1
|
Zhou L, Mubeen M, Iftikhar Y, Zheng H, Zhang Z, Wen J, Khan RAA, Sajid A, Solanki MK, Sohail MA, Kumar A, Massoud EES, Chen L. Rice false smut pathogen: implications for mycotoxin contamination, current status, and future perspectives. Front Microbiol 2024; 15:1344831. [PMID: 38585697 PMCID: PMC10996400 DOI: 10.3389/fmicb.2024.1344831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 03/06/2024] [Indexed: 04/09/2024] Open
Abstract
Rice serves as a staple food across various continents worldwide. The rice plant faces significant threats from a range of fungal, bacterial, and viral pathogens. Among these, rice false smut disease (RFS) caused by Villosiclava virens is one of the devastating diseases in rice fields. This disease is widespread in major rice-growing regions such as China, Pakistan, Bangladesh, India, and others, leading to significant losses in rice plantations. Various toxins are produced during the infection of this disease in rice plants, impacting the fertilization process as well. This review paper lightens the disease cycle, plant immunity, and infection process during RFS. Mycotoxin production in RFS affects rice plants in multiple ways, although the exact phenomena are still unknown.
Collapse
Affiliation(s)
- Lei Zhou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Mustansar Mubeen
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Yasir Iftikhar
- Department of Plant Pathology, College of Agriculture, University of Sargodha, Sargodha, Pakistan
| | - Hongxia Zheng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Zhenhao Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Junli Wen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | | | - Ashara Sajid
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| | - Muhammad Aamir Sohail
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Ajay Kumar
- Amity University of Biotechnology, Amity University, Noida, India
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha, Saudi Arabia
| | - Liezhong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
2
|
Fu R, Chen C, Wang J, Liu Y, Zhao L, Lu D. Diversity Analysis of the Rice False Smut Pathogen Ustilaginoidea virens in Southwest China. J Fungi (Basel) 2022; 8:1204. [PMID: 36422026 PMCID: PMC9694781 DOI: 10.3390/jof8111204] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 04/10/2024] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is a destructive disease in rice cropping areas of the world. The present study is focused on the morphology, pathogenicity, mating-type loci distribution, and genetic characterization of different isolates of U. virens. A total of 221 strains of U. virens were collected from 13 rice-growing regions in southwest China. The morphological features of these strains exhibited high diversity, and the pathogenicity of the smut fungus showed significant differentiation. There was no correlation between pathogenicity and sporulation. Mating-type locus (MAT) analysis revealed that all 221 isolates comprised heterothallic and homothallic forms, wherein 204 (92.31%) and 17 (7.69%) isolates belonged to heterothallic and homothallic mating types, respectively. Among 204 strains of heterothallic mating types, 62 (28.05%) contained MAT1-1-1 idiomorphs, and 142 isolates (64.25%) had the MAT1-2-1 idiomorph. Interestingly, strains isolated from the same fungus ball had different mating types. The genetic structure of the isolates was analyzed using simple sequence repeats (SSRs) and single-nucleotide polymorphisms (SNPs). All isolates were clustered into five genetic groups. The values of Nei's gene diversity (H) and Shannon's information index (I) indicated that all strains as a group had higher genetic diversity than strains from a single geographical population. The pairwise population fixation index (FST) values also indicated significant genetic differentiation among all compared geographical populations. The analysis of molecular variation (AMOVA) indicated greater genetic variation within individual populations and less genetic variation among populations. The results showed that most of the strains were not clustered according to their geographical origin, showing the rich genetic diversity and the complex and diverse genetic background of U. virens in southwest China. These results should help to better understand the biological and genetic diversity of U. virens in southwest China and provide a theoretical basis for building effective management strategies.
Collapse
Affiliation(s)
- Rongtao Fu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Cheng Chen
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Jian Wang
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| | - Yao Liu
- Crop Research Institute, Sichuan Academy of Agricultural Science, Chengdu 610066, China
| | - Liyu Zhao
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
| | - Daihua Lu
- Institute of Plant Protection, Sichuan Academy of Agricultural Science, 20# Jingjusi Rd., Chengdu 610066, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture, Chengdu 610066, China
| |
Collapse
|
3
|
Bashyal BM, Rohith M, Parmar P, Darshan K, Sunani SK, Aggarwal R. Biology and Management of Ustilaginoidea virens Causing False Smut Disease of Rice (Oryza sativa L.). Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
4
|
Sun W, Fan J, Fang A, Li Y, Tariqjaveed M, Li D, Hu D, Wang WM. Ustilaginoidea virens: Insights into an Emerging Rice Pathogen. ANNUAL REVIEW OF PHYTOPATHOLOGY 2020; 58:363-385. [PMID: 32364825 DOI: 10.1146/annurev-phyto-010820-012908] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
False smut of rice, caused by Ustilaginoidea virens, has become one of the most important diseases in rice-growing regions worldwide. The disease causes a significant yield loss and imposes health threats to humans and animals by producing mycotoxins. In this review, we update our understanding of the pathogen, including the disease cycle and infection strategies, the decoding of the U. virens genome, comparative/functional genomics, and effector biology. Whereas the decoding of the U. virens genome unveils specific adaptations of the pathogen in successfully occupying rice flowers, progresses in comparative/functional genomics and effector biology have begun to uncover the molecular mechanisms underlying U. virens virulence and pathogenicity. We highlight the identification and characterization of the produced mycotoxins and their biosynthetic pathways in U. virens.The management strategies for this disease are also discussed. The flower-specific infection strategy makes the pathogen a unique tool to unveil novel mechanisms for the interactions between nonobligate biotrophic pathogens and their hosts.
Collapse
Affiliation(s)
- Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Jing Fan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing 400715, China
| | - Yuejiao Li
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Muhammad Tariqjaveed
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green Management, China Agricultural University, Beijing 100193, China
| | - Dayong Li
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Dongwei Hu
- State Key Laboratory of Rice Biology, Biotechnology Institute, Zhejiang University, Hangzhou 310058, China
| | - Wen-Ming Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu 611130, China;
| |
Collapse
|
5
|
Development of a Low-Cost Narrow Band Multispectral Imaging System Coupled with Chemometric Analysis for Rapid Detection of Rice False Smut in Rice Seed. SENSORS 2020; 20:s20041209. [PMID: 32098377 PMCID: PMC7070825 DOI: 10.3390/s20041209] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/14/2020] [Accepted: 02/21/2020] [Indexed: 11/17/2022]
Abstract
Spectral imaging is a promising technique for detecting the quality of rice seeds. However, the high cost of the system has limited it to more practical applications. The study was aimed to develop a low-cost narrow band multispectral imaging system for detecting rice false smut (RFS) in rice seeds. Two different cultivars of rice seeds were artificially inoculated with RFS. Results have demonstrated that spectral features at 460, 520, 660, 740, 850, and 940 nm were well linked to the RFS. It achieved an overall accuracy of 98.7% with a false negative rate of 3.2% for Zheliang, and 91.4% with 6.7% for Xiushui, respectively, using the least squares-support vector machine. Moreover, the robustness of the model was validated through transferring the model of Zheliang to Xiushui with the overall accuracy of 90.3% and false negative rate of 7.8%. These results demonstrate the feasibility of the developed system for RFS identification with a low detecting cost.
Collapse
|
6
|
Wang Y, Wang F, Xie S, Liu Y, Qu J, Huang J, Yin W, Luo C. Development of rice conidiation media for Ustilaginoidea virens. PLoS One 2019; 14:e0217667. [PMID: 31647810 PMCID: PMC6812814 DOI: 10.1371/journal.pone.0217667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 10/14/2019] [Indexed: 12/03/2022] Open
Abstract
Rice false smut, caused by the ascomycete Ustilaginoidea virens, is a serious disease of rice worldwide. Conidia are very important infectious propagules of U. virens, but the ability of pathogenic isolates to produce conidia frequently decreases in culture, which influences pathogenicity testing. Here, we developed tissue media with rice leaves or panicles that stimulate conidiation of U. virens. Among the tested media, 0.10 g/ml panicle medium was most efficient for conidiation. Whereas, some rice leaf media more effectively increased conidiation than panicle media except 0.10 g/ml panicle medium, and certain non-filtered tissue media were better than their filtered counterparts. Although the conidia induced in rice tissue media were smaller, they were able to germinate on potato sucrose agar medium and infect rice normally. The rice tissue medium is also workable in inducing conidia for conidiation-defective isolates. This method provides a foundation for the production of conidia by U. virens that will be widely applicable in pathogenicity testing as well as in genetic analyses for false smut resistance in rice cultivars.
Collapse
Affiliation(s)
- Yufu Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Fei Wang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Songlin Xie
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Yi Liu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Jinsong Qu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Junbin Huang
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| | - Weixiao Yin
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| | - Chaoxi Luo
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring and Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Yu M, Yu J, Cao H, Yong M, Liu Y. Genome-wide identification and analysis of the GATA transcription factor gene family in Ustilaginoidea virens. Genome 2019; 62:807-816. [PMID: 31437416 DOI: 10.1139/gen-2018-0190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In filamentous fungi, the conserved transcription factors play important roles in multiple cellular and developmental processes. The GATA proteins, a family of GATA-binding zinc finger transcription factors, play diverse functions in fungi. Ustilaginoidea virens is an economically important pathogen-causing rice false smut worldwide. To gain additional insight into the cellular and molecular mechanisms of this pathogen, in this study, we identified and functionally characterized seven GATA proteins from the U. virens genome (UvGATA). Sequences analysis indicated that these GATA proteins are divided into seven clades. The proteins in each clade contained conserved clade-specific sequences and structures, thus leading to the same motif serving different purposes in various contexts. The expression profiles of UvGATA genes at different infection stages and under H2O2 stress were detected. Results showed that the majority of UvGATA genes performed functions at both processes, thereby confirming the roles of these genes in pathogenicity and reactive oxygen species stress tolerance. This study provided an important starting point to further explore the biological functions of UvGATA genes and increased our understanding of their potential transcriptional regulatory mechanisms in U. virens.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Huijuan Cao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Mingli Yong
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.,Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| |
Collapse
|
8
|
Zhang K, Li Y, Li T, Li ZG, Hsiang T, Zhang Z, Sun W. Pathogenicity Genes in Ustilaginoidea virens Revealed by a Predicted Protein-Protein Interaction Network. J Proteome Res 2017; 16:1193-1206. [PMID: 28099032 DOI: 10.1021/acs.jproteome.6b00720] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rice false smut, caused by Ustilaginoidea virens, produces significant losses in rice yield and grain quality and has recently emerged as one of the most important rice diseases worldwide. Despite its importance in rice production, relatively few studies have been conducted to illustrate the complex interactome and the pathogenicity gene interactions. Here a protein-protein interaction network of U. virens was built through two well-recognized approaches, interolog- and domain-domain interaction-based methods. A total of 20 217 interactions associated with 3305 proteins were predicted after strict filtering. The reliability of the network was assessed computationally and experimentally. The topology of the interactome network revealed highly connected proteins. A pathogenicity-related subnetwork involving up-regulated genes during early U. virens infection was also constructed, and many novel pathogenicity proteins were predicted in the subnetwork. In addition, we built an interspecies PPI network between U. virens and Oryza sativa, providing new insights for molecular interactions of this host-pathogen pathosystem. A web-based publicly available interactive database based on these interaction networks has also been released. In summary, a proteome-scale map of the PPI network was described for U. virens, which will provide new perspectives for finely dissecting interactions of genes related to its pathogenicity.
Collapse
Affiliation(s)
- Kang Zhang
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Yuejiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Tengjiao Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Zhi-Gang Li
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| | - Tom Hsiang
- School of Environmental Sciences, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University , Beijing 100193, China
| | - Wenxian Sun
- Department of Plant Pathology and the Ministry of Agriculture Key Laboratory for Plant Pathology, China Agricultural University , Beijing 100193, China
| |
Collapse
|
9
|
Fan J, Yang J, Wang Y, Li G, Li Y, Huang F, Wang W. Current understanding on Villosiclava virens, a unique flower-infecting fungus causing rice false smut disease. MOLECULAR PLANT PATHOLOGY 2016; 17:1321-1330. [PMID: 26720072 PMCID: PMC6638446 DOI: 10.1111/mpp.12362] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 12/25/2015] [Accepted: 12/27/2015] [Indexed: 05/13/2023]
Abstract
Villosiclava virens (Vv) is an ascomycete fungal pathogen that causes false smut disease in rice. Recent reports have revealed some interesting aspects of the enigmatic pathogen to address the question of why it specifically infects rice flowers and converts a grain into a false smut ball. Comparative and functional genomics have suggested specific adaptation of Vv in the colonization of rice flowers. Anatomical studies have disclosed that Vv specifically infects rice stamen filaments before heading and intercepts seed formation. In addition, Vv can occupy the whole inner space of a spikelet embracing all floral organs and activate the rice grain-filling network, presumably for nutrient acquisition to support the development of the false smut ball. This profile provides a general overview of the rice false smut pathogen, and summarizes advances in the Vv life cycle, genomics and genetics, and the molecular Vv-rice interaction. Current understandings of the Vv-rice pathosystem indicate that it is a unique and interesting system which can enrich the study of plant-pathogen interactions. Taxonomy: Ustilaginoidea virens is the anamorph form of the pathogen (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Incertae sedis; Order Incertae sedis; Family Incertae sedis; Genus Ustilaginoidea). The teleomorph form is Villosiclava virens (Kingdom Fungi; Phylum Ascomycota; Class Ascomycetes; Subclass Sordariomycetes; Order Hypocreales; Family Clavicipitaceae; Genus Villosiclava). Disease symptoms: The only visible symptom is the replacement of rice grains by ball-shaped fungal mycelia, namely false smut balls. When maturing, the false smut ball is covered with powdery chlamydospores, and the colour changes to yellowish, yellowish orange, green, olive green and, finally, to greenish black. Sclerotia are often formed on the false smut balls in autumn. Identification and detection: Vv conidia are round to elliptical, measuring 3-5 μm in diameter. Chlamydospores are ornamented with prominent irregularly curved spines, which are 200-500 nm in length. The sclerotia are black, horseshoe-shaped and irregular oblong or flat, ranging from 2 to 20 mm. Nested polymerase chain reaction (PCR) and quantitative PCR have been developed to specifically detect Vv presence in rice tissues and other biotic and abiotic samples in fields. Host range: Rice is the primary host for Vv. Natural infection by Vv has been found on several paddy field weeds, including Digitaria marginata, Panicum trypheron, Echinochloa crusgalli and Imperata cylindrica. However, the occurrence of infection in these potential alternative hosts is very rare. Life cycle: Vv infects rice spikelets at the late rice booting stage, and produces false smut balls covered with dark-green chlamydospores. Occasionally, sclerotia form on the surface of false smut balls in late autumn when the temperature fluctuates greatly between day and night. Both chlamydospores and sclerotia may serve as primary infection sources. Rainfall at the rice booting stage is a major environmental factor resulting in epidemics of rice false smut disease. Disease control: The use of fungicides is the major approach for the control of Vv. Several fungicides, such as cuproxat SC, copper oxychloride, tebuconazole, propiconazole, difenoconazole and validamycin, are often applied. However, the employment of resistant rice cultivars and genes has been limited, because of the poor understanding of rice resistance to Vv. Useful websites: Villosiclava virens genome sequence: http://www.ncbi.nlm.nih.gov/Traces/wgs/?val=JHTR01#contigs.
Collapse
Affiliation(s)
- Jing Fan
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Juan Yang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Yu‐Qiu Wang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Guo‐Bang Li
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Yan Li
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| | - Fu Huang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
- College of Agronomy & Institute of Agricultural EcologySichuan Agricultural UniversityChengdu611130China
| | - Wen‐Ming Wang
- Rice Research Institute & Key Laboratory for Major Crop DiseasesSichuan Agricultural UniversityChengdu611130China
| |
Collapse
|
10
|
UvHOG1 is important for hyphal growth and stress responses in the rice false smut fungus Ustilaginoidea virens. Sci Rep 2016; 6:24824. [PMID: 27095476 PMCID: PMC4837404 DOI: 10.1038/srep24824] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/06/2016] [Indexed: 11/23/2022] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most important diseases of rice worldwide. Although its genome has been sequenced, to date there is no report on targeted gene deletion in U. virens and no molecular studies on genetic mechanisms regulating the infection processes of this destructive pathogen. In this study, we attempted to generate knockout mutants of the ortholog of yeast HOG1 MAP kinase gene in U. virens. One Uvhog1 deletion mutant was identified after screening over 600 hygromycin-resistant transformants generated by Agrobacterium tumefaciens mediated transformation. The Uvhog1 mutant was reduced in growth rate and conidiation but had increased sensitivities to SDS, Congo red, and hyperosmotic stress. Deletion of UvHOG1 resulted in reduced expression of the stress response-related genes UvATF1 and UvSKN7. In the Uvhog1 mutant, NaCl treatment failed to stimulate the accumulation of sorbitol and glycerol. In addition, the Uvhog1 mutant had reduced toxicity on shoot growth in rice seed germination assays. Overall, as the first report of targeted gene deletion mutant in U. virens, our results showed that UvHOG1 likely has conserved roles in regulating stress responses, hyphal growth, and possibly secondary metabolism.
Collapse
|
11
|
Yu M, Yu J, Li H, Wang Y, Yin X, Bo H, Ding H, Zhou Y, Liu Y. Survey and analysis of simple sequence repeats in the Ustilaginoidea virens genome and the development of microsatellite markers. Gene 2016; 585:28-34. [PMID: 26992636 DOI: 10.1016/j.gene.2016.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/15/2022]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, causing quantitative and qualitative losses in rice industry. However, the development and application of simple sequence repeat (SSR) markers for genetic diversity studies in U. virens were limited. This study is the first to perform large-scale development of SSR markers of this pathogen at the genome level, to (1) compare these SSR markers with those of other fungi, (2) analyze the pattern of the SSRs, and (3) obtain more informative genetic markers. U. virens is rich in SSRs, and 13,778 SSRs were identified with a relative abundance of 349.7SSRs/Mb. The most common motifs in the genome or in noncoding regions were mononucleotides, whereas trinucleotides in coding sequences. A total of 6 out of 127 primers were randomly selected to be used to analyze 115 isolates, and these 6 primers showed high polymorphism in U. virens. This study may serve as an important resource for molecular genetic studies in U. virens.
Collapse
Affiliation(s)
- Mina Yu
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Huanhuan Li
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yahui Wang
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Xiaole Yin
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Huiwen Bo
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Ding
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Life Sciences College of Nanjing Agricultural University, Nanjing 210095, China
| | - Yuxin Zhou
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Jiangsu Academy of Agricultural Science, Nanjing 210014, China.
| |
Collapse
|
12
|
Yu M, Yu J, Hu J, Huang L, Wang Y, Yin X, Nie Y, Meng X, Wang W, Liu Y. Identification of pathogenicity-related genes in the rice pathogen Ustilaginoidea virens through random insertional mutagenesis. Fungal Genet Biol 2015; 76:10-9. [DOI: 10.1016/j.fgb.2015.01.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2014] [Revised: 12/31/2014] [Accepted: 01/16/2015] [Indexed: 10/24/2022]
|
13
|
De novo sequencing and transcriptome analysis of Ustilaginoidea virens by using Illumina paired-end sequencing and development of simple sequence repeat markers. Gene 2014; 547:202-10. [DOI: 10.1016/j.gene.2014.06.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/03/2014] [Accepted: 06/05/2014] [Indexed: 02/06/2023]
|
14
|
Abbas HK, Shier WT, Cartwright RD, Sciumbato GL. <i>Ustilaginoidea virens</i> Infection of Rice in Arkansas: Toxicity of False Smut Galls, Their Extracts and the Ustiloxin Fraction. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/ajps.2014.521333] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
15
|
Wang X, Liu Q, Wang H, Luo CX, Wang G, Luo M. A BAC based physical map and genome survey of the rice false smut fungus Villosiclava virens. BMC Genomics 2013; 14:883. [PMID: 24341590 PMCID: PMC3878662 DOI: 10.1186/1471-2164-14-883] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 12/04/2013] [Indexed: 01/08/2023] Open
Abstract
Background Rice false smut caused by Villosiclava virens is a devastating fungal disease that spreads in major rice-growing regions throughout the world. However, the genomic information for this fungal pathogen is limited and the pathogenic mechanism of this disease is still not clear. To facilitate genetic, molecular and genomic studies of this fungal pathogen, we constructed the first BAC-based physical map and performed the first genome survey for this species. Results High molecular weight genomic DNA was isolated from young mycelia of the Villosiclava virens strain UV-8b and a high-quality, large-insert and deep-coverage Bacterial Artificial Chromosome (BAC) library was constructed with the restriction enzyme HindIII. The BAC library consisted of 5,760 clones, which covers 22.7-fold of the UV-8b genome, with an average insert size of 140 kb and an empty clone rate of lower than 1%. BAC fingerprinting generated successful fingerprints for 2,290 BAC clones. Using the fingerprints, a whole genome-wide BAC physical map was constructed that contained 194 contigs (2,035 clones) spanning 51.2 Mb in physical length. Bidirectional-end sequencing of 4,512 BAC clones generated 6,560 high quality BAC end sequences (BESs), with a total length of 3,030,658 bp, representing 8.54% of the genome sequence. Analysis of the BESs revealed general genome information, including 51.52% GC content, 22.51% repetitive sequences, 376.12/Mb simple sequence repeat (SSR) density and approximately 36.01% coding regions. Sequence comparisons to other available fungal genome sequences through BESs showed high similarities to Metarhizium anisopliae, Trichoderma reesei, Nectria haematococca and Cordyceps militaris, which were generally in agreement with the 18S rRNA gene analysis results. Conclusion This study provides the first BAC-based physical map and genome information for the important rice fungal pathogen Villosiclava virens. The BAC clones, physical map and genome information will serve as fundamental resources to accelerate the genetic, molecular and genomic studies of this pathogen, including positional cloning, comparative genomic analysis and whole genome sequencing. The BAC library and physical map have been opened to researchers as public genomic resources (http://gresource.hzau.edu.cn/resource/resource.html).
Collapse
Affiliation(s)
| | | | | | | | | | - Meizhong Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
16
|
Sun X, Kang S, Zhang Y, Tan X, Yu Y, He H, Zhang X, Liu Y, Wang S, Sun W, Cai L, Li S. Genetic diversity and population structure of rice pathogen Ustilaginoidea virens in China. PLoS One 2013; 8:e76879. [PMID: 24098811 PMCID: PMC3786968 DOI: 10.1371/journal.pone.0076879] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/28/2013] [Indexed: 01/28/2023] Open
Abstract
Rice false smut caused by the fungal pathogen Ustilaginoidea virens is becoming a destructive disease throughout major rice-growing countries. Information about its genetic diversity and population structure is essential for rice breeding and efficient control of the disease. This study compared the genome sequences of two U. virens isolates. Three SNP-rich genomic regions were identified as molecular markers that could be used to analyze the genetic diversity and population structure of U. virens in China. A total of 56 multilocus sequence types (haplotypes) were identified out of 162 representative isolates from 15 provinces covering five major rice-growing areas in China. However, the phylogeny, based on sequences at individual SNP-rich regions, strongly conflicted with each other and there were significant genetic differences between different geographical populations. Gene flow between the different geographical populations and genetic differentiation within each geographical population were also detected. In addition, genetic recombination and genetic isolation resulting from geographic separation was also found.
Collapse
Affiliation(s)
- Xianyun Sun
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shu Kang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yongjie Zhang
- School of Life Sciences, Shanxi University, Taiyuan, P. R. China
| | - Xinqiu Tan
- Institute of Plant Protection, Hunan Academy of Agricultural Science, Changsha, P. R. China
| | - Yufei Yu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Haiyong He
- Guizhou Institute of Plant Protection, Guiyang, P. R. China
| | - Xinyu Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing, P. R. China
| | - Shu Wang
- Institute of Plant Protection, Liaoning Academy of Agricultural Science, Shenyang, P. R. China
| | - Wenxian Sun
- Department of Plant Pathology, China Agricultural University, Beijing, P. R. China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| | - Shaojie Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, P. R. China
| |
Collapse
|