activating the promoters of several anthocyanin pathway genes including AcCHS, AcF3'H, AcANS, AcUFGT3a, AcUFGT6b, and AcGST1. Coexpression of AcbHLH1, AcbHLH4, or AcbHLH5 together with AcMYBF110 induces much greater anthocyanin accumulation in both tobacco leaves and in Actinidia arguta fruit compared with AcMYBF110 alone. Moreover, this activation is further enhanced by adding AcWDR1. We found that both AcMYBF110 and AcWDR1 interact with all three AcbHLH factors, while AcMYBF110 also interacts with AcWDR1 to form three different MBW complexes that have different regulatory roles in anthocyanin accumulation of kiwifruit. The AcMYBF110-AcbHLH1-AcWDR1 complex directly targets the promoters of anthocyanin synthetic genes. Other features of the regulatory pathways identified include promotion of AcMYBF110, AcbHLH1,and AcWDR1 activities by this MBW complex, providing for both reinforcement and feedback regulation, whereas the AcMYBF110-AcbHLH4/5-AcWDR1 complex is indirectly involved in the regulation of anthocyanin synthesis by activating the promoters of AcbHLH1 and AcWDR1 to amplify the regulation signals of the first MBW complex.
Collapse
Affiliation(s)
- Yanfei Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
- College of Life Science, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Kangxun Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Yingwei Qi
- Sericultural & Agri-Food Research Institute Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610 Guangdong, China
| | - Guowen Lv
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Zhande Liu
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| | - Fengwang Ma
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shannxi, China
| |
Collapse
|
3
|
Identification and expression profile of an alpha-COPI homologous gene (COPA1) involved in high irradiance and salinity stress in Haematococcus pluvialis. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Kang EH, Song EJ, Kook JH, Lee HH, Jeong BR, Park HM. Depletion of ε-COP in the COPI Vesicular Coat Reduces Cleistothecium Production in Aspergillus nidulans. MYCOBIOLOGY 2015; 43:31-36. [PMID: 25892912 PMCID: PMC4397377 DOI: 10.5941/myco.2015.43.1.31] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 12/01/2014] [Accepted: 01/05/2015] [Indexed: 06/04/2023]
Abstract
We have previously isolated ε-COP, the α-COP interactor in COPI of Aspergillus nidulans, by yeast two-hybrid screening. To understand the function of ε-COP, the aneA (+) gene for ε-COP/AneA was deleted by homologous recombination using a gene-specific disruption cassette. Deletion of the ε-COP gene showed no detectable changes in vegetative growth or asexual development, but resulted in decrease in the production of the fruiting body, cleistothecium, under conditions favorable for sexual development. Unlike in the budding yeast Saccharomyces cerevisiae, in A. nidulans, over-expression of ε-COP did not rescue the thermo-sensitive growth defect of the α-COP mutant at 42℃. Together, these data show that ε-COP is not essential for viability, but it plays a role in fruiting body formation in A. nidulans.
Collapse
Affiliation(s)
- Eun-Hye Kang
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Eun-Jung Song
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Jun Ho Kook
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hwan-Hee Lee
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Bo-Ri Jeong
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| | - Hee-Moon Park
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, Daejeon 305-764, Korea
| |
Collapse
|