1
|
Ding C, Ding Z, Liu Q, Liu W, Chai L. Advances in mechanism for the microbial transformation of heavy metals: implications for bioremediation strategies. Chem Commun (Camb) 2024; 60:12315-12332. [PMID: 39364540 DOI: 10.1039/d4cc03722g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Heavy metals are extensively discharged through various anthropogenic activities, resulting in an environmental risk on a global scale. In this case, microorganisms can survive in an extreme heavy metal-contaminated environment via detoxification or resistance, playing a pivotal role in the speciation, bioavailability, and mobility of heavy metals. Therefore, studies on the mechanism for the microbial transformation of heavy metals are of great importance and can provide guidance for heavy metal bioremediation. Current research studies on the microbial transformation of heavy metals mainly focus on the single oxidation, reduction and methylation pathways. However, complex microbial transformation processes and corresponding bioremediation strategies have never been clarified, which may involve the inherent physicochemical properties of heavy metals. To uncover the underlying mechanism, we reclassified heavy metals into three categories based on their biological transformation pathways, namely, metals that can be chelated, reduced or oxidized, and methylated. Firstly, we comprehensively characterized the difference in transmembrane pathways between heavy metal cations and anions. Further, biotransformation based on chelation by low-molecular-weight organic complexes is thoroughly discussed. Moreover, the progress and knowledge gaps in the microbial redox and (de)methylation mechanisms are discussed to establish a connection linking theoretical advancements with solutions to the heavy metal contamination problem. Finally, several efficient bioremediation strategies for heavy metals and the limitations of bioremediation are proposed. This review presents a solid contribution to the design of efficient microbial remediation strategies applied in the real environment.
Collapse
Affiliation(s)
- Chunlian Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Zihan Ding
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Qingcai Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Weizao Liu
- College of Materials Science and Engineering, Chongqing University, Chongqing, 400044, China.
| | - Liyuan Chai
- Institute of Environmental Science and Engineering, School of Metallurgy and Environment, Central South University, Changsha, 410083, China
| |
Collapse
|
2
|
Jeong GJ, Khan F, Tabassum N, Kim YM. Natural and synthetic molecules with potential to enhance biofilm formation and virulence properties in Pseudomonas aeruginosa. Crit Rev Microbiol 2024; 50:830-858. [PMID: 37968960 DOI: 10.1080/1040841x.2023.2282459] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 10/06/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
Pseudomonas aeruginosa can efficiently adapt to changing environmental conditions due to its ubiquitous nature, intrinsic/acquired/adaptive resistance mechanisms, high metabolic versatility, and the production of numerous virulence factors. As a result, P. aeruginosa becomes an opportunistic pathogen, causing chronic infection in the lungs and several organs of patients suffering from cystic fibrosis. Biofilm established by P. aeruginosa in host tissues and medical device surfaces has been identified as a major obstruction to antimicrobial therapy. P. aeruginosa is very likely to be closely associated with the various microorganisms in the host tissues or organs in a pathogenic or nonpathogenic behavior. Aside from host-derived molecules, other beneficial and pathogenic microorganisms produce a diverse range of secondary metabolites that either directly or indirectly favor the persistence of P. aeruginosa. Thus, it is critical to understand how P. aeruginosa interacts with different molecules and ions in the host and abiotic environment to produce extracellular polymeric substances and virulence factors. Thus, the current review discusses how various natural and synthetic molecules in the environment induce biofilm formation and the production of multiple virulence factors.
Collapse
Affiliation(s)
- Geum-Jae Jeong
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | - Fazlurrahman Khan
- Institute of Fisheries Sciences, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| | - Young-Mog Kim
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
3
|
Nie X, Li Q, Chen X, Onyango S, Xie J, Nie S. Bacterial extracellular vesicles: Vital contributors to physiology from bacteria to host. Microbiol Res 2024; 284:127733. [PMID: 38678680 DOI: 10.1016/j.micres.2024.127733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Bacterial extracellular vesicles (bEVs) represent spherical particles with diameters ranging from 20 to 400 nm filled with multiple parental bacteria-derived components, including proteins, nucleic acids, lipids, and other biomolecules. The production of bEVs facilitates bacteria interacting with their environment and exerting biological functions. It is increasingly evident that the bEVs play integral roles in both bacterial and host physiology, contributing to environmental adaptations to functioning as health promoters for their hosts. This review highlights the current state of knowledge on the composition, biogenesis, and diversity of bEVs and the mechanisms by which different bEVs elicit effects on bacterial physiology and host health. We posit that an in-depth exploration of the mechanistic aspects of bEVs activity is essential to elucidate their health-promoting effects on the host and may facilitate the translation of bEVs into applications as novel natural biological nanomaterials.
Collapse
Affiliation(s)
- Xinke Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Qiqiong Li
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | - Xinyang Chen
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China
| | | | - Junhua Xie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| | - Shaoping Nie
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
4
|
Sánchez-Jiménez A, Llamas MA, Marcos-Torres FJ. Transcriptional Regulators Controlling Virulence in Pseudomonas aeruginosa. Int J Mol Sci 2023; 24:11895. [PMID: 37569271 PMCID: PMC10418997 DOI: 10.3390/ijms241511895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/21/2023] [Accepted: 07/22/2023] [Indexed: 08/13/2023] Open
Abstract
Pseudomonas aeruginosa is a pathogen capable of colonizing virtually every human tissue. The host colonization competence and versatility of this pathogen are powered by a wide array of virulence factors necessary in different steps of the infection process. This includes factors involved in bacterial motility and attachment, biofilm formation, the production and secretion of extracellular invasive enzymes and exotoxins, the production of toxic secondary metabolites, and the acquisition of iron. Expression of these virulence factors during infection is tightly regulated, which allows their production only when they are needed. This process optimizes host colonization and virulence. In this work, we review the intricate network of transcriptional regulators that control the expression of virulence factors in P. aeruginosa, including one- and two-component systems and σ factors. Because inhibition of virulence holds promise as a target for new antimicrobials, blocking the regulators that trigger the production of virulence determinants in P. aeruginosa is a promising strategy to fight this clinically relevant pathogen.
Collapse
Affiliation(s)
| | - María A. Llamas
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| | - Francisco Javier Marcos-Torres
- Department of Biotechnology and Environmental Protection, Estación Experimental del Zaidín-Consejo Superior de Investigaciones Científicas, 18008 Granada, Spain;
| |
Collapse
|
5
|
Del Rio Flores A, Barber CC, Narayanamoorthy M, Gu D, Shen Y, Zhang W. Biosynthesis of Isonitrile- and Alkyne-Containing Natural Products. Annu Rev Chem Biomol Eng 2022; 13:1-24. [PMID: 35236086 PMCID: PMC9811556 DOI: 10.1146/annurev-chembioeng-092120-025140] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Natural products are a diverse class of biologically produced compounds that participate in fundamental biological processes such as cell signaling, nutrient acquisition, and interference competition. Unique triple-bond functionalities like isonitriles and alkynes often drive bioactivity and may serve as indicators of novel chemical logic and enzymatic machinery. Yet, the biosynthetic underpinnings of these groups remain only partially understood, constraining the opportunity to rationally engineer biomolecules with these functionalities for applications in pharmaceuticals, bioorthogonal chemistry, and other value-added chemical processes. Here, we focus our review on characterized biosynthetic pathways for isonitrile and alkyne functionalities, their bioorthogonal transformations, and prospects for engineering their biosynthetic machinery for biotechnological applications.
Collapse
Affiliation(s)
- Antonio Del Rio Flores
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
| | - Colin C Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, California, USA;
| | | | - Di Gu
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Yuanbo Shen
- Department of Chemistry, University of California, Berkeley, California, USA; , ,
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California, USA; ,
- Chan Zuckerberg Biohub, San Francisco, California, USA
| |
Collapse
|
6
|
Massarotti A, Brunelli F, Aprile S, Giustiniano M, Tron GC. Medicinal Chemistry of Isocyanides. Chem Rev 2021; 121:10742-10788. [PMID: 34197077 DOI: 10.1021/acs.chemrev.1c00143] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In eons of evolution, isocyanides carved out a niche in the ecological systems probably thanks to their metal coordinating properties. In 1859 the first isocyanide was synthesized by humans and in 1950 the first natural isocyanide was discovered. Now, at the beginning of XXI century, hundreds of isocyanides have been isolated both in prokaryotes and eukaryotes and thousands have been synthesized in the laboratory. For some of them their ecological role is known, and their potent biological activity as antibacterial, antifungal, antimalarial, antifouling, and antitumoral compounds has been described. Notwithstanding, the isocyanides have not gained a good reputation among medicinal chemists who have erroneously considered them either too reactive or metabolically unstable, and this has restricted their main use to technical applications as ligands in coordination chemistry. The aim of this review is therefore to show the richness in biological activity of the isocyanide-containing molecules, to support the idea of using the isocyanide functional group as an unconventional pharmacophore especially useful as a metal coordinating warhead. The unhidden hope is to convince the skeptical medicinal chemists of the isocyanide potential in many areas of drug discovery and considering them in the design of future drugs.
Collapse
Affiliation(s)
- Alberto Massarotti
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Francesca Brunelli
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Silvio Aprile
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia, Università degli Studi di Napoli "Federico II", Via D. Montesano 49, 80131 Napoli, Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy
| |
Collapse
|
7
|
Chen TY, Chen J, Tang Y, Zhou J, Guo Y, Chang WC. Current Understanding toward Isonitrile Group Biosynthesis and Mechanism. CHINESE J CHEM 2021; 39:463-472. [PMID: 34658601 PMCID: PMC8519408 DOI: 10.1002/cjoc.202000448] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/21/2020] [Indexed: 12/20/2022]
Abstract
Isonitrile group has been identified in many natural products. Due to the broad reactivity of N≡C triple bond, these natural products have valuable pharmaceutical potentials. This review summarizes the current biosynthetic pathways and the corresponding enzymes that are responsible for isonitrile-containing natural product generation. Based on the strategies utilized, two fundamentally distinctive approaches are discussed. In addition, recent progress in elucidating isonitrile group formation mechanisms is also presented.
Collapse
Affiliation(s)
- Tzu-Yu Chen
- Department of Chemistry, North Carolina State University Raleigh, NC 27695, U.S.A
| | - Jinfeng Chen
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
| | - Jiahai Zhou
- State Key Laboratory of Bio-organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai 200032, China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, U.S.A
| | - Wei-chen Chang
- Department of Chemistry, North Carolina State University Raleigh, NC 27695, U.S.A
| |
Collapse
|
8
|
Vanderwoude J, Fleming D, Azimi S, Trivedi U, Rumbaugh KP, Diggle SP. The evolution of virulence in Pseudomonas aeruginosa during chronic wound infection. Proc Biol Sci 2020; 287:20202272. [PMID: 33081616 DOI: 10.1098/rspb.2020.2272] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Opportunistic pathogens are associated with a number of chronic human infections, yet the evolution of virulence in these organisms during chronic infection remains poorly understood. Here, we tested the evolution of virulence in the human opportunistic pathogen Pseudomonas aeruginosa in a murine chronic wound model using a two-part serial passage and sepsis experiment, and found that virulence evolved in different directions in each line of evolution. We also assessed P. aeruginosa adaptation to a chronic wound after 42 days of evolution and found that morphological diversity in our evolved populations was limited compared with that previously described in cystic fibrosis (CF) infections. Using whole-genome sequencing, we found that genes previously implicated in P. aeruginosa pathogenesis (lasR, pilR, fleQ, rpoN and pvcA) contained mutations during the course of evolution in wounds, with selection occurring in parallel across all lines of evolution. Our findings highlight that: (i) P. aeruginosa heterogeneity may be less extensive in chronic wounds than in CF lungs; (ii) genes involved in P. aeruginosa pathogenesis acquire mutations during chronic wound infection; (iii) similar genetic adaptations are employed by P. aeruginosa across multiple infection environments; and (iv) current models of virulence may not adequately explain the diverging evolutionary trajectories observed in an opportunistic pathogen during chronic wound infection.
Collapse
Affiliation(s)
- Jelly Vanderwoude
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Derek Fleming
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Sheyda Azimi
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Urvish Trivedi
- Section of Microbiology, Department of Biology, Faculty of Science, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Kendra P Rumbaugh
- Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Stephen P Diggle
- Center for Microbial Dynamics and Infection, School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
9
|
Iftikhar A, Asif A, Manzoor A, Azeem M, Sarwar G, Rashid N, Qaisar U. Mutation in pvcABCD operon of Pseudomonas aeruginosa modulates MexEF-OprN efflux system and hence resistance to chloramphenicol and ciprofloxacin. Microb Pathog 2020; 149:104491. [PMID: 32941967 DOI: 10.1016/j.micpath.2020.104491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/05/2020] [Accepted: 09/05/2020] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa harbors pvcABCD operon that is responsible for the synthesis of paerucumarin. Here we report the involvement of pvcABCD operon in chloramphenicol and ciprofloxacin resistance. P. aeruginosa mutant defective in pvcB (PW4832) was more sensitive to chloramphenicol and ciprofloxacin in comparison with its parent strain (MPAO1). A mutation in pvcA gene in MPAO1 (PW4830) did not alter the sensitivity to either antibiotic. As chloramphenicol and ciprofloxacin are substrates of MexEF-OprN efflux pump, so we decided to investigate the modulation of MexEF-OprN and its transcriptional regulator MexT in PW4832, PW4830 and MPAO1 strains. We isolated and sequenced mexT gene from MPAO1, PW4830 and PW4832. The nucleotide sequence of mexT gene in all three strains was identical. Expression levels of mexEF-oprN, mexT and mexS genes were checked via quantitative real-time RT-PCR. All these genes showed significant repression in mRNA levels in PW4832 as compared to MPAO1. These results indicate that chloramphenicol and ciprofloxacin sensitivity in PW4832 is due to transcriptional repression of mexT and mexEF-oprN genes. Exogenous addition of paerucumarin resumed the expression of mexT and mexEF-oprN genes as well as resistance against chloramphenicol and ciprofloxacin in PW4832 strain. This is a novel finding linking pvcB gene of P. aeruginosa with chloramphenicol and ciprofloxacin resistance and MexEF-OprN pump modulation which needs to be further explored.
Collapse
Affiliation(s)
- Anam Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Azka Asif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Asma Manzoor
- Institute of Biochemistry and Biotechnology, University of the Punjab, Lahore, Pakistan
| | - Muhammad Azeem
- Botany Department, Government College University, Faisalabad, Pakistan
| | - Ghulam Sarwar
- Cotton Research Station, Ayub Agriculture Research Institute, Faisalabad, Pakistan
| | - Naeem Rashid
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Uzma Qaisar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
10
|
Abstract
Natural products from microorganisms are important small molecules that play roles in various biological processes like cellular growth, motility, nutrient acquisition, stress response, biofilm formation, and defense. It is hypothesized that pathogens exploit these molecules to regulate virulence and persistence during infections. Here, we present selected examples of signaling natural products from human pathogenic bacteria that use these metabolites to gain a competitive advantage. Targeting these signaling systems provides novel strategies to antimicrobial treatments.
Collapse
Affiliation(s)
- Zhijuan Hu
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, 201 Gilman Hall, Berkeley, California 94720, United States
- Chan Zuckerberg Biohub, San Francisco, California 94158, United States
| |
Collapse
|
11
|
Nazik H, Sass G, Ansari SR, Ertekin R, Haas H, Déziel E, Stevens DA. Novel intermicrobial molecular interaction: Pseudomonas aeruginosa Quinolone Signal (PQS) modulates Aspergillus fumigatus response to iron. MICROBIOLOGY-SGM 2019; 166:44-55. [PMID: 31778108 DOI: 10.1099/mic.0.000858] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af), the commonest bacterium and fungus in compromised host airways, compete for iron (Fe). The Pseudomonas quinolone signal (PQS), a Pa quorum sensing molecule, also chelates Fe, and delivers Fe to the Pa cell membrane using Pa siderophores. In models of Af biofilm formation or preformed biofilms, PQS inhibited Af in a low Fe environment. AfΔsidA (mutant unable to produce siderophores) biofilm was more sensitive to PQS inhibition than wild-type (WT), as was planktonic AfΔsidA growth. PQS decreased WT Af growth on agar. All these inhibitory actions were reversed by Fe. The Pa siderophore pyoverdin, or Af siderophore inhibitor celastrol, act cooperatively with PQS in Af inhibition. These findings all indicate PQS inhibition is owing to Fe chelation. Remarkably, in high Fe environments, PQS enhanced Af biofilm at 1/100 to 1/2000 Fe concentration required for Fe alone to enhance. Planktonic Af growth, and on agar, Af conidiation, were also enhanced by PQS+Fe compared to Fe alone. In contrast, neither AfΔsidA biofilm, nor planktonic AfΔsidA, were enhanced by PQS-Fe compared to Fe. When Af siderophore ferricrocin (FC),+PQS, were added to AfΔsidA, Af was then boosted more than by FC alone. Moreover, FC+PQS+Fe boosted AfΔsidA more than Fe, FC, FC+Fe, PQS+FC or PQS+Fe. Thus PQS-Fe maximal stimulation requires Af siderophores. PQS inhibits Af via chelation under low Fe conditions. In a high Fe environment, PQS paradoxically stimulates Af efficiently, and this involves Af siderophores. PQS production by Pa could stimulate Af in cystic fibrosis airways, where Fe homeostasis is altered and Fe levels increase, supporting fungal growth.
Collapse
Affiliation(s)
- Hasan Nazik
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Gabriele Sass
- Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA.,California Institute for Medical Research, San Jose, CA, USA
| | - Shajia R Ansari
- California Institute for Medical Research, San Jose, CA, USA
| | - Reyhan Ertekin
- California Institute for Medical Research, San Jose, CA, USA
| | - Hubertus Haas
- Division of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Eric Déziel
- INRS-Institut Armand-Frappier, Laval, Quebec, Canada
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA, USA.,Division of Infectious Diseases and Geographic Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
12
|
Asif A, Iftikhar A, Hamood A, Colmer-Hamood JA, Qaisar U. Isonitrile-functionalized tyrosine modulates swarming motility and quorum sensing in Pseudomonas aeruginosa. Microb Pathog 2018; 127:288-295. [PMID: 30528249 DOI: 10.1016/j.micpath.2018.12.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/02/2018] [Accepted: 12/03/2018] [Indexed: 11/16/2022]
Abstract
Paerucumarin synthesized by pvc operon pvcABCD is an iron binding molecule which modulates biofilm formation in Pseudomonas aeruginosa but its direct function in bacterial pathogenesis needs further investigation. pvcA synthesizes isonitrile functionalized tyrosine (IFT) which is converted to mature paerucumarin by the proteins encoded by pvcB, pvcC and pvcD genes. Interruption of pvcB in MPAO1 resulted in accumulation of IFT as it cannot be converted to mature molecule. The MPAO1 pvcB mutant (PW4832) showed enhanced swarming motility, while complementation with plasmid pLL2 carrying pvcB reduced swarming motility. Enhanced levels of rhlA expression and rhamnolipid production were observed in PW4832 compared to the parent strain. Overexpression of ptxR, the positive regulator of pvcABCD, in PW4832 caused accumulation of more IFT and further elevated the level of rhlA expression. Expression of the quorum sensing system transcriptional activators lasR and rhlR, as well as the synthase genes lasI and rhlI, was enhanced in PW4832 compared to MPAO1, as was PQS accumulation. Exogenously added IFT, but not paerucumarin, enhanced the production of rhamnolipids in P. aeruginosa. These results suggest that IFT enhances swarming motility in P. aeruginosa either directly by enhancing rhamnolipid production or indirectly through modulation of the quorum sensing systems. This is the first report assigning an independent function to IFT in P. aeruginosa.
Collapse
Affiliation(s)
- Azka Asif
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Anam Iftikhar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Abdul Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Jane A Colmer-Hamood
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA; Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA
| | - Uzma Qaisar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan.
| |
Collapse
|
13
|
Rossi E, Paroni M, Landini P. Biofilm and motility in response to environmental and host-related signals in Gram negative opportunistic pathogens. J Appl Microbiol 2018; 125:1587-1602. [PMID: 30153375 DOI: 10.1111/jam.14089] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/30/2018] [Accepted: 07/20/2018] [Indexed: 12/13/2022]
Abstract
Most bacteria can switch between a planktonic, sometimes motile, form and a biofilm mode, in which bacterial cells can aggregate and attach to a solid surface. The transition between these two forms represents an example of bacterial adaptation to environmental signals and stresses. In 'environmental pathogens', namely, environmental bacteria that are also able to cause disease in animals and humans, signals associated either with the host or with the external environment, such as temperature, oxygen availability, nutrient concentrations etc., play a major role in triggering the switch between the motile and the biofilm mode, via complex regulatory mechanisms that control flagellar synthesis and motility, and production of adhesion factors. In this review article, we present examples of how environmental signals can impact biofilm formation and cell motility in the Gram negative bacteria Pseudomonas aeruginosa, Escherichia coli and in the Burkholderia genus, and how the switch between motile and biofilm mode can be an essential part of a more general process of adaptation either to the host or to the external environment.
Collapse
Affiliation(s)
- E Rossi
- Department of Clinical Microbiology, Rigshospitalet, København, Denmark
| | - M Paroni
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| | - P Landini
- Department of Biosciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
14
|
Chevalier S, Bouffartigues E, Bazire A, Tahrioui A, Duchesne R, Tortuel D, Maillot O, Clamens T, Orange N, Feuilloley MGJ, Lesouhaitier O, Dufour A, Cornelis P. Extracytoplasmic function sigma factors in Pseudomonas aeruginosa. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2018; 1862:706-721. [PMID: 29729420 DOI: 10.1016/j.bbagrm.2018.04.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 03/06/2018] [Accepted: 04/30/2018] [Indexed: 01/26/2023]
Abstract
The opportunistic pathogen Pseudomonas aeruginosa, like all members of the genus Pseudomonas, has the capacity to thrive in very different environments, ranging from water, plant roots, to animals, including humans to whom it can cause severe infections. This remarkable adaptability is reflected in the number of transcriptional regulators, including sigma factors in this bacterium. Among those, the 19 to 21 extracytoplasmic sigma factors (ECFσ) are endowed with different regulons and functions, including the iron starvation σ (PvdS, FpvI, HasI, FecI, FecI2 and others), the cell wall stress ECFσ AlgU, SigX and SbrI, and the unorthodox σVreI involved in the expression of virulence. Recently published data show that these ECFσ have separate regulons although presenting some cross-talk. We will present evidence that these different ECFσ are involved in the expression of different phenotypes, ranging from cell-wall stress response, production of extracellular polysaccharides, formation of biofilms, to iron acquisition.
Collapse
Affiliation(s)
- Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France.
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alexis Bazire
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Ali Tahrioui
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Rachel Duchesne
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Damien Tortuel
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Thomas Clamens
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Nicole Orange
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Olivier Lesouhaitier
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| | - Alain Dufour
- IUEM, Université de Bretagne-Sud (UBL), Laboratoire de Biotechnologie et Chimie Marines EA 3884, Lorient, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment LMSM EA 4312, Normandy University, University of Rouen, 27000 Evreux, France
| |
Collapse
|