1
|
Suárez‐Moo P, Prieto‐Davó A. Biosynthetic potential of the sediment microbial subcommunities of an unexplored karst ecosystem and its ecological implications. Microbiologyopen 2024; 13:e1407. [PMID: 38593340 PMCID: PMC11003711 DOI: 10.1002/mbo3.1407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/13/2024] [Accepted: 03/16/2024] [Indexed: 04/11/2024] Open
Abstract
Microbial communities from various environments have been studied in the quest for new natural products with a broad range of applications in medicine and biotechnology. We employed an enrichment method and genome mining tools to examine the biosynthetic potential of microbial communities in the sediments of a coastal sinkhole within the karst ecosystem of the Yucatán Peninsula, Mexico. Our investigation led to the detection of 203 biosynthetic gene clusters (BGCs) and 55 secondary metabolites (SMs) within 35 high-quality metagenome-assembled genomes (MAGs) derived from these subcommunities. The most abundant types of BGCs were Terpene, Nonribosomal peptide-synthetase, and Type III polyketide synthase. Some of the in silico identified BGCs and SMs have been previously reported to exhibit biological activities against pathogenic bacteria and fungi. Others could play significant roles in the sinkhole ecosystem, such as iron solubilization and osmotic stress protection. Interestingly, 75% of the BGCs showed no sequence homology with bacterial BGCs previously reported in the MiBIG database. This suggests that the microbial communities in this environment could be an untapped source of genes encoding novel specialized compounds. The majority of the BGCs were identified in pathways found in the genus Virgibacillus, followed by Sporosarcina, Siminovitchia, Rhodococcus, and Halomonas. The latter, along with Paraclostridium and Lysinibacillus, had the highest number of identified BGC types. This study offers fresh insights into the potential ecological role of SMs from sediment microbial communities in an unexplored environment, underscoring their value as a source of novel natural products.
Collapse
Affiliation(s)
- Pablo Suárez‐Moo
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| | - Alejandra Prieto‐Davó
- Unidad de Química‐Sisal, Facultad de QuímicaUniversidad Nacional Autónoma de MéxicoSisalYucatánMéxico
| |
Collapse
|
2
|
Fajardo-Hernández C, Khan FST, Flores-Bocanegra L, Prieto-Davó A, Wan B, Ma R, Qader M, Villanueva-Silva R, Martínez-Cárdenas A, López-Lobato MA, Hematian S, Franzblau SG, Raja HA, García-Contreras R, Figueroa M. Insights into the Chemical Diversity of Selected Fungi from the Tza Itzá Cenote of the Yucatan Peninsula. ACS OMEGA 2022; 7:12171-12185. [PMID: 35449929 PMCID: PMC9016812 DOI: 10.1021/acsomega.2c00544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Cenotes are habitats with unique physical, chemical, and biological features. Unexplored microorganisms from these sinkholes represent a potential source of bioactive molecules. Thus, a series of cultivable fungi (Aspergillus spp. NCA257, NCA264, and NCA276, Stachybotrys sp. NCA252, and Cladosporium sp. NCA273) isolated from the cenote Tza Itzá were subjected to chemical, coculture, and metabolomic analyses. Nineteen compounds were obtained and tested for their antimicrobial potential against ESKAPE pathogens, Mycobacterium tuberculosis, and nontuberculous mycobacteria. In particular, phenylspirodrimanes from Stachybotrys sp. NCA252 showed significant activity against MRSA, MSSA, and mycobacterial strains. On the other hand, the absolute configuration of the new compound 17-deoxy-aspergillin PZ (1) isolated from Aspergillus sp. NCA276 was established via single-crystal X-ray crystallography. Also, the chemical analysis of the cocultures between Aspergillus and Cladosporium strains revealed the production of metabolites that were not present or were barely detected in the monocultures. Finally, molecular networking analysis of the LC-MS-MS/MS data for each fungus was used as a tool for the annotation of additional compounds, increasing the chemical knowledge on the corresponding fungal strains. Overall, this is the first systematic chemical study on fungi isolated from a sinkhole in Mexico.
Collapse
Affiliation(s)
- Carlos
A. Fajardo-Hernández
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Firoz Shah Tuglak Khan
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Laura Flores-Bocanegra
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Alejandra Prieto-Davó
- Unidad
de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Sisal, Yucatán 97356, Mexico
| | - Baojie Wan
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Rui Ma
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Mallique Qader
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Rodrigo Villanueva-Silva
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Anahí Martínez-Cárdenas
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Marian A. López-Lobato
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Shabnam Hematian
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Scott G. Franzblau
- Institute
for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago, Chicago, Illinois 60612, United States
| | - Huzefa A. Raja
- Department
of Chemistry and Biochemistry, University
of North Carolina Greensboro, Greensboro, North Carolina 27402, United States
| | - Rodolfo García-Contreras
- Departamento
de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| | - Mario Figueroa
- Departamento
de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
| |
Collapse
|
3
|
Changes in the sediment microbial community structure of coastal and inland sinkholes of a karst ecosystem from the Yucatan peninsula. Sci Rep 2022; 12:1110. [PMID: 35064185 PMCID: PMC8782880 DOI: 10.1038/s41598-022-05135-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/31/2021] [Indexed: 01/04/2023] Open
Abstract
The karst underground river ecosystem of Yucatan peninsula is composed of cave systems and sinkholes. The microbial diversity of water from this underground river has been studied, but, structure of the microbial community in its cave sediments remained largely unknown. Here we describe how the microbial community structure of these sediments changes due to different environmental conditions found in sediment zones along the caves of a coastal and an inland sinkhole. We found that dominant microbial groups varied according to the type of sinkhole (Coastal: Chloroflexi and Crenarchaeota; inland: Methylomirabilota and Acidobacteriota) and that the community structures differed both among sinkhole types, and within the sediment zones that were studied. These microorganisms are associated with different types of metabolism, and differed from a microbial community dominated by sulfate reducers at the coastal sinkhole, to one dominated by methylotrophs at the inland sinkhole, suggesting there are biogeochemical processes in the coastal and inland sinkholes that lead to changes in the microbial composition of the underground river ecosystem's sediments. Our results suggest sediments from unexplored sinkhole caves are unique environmental niches with distinct microbial assemblages that putatively play an important role in the biogeochemical cycles of these ecosystems.
Collapse
|