1
|
Hong H, Kim HJ, Kim HJ, Jo C. Investigation of different cold adaptation abilities in Salmonella enterica serotype Typhimurium strains using extracellular metabolomic approach. Int Microbiol 2024:10.1007/s10123-024-00556-0. [PMID: 38977514 DOI: 10.1007/s10123-024-00556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/25/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
This study explored the extracellular metabolomic responses of three different Salmonella enterica serotype Typhimurium (S. Typhimurium) strains-ATCC 13311 (STy1), NCCP 16964 (STy4), and NCCP 16958 (STy8)-cultured at refrigeration temperatures. The objective was to identify the survival mechanisms of S. Typhimurium under cold stress by analyzing variations in their metabolomic profiles. Qualitative and quantitative assessments identified significant metabolite alterations on day 6, marking a critical inflection point. Key metabolites such as trehalose, proline, glycerol, and tryptophan were notably upregulated in response to cold stress. Through multivariate analyses, the strains were distinguished using three metabolites-4-aminobutyrate, ethanol, and uridine-as potential biomarkers, underscoring distinct metabolic responses to refrigeration. Specifically, STy1 exhibited unique adaptive capabilities through enhanced metabolism of betaine and 4-aminobutyrate. These findings highlight the variability in adaptive strategies among S. Typhimurium strains, suggesting that certain strains may possess more robust metabolic pathways for enhancing survival in refrigerated conditions.
Collapse
Affiliation(s)
- Heesang Hong
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hye-Jin Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyun-Jun Kim
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Cheorun Jo
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, and Research Institute of Agriculture and Life Science, Seoul National University, Seoul, 08826, Republic of Korea.
- Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang, 25354, Republic of Korea.
- Department of Animal Product Technology, Faculty of Animal Husbandry, Universitas Padjadjaran, West Java, 45363, Indonesia.
| |
Collapse
|
2
|
Qiu Q, Li H, Sun X, Zhang L, Tian K, Chang M, Li S, Zhou D, Huo H. Study on the estradiol degradation gene expression and resistance mechanism of Rhodococcus R-001 under low-temperature stress. CHEMOSPHERE 2024; 358:142146. [PMID: 38677604 DOI: 10.1016/j.chemosphere.2024.142146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/03/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024]
Abstract
Estradiol (E2), an endocrine disruptor, acts by mimicking or interfering with the normal physiological functions of natural hormones within organisms, leading to issues such as endocrine system disruption. Notably, seasonal fluctuations in environmental temperature may influence the degradation speed of estradiol (E2) in the natural environment, intensifying its potential health and ecological risks. Therefore, this study aims to explore how bacteria can degrade E2 under low-temperature conditions, unveiling their resistance mechanisms, with the goal of developing new strategies to mitigate the threat of E2 to health and ecological safety. In this paper, we found that Rhodococcus equi DSSKP-R-001 (R-001) can efficiently degrade E2 at 30 °C and 10 °C. Six genes in R-001 were shown to be involved in E2 degradation by heterologous expression at 30 °C. Among them, 17β-HSD, KstD2, and KstD3, were also involved in E2 degradation at 10 °C; KstD was not previously known to degrade E2. RNA-seq was used to characterize differentially expressed genes (DEGs) to explore the stress response of R-001 to low-temperature environments to elucidate the strain's adaptation mechanism. At the low temperature, R-001 cells changed from a round spherical shape to a long rod or irregular shape with elevated unsaturated fatty acids and were consistent with the corresponding genetic changes. Many differentially expressed genes linked to the cold stress response were observed. R-001 was found to upregulate genes encoding cold shock proteins, fatty acid metabolism proteins, the ABC transport system, DNA damage repair, energy metabolism and transcriptional regulators. In this study, we demonstrated six E2 degradation genes in R-001 and found for the first time that E2 degradation genes have different expression characteristics at 30 °C and 10 °C. Linking R-001 to cold acclimation provides new insights and a mechanistic basis for the simultaneous degradation of E2 under cold stress in Rhodococcus adaptation.
Collapse
Affiliation(s)
- Qing Qiu
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Han Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Xuejian Sun
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Lili Zhang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Kejian Tian
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Menghan Chang
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Shuaiguo Li
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China.
| | - Dandan Zhou
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| | - Hongliang Huo
- School of Environment, Northeast Normal University, No. 2555 Jingyue Avenue, Changchun City, Jilin Province, China; Engineering Research Center of Low-Carbon Treatment and Green Development of Polluted Water in Northeast China, Ministry of Education, Northeast Normal University, Changchun, 130117, China.
| |
Collapse
|
3
|
Ramón A, Esteves A, Villadóniga C, Chalar C, Castro-Sowinski S. A general overview of the multifactorial adaptation to cold: biochemical mechanisms and strategies. Braz J Microbiol 2023; 54:2259-2287. [PMID: 37477802 PMCID: PMC10484896 DOI: 10.1007/s42770-023-01057-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/29/2023] [Indexed: 07/22/2023] Open
Abstract
Cold environments are more frequent than people think. They include deep oceans, cold lakes, snow, permafrost, sea ice, glaciers, cold soils, cold deserts, caves, areas at elevations greater than 3000 m, and also artificial refrigeration systems. These environments are inhabited by a diversity of eukaryotic and prokaryotic organisms that must adapt to the hard conditions imposed by cold. This adaptation is multifactorial and includes (i) sensing the cold, mainly through the modification of the liquid-crystalline membrane state, leading to the activation of a two-component system that transduce the signal; (ii) adapting the composition of membranes for proper functions mainly due to the production of double bonds in lipids, changes in hopanoid composition, and the inclusion of pigments; (iii) producing cold-adapted proteins, some of which show modifications in the composition of amino acids involved in stabilizing interactions and structural adaptations, e.g., enzymes with high catalytic efficiency; and (iv) producing ice-binding proteins and anti-freeze proteins, extracellular polysaccharides and compatible solutes that protect cells from intracellular and extracellular ice. However, organisms also respond by reprogramming their metabolism and specifically inducing cold-shock and cold-adaptation genes through strategies such as DNA supercoiling, distinctive signatures in promoter regions and/or the action of CSPs on mRNAs, among others. In this review, we describe the main findings about how organisms adapt to cold, with a focus in prokaryotes and linking the information with findings in eukaryotes.
Collapse
Affiliation(s)
- Ana Ramón
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Adriana Esteves
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Carolina Villadóniga
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Cora Chalar
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay
| | - Susana Castro-Sowinski
- Sección Bioquímica, Instituto de Biología, Facultad de Ciencias, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
- Laboratorio de Biocatalizadores Y Sus Aplicaciones, Facultad de Ciencias, Instituto de Química Biológica, Universidad de La República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
4
|
Shift of Choline/Betaine Pathway in Recombinant Pseudomonas for Cobalamin Biosynthesis and Abiotic Stress Protection. Int J Mol Sci 2022; 23:ijms232213934. [PMID: 36430408 PMCID: PMC9699165 DOI: 10.3390/ijms232213934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The B12-producing strains Pseudomonas nitroreducens DSM 1650 and Pseudomonas sp. CCUG 2519 (both formerly Pseudomonas denitrificans), with the most distributed pathway among bacteria for exogenous choline/betaine utilization, are promising recombinant hosts for the endogenous production of B12 precursor betaine by direct methylation of bioavailable glycine or non-proteinogenic β-alanine. Two plasmid-based de novo betaine pathways, distinguished by their enzymes, have provided an expression of the genes encoding for N-methyltransferases of the halotolerant cyanobacterium Aphanothece halophytica or plant Limonium latifolium to synthesize the internal glycine betaine or β-alanine betaine, respectively. These betaines equally allowed the recombinant pseudomonads to grow effectively and to synthesize a high level of cobalamin, as well as to increase their protective properties against abiotic stresses to a degree comparable with the supplementation of an exogenous betaine. Both de novo betaine pathways significantly enforced the protection of bacterial cells against lowering temperature to 15 °C and increasing salinity to 400 mM of NaCl. However, the expression of the single plant-derived gene for the β-alanine-specific N-methyltransferase additionally increased the effectiveness of exogenous glycine betaine almost twofold on cobalamin biosynthesis, probably due to the Pseudomonas' ability to use two independent pathways, their own choline/betaine pathway and the plant β-alanine betaine biosynthetic pathway.
Collapse
|
5
|
Sami Z, Kaouthar M, Nadia C, Hedi BM. Effect of sunlight and salinity on the survival of pathogenic and non-pathogenic strains of Vibrio parahaemolyticus in water microcosms. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10689. [PMID: 35112431 DOI: 10.1002/wer.10689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
The effect of sunlight and salinities (10, 20, 39, and 60 psu) on the survival of Vibrio parahaemolyticus strains carrying either (thermostable direct hemolysin) tdh, the (thermostable related hemolysin) trh, and both or none of them were studied in water microcosms stabilized at 20°C using plate count agar and acridine orange direct viable count. All V. parahaemolyticus strains exposed to sunlight rapidly lose their culturability and evolve into a viable but non-culturable state (VBNC). However, the tdh positive strains remain more culturable than the non-virulent or trh positive strain but statically insignificant. At tested salinities, the survival time was higher at 10, 20, and 60 psu compared with that observed in seawater (39 psu). In seawater under dark condition, Vibrio strains remain culturable for up to 200 days with a significant difference between strains (p < 0.05). Furthermore, the non-pathogenic strain survives longer than the virulent ones. At different salinities, a better adaptation is observed at 10 and 20 psu compared with 39 and 60 psu. Resuscitations essays performed on VBNC bacteria in a nutrient broth at 20°C and 37°C does not show any revivification. PRACTITIONER POINTS: Effect of sunlight and salinities on the survival of V. parahaemolyticus in the marine environment. Resuscitation essay performed on viable but no cultivable bacteria. Microscope motility examines show that all strains exposed to sunlight remain motile after the loss of cultivability.
Collapse
Affiliation(s)
- Zaafrane Sami
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Maatouk Kaouthar
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Cherif Nadia
- National Institute of Sciences and Seawater Technologies Salammbô, Salammbo, Tunisia
| | - Ben Mansour Hedi
- Unité de Recherche Analyses et Procédés Appliqués à l'Environnement-ISSAT, Mahdia, Tunisia
| |
Collapse
|
6
|
Lages MA, Lemos ML, Balado M. The Temperature-Dependent Expression of the High-Pathogenicity Island Encoding Piscibactin in Vibrionaceae Results From the Combined Effect of the AraC-Like Transcriptional Activator PbtA and Regulatory Factors From the Recipient Genome. Front Microbiol 2021; 12:748147. [PMID: 34867865 PMCID: PMC8639528 DOI: 10.3389/fmicb.2021.748147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 10/20/2021] [Indexed: 11/13/2022] Open
Abstract
The high-pathogenicity island irp-HPI is widespread among Vibrionaceae encoding the piscibactin siderophore system. The expression of piscibactin genes in the fish pathogen Vibrio anguillarum is favored by low temperatures. However, information about the regulatory mechanism behind irp-HPI gene expression is scarce. In this work, in-frame deletion mutants of V. anguillarum defective in the putative regulators AraC1 and AraC2, encoded by irp-HPI, and in the global regulators H-NS and ToxRS, were constructed and their effect on irp-HPI gene expression was analyzed at 15 and 25°C. The results proved that only AraC1 (renamed as PbtA) is required for the expression of piscibactin biosynthesis and transport genes. PbtA inactivation led to an inability to grow under iron restriction, a loss of the outer membrane piscibactin transporter FrpA, and a significant decrease in virulence for fish. Inactivation of the global repressor H-NS, which is involved in silencing of horizontally acquired genes, also resulted in a lower transcriptional activity of the frpA promoter. Deletion of toxR-S, however, did not have a relevant effect on the expression of the irp-HPI genes. Therefore, while irp-HPI would not be part of the ToxR regulon, H-NS must exert an indirect effect on piscibactin gene expression. Thus, the temperature-dependent expression of the piscibactin-encoding pathogenicity island described in V. anguillarum is the result of the combined effect of the AraC-like transcriptional activator PbtA, harbored in the island, and other not yet defined regulator(s) encoded by the genome. Furthermore, different expression patterns were detected within different irp-HPI evolutionary lineages, which supports a long-term evolution of the irp-HPI genomic island within Vibrionaceae. The mechanism that modulates piscibactin gene expression could also be involved in global regulation of virulence factors in response to temperature changes.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
7
|
Duan J, Guo W. The cold adaption profiles of Pseudoalteromonas shioyasakiensis D1497 from Yap trench to cope with cold. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00689. [PMID: 34987981 PMCID: PMC8711050 DOI: 10.1016/j.btre.2021.e00689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/01/2021] [Accepted: 11/11/2021] [Indexed: 01/08/2023]
Abstract
P. shioyasakiensis D1497converted more substrate into biomass at low temperature. P. shioyasakiensis D1497 prefered to use codons with A/T in the third position. The energy metabolism related genes were down regulated in cold environment. P. shioyasakiensis D1497 presented an energy saving metabolism strategy to cope with cold.
Genome sequencing of Pseudoalteromonas shioyasakiensis D1497, a psychrophile from the Yap trench, revealed that it contained a circle chromosome of 3,631,285 bp with 40.94% GC content and prefered to use codons with A/T in the third position. Additionally, the relative synonymous codon usage (RSCU) values indicated the codons with A and T in the third position were always the most used. Cultivation of P. shioyasakiensis D1497 presented lower substrate consumption rate, higher ATP pool and higher conversion rate of biomass per unit substrate consumed at low temperature (15 °C) than that of the room temperature (25 °C) culture. Comparative transcriptomic analysis revealed that the mRNA abundance of energy metabolism related genes was decreased in 15 °C culture compared with that of 25 °C culture. In addition to its codon usage biases profile, P. shioyasakiensis D1497 presented an energy saving metabolism strategy to cope with cold, converting more carbon source into biomass in cold environment.
Collapse
Affiliation(s)
- Jingjing Duan
- College of Environment and Ecology, Xiamen University, Xiamen 361005, Fujian, China
| | - Wenbin Guo
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, Fujian, China
| |
Collapse
|
8
|
Molecular and Physiological Adaptations to Low Temperature in Thioalkalivibrio Strains Isolated from Soda Lakes with Different Temperature Regimes. mSystems 2021; 6:6/2/e01202-20. [PMID: 33906913 PMCID: PMC8092127 DOI: 10.1128/msystems.01202-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genus Thioalkalivibrio comprises sulfur-oxidizing bacteria thriving in soda lakes at high pH and salinity. Depending on the geographical location and the season, these lakes can strongly vary in temperature. To obtain a comprehensive understanding of the molecular and physiological adaptations to low temperature, we compared the responses of two Thioalkalivibrio strains to low (10°C) and high (30°C) temperatures. For this, the strains were grown under controlled conditions in chemostats and analyzed for their gene expression (RNA sequencing [RNA-Seq]), membrane lipid composition, and glycine betaine content. The strain Thioalkalivibrio versutus AL2T originated from a soda lake in southeast Siberia that is exposed to strong seasonal temperature differences, including freezing winters, whereas Thioalkalivibrio nitratis ALJ2 was isolated from an East African Rift Valley soda lake with a constant warm temperature the year round. The strain AL2T grew faster than ALJ2 at 10°C, likely due to its 3-fold-higher concentration of the osmolyte glycine betaine. Moreover, significant changes in the membrane lipid composition were observed for both strains, leading to an increase in their unsaturated fatty acid content via the Fab pathway to avoid membrane stiffness. Genes for the transcriptional and translational machinery, as well as for counteracting cold-induced hampering of nucleotides and proteins, were upregulated. Oxidative stress was reduced by induction of vitamin B12 biosynthesis genes, and growth at 10°C provoked downregulation of genes involved in the second half of the sulfur oxidation pathway. Genes for intracellular signal transduction were differentially expressed, and interestingly, AL2T upregulated flagellin expression, whereas ALJ2 downregulated it. IMPORTANCE In addition to their haloalkaline conditions, soda lakes can also harbor a variety of other extreme parameters, to which their microbial communities need to adapt. However, for most of these supplementary stressors, it is not well known yet how haloalkaliphiles adapt and resist. Here, we studied the strategy for adaptation to low temperature in the haloalkaliphilic genus Thioalkalivibrio by using two strains isolated from soda lakes with different temperature regimes. Even though the strains showed a strong difference in growth rate at 10°C, they exhibited similar molecular and physiological adaptation responses. We hypothesize that they take advantage of resistance mechanisms against other stressors commonly found in soda lakes, which are therefore maintained in the bacteria living in the absence of low-temperature pressure. A major difference, however, was detected for their glycine betaine content at 10°C, highlighting the power of this osmolyte to also act as a key compound in cryoprotection. Author Video: An author video summary of this article is available.
Collapse
|
9
|
Gregory GJ, Boyd EF. Stressed out: Bacterial response to high salinity using compatible solute biosynthesis and uptake systems, lessons from Vibrionaceae. Comput Struct Biotechnol J 2021; 19:1014-1027. [PMID: 33613867 PMCID: PMC7876524 DOI: 10.1016/j.csbj.2021.01.030] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 12/19/2022] Open
Abstract
Bacteria have evolved mechanisms that allow them to adapt to changes in osmolarity and some species have adapted to live optimally in high salinity environments such as in the marine ecosystem. Most bacteria that live in high salinity do so by the biosynthesis and/or uptake of compatible solutes, small organic molecules that maintain the turgor pressure of the cell. Osmotic stress response mechanisms and their regulation among marine heterotrophic bacteria are poorly understood. In this review, we discuss what is known about compatible solute metabolism and transport and new insights gained from studying marine bacteria belonging to the family Vibrionaceae.
Collapse
Affiliation(s)
| | - E. Fidelma Boyd
- Corresponding author at: Department of Biological Sciences, 341 Wolf Hall, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
10
|
Huo T, Zhao Y, Tang X, Zhao H, Ni S, Gao Q, Liu S. Metabolic acclimation of anammox consortia to decreased temperature. ENVIRONMENT INTERNATIONAL 2020; 143:105915. [PMID: 32652345 DOI: 10.1016/j.envint.2020.105915] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Widespread application of anammox process has been primarily limited to the high sensitivity of anammox consortia to fluctuations of temperature. However, the metabolic acclimation of anammox consortia to decreased temperature remains unclear, which is the core of developing potential strategies for improving their low-temperature resistance. Here, we operated anammox reactors at 25 °C and 35 °C to explore the acclimation mechanism of anammox consortia in terms of metabolic responses and cross-feedings. Accordingly, we found that the adaptation of anammox consortia to ambient temperature (25 °C) was significantly linked to energy conservation strategy, resulting in decreased extracellular polymeric substance secretion, accumulation of ATP and amino acids. The expression patterns of cold shock proteins and core enzymes caused the apparent metabolic advantage of Candidatus Brocadia fulgida for acclimation to ambient temperature compared to other anammox species. Importantly, strengthened cross-feedings of amino acids, nitrite and glycine betaine benefited adaptation of anammox consortia to ambient temperature. Our work not only uncovers the temperature-adaptive mechanisms of anammox consortia, but also emphasizes the important role of metabolic cross-feeding in the temperature adaptation of microbial community.
Collapse
Affiliation(s)
- Tangran Huo
- Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yunpeng Zhao
- Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xi Tang
- Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Huazhang Zhao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China
| | - Shouqing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, Shandong, China
| | - Qiang Gao
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China.
| | - Sitong Liu
- Department of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining 810016, Qinghai, China.
| |
Collapse
|
11
|
Choline–betaine pathway contributes to hyperosmotic stress and subsequent lethal stress resistance in Pseudomonas protegens SN15-2. J Biosci 2020. [DOI: 10.1007/s12038-020-00060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Lages MA, Balado M, Lemos ML. The Expression of Virulence Factors in Vibrio anguillarum Is Dually Regulated by Iron Levels and Temperature. Front Microbiol 2019; 10:2335. [PMID: 31681201 PMCID: PMC6803810 DOI: 10.3389/fmicb.2019.02335] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 01/24/2023] Open
Abstract
Vibrio anguillarum causes a hemorrhagic septicemia that affects cold- and warm-water adapted fish species. The main goal of this work was to determine the temperature-dependent changes in the virulence factors that could explain the virulence properties of V. anguillarum for fish cultivated at different temperatures. We have found that although the optimal growth temperature is around 25°C, the degree of virulence of V. anguillarum RV22 is higher at 15°C. To explain this result, an RNA-Seq analysis was performed to compare the whole transcriptome profile of V. anguillarum RV22 cultured under low-iron availability at either 25 or 15°C, which would mimic the conditions that V. anguillarum finds during colonization of fish cultivated at warm- or cold-water temperatures. The comparative analysis of transcriptomes at high- and low-iron conditions showed profound metabolic adaptations to grow under low iron. These changes were characterized by a down-regulation of the energetic metabolism and the induction of virulence-related factors like biosynthesis of LPS, production of hemolysins and lysozyme, membrane transport, heme uptake, or production of siderophores. However, the expression pattern of virulence factors under iron limitation showed interesting differences at warm and cold temperatures. Chemotaxis, motility, as well as the T6SS1 genes are expressed at higher levels at 25°C than at 15°C. By contrast, hemolysin RTX pore-forming toxin, T6SS2, and the genes associated with exopolysaccharides synthesis were preferentially expressed at 15°C. Notably, at this temperature, the siderophore piscibactin system was strongly up-regulated. In contrast, at 25°C, piscibactin genes were down-regulated and the vanchrobactin siderophore system seems to supply all the necessary iron to the cell. The results showed that V. anguillarum adjusts the expression of virulence factors responding to two environmental signals, iron levels and temperature. Thus, the relative relevance of each virulence factor for each fish species could vary depending on the water temperature. The results give clues about the physiological adaptations that allow V. anguillarum to cause infections in different fishes and could be relevant for vaccine development against fish vibriosis.
Collapse
Affiliation(s)
- Marta A Lages
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Miguel Balado
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel L Lemos
- Department of Microbiology and Parasitology, Institute of Aquaculture, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
13
|
Govrin R, Obstbaum T, Sivan U. Common Source of Cryoprotection and Osmoprotection by Osmolytes. J Am Chem Soc 2019; 141:13311-13314. [DOI: 10.1021/jacs.9b06727] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Roy Govrin
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Tal Obstbaum
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Uri Sivan
- Department of Physics and the Russell Berrie Nanotechnology Institute, Technion − Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| |
Collapse
|
14
|
Gu L, Yan W, Wu H, Fan S, Ren W, Wang S, Lyu M, Liu J. Selection of DNAzymes for Sensing Aquatic Bacteria: Vibrio Anguillarum. Anal Chem 2019; 91:7887-7893. [DOI: 10.1021/acs.analchem.9b01707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | - Wei Ren
- Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu 210000, P. R. China
| | | | | | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
15
|
Guo Z, Li W, Wang Y, Hou Q, Zhao H, Sun Z, Zhang Z. Vibrio zhugei sp. nov., a moderately halophilic bacterium isolated from pickling sauce. Int J Syst Evol Microbiol 2019; 69:1313-1319. [PMID: 30801241 DOI: 10.1099/ijsem.0.003308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Strain HBUAS61001T was isolated from the pickling sauce used to make a traditional fermented food product, datoucai, in China. The strain belonged to the genus Vibrio, but was placed in a clade separate from any known Vibrio species based on the 16S rRNA gene and MLSA results. The genome consisted of two chromosomes: chromosome I was 2 901 449 bp long with a G+C content of 45.4 mol%; and chromosome II was 1 107 930 bp long with a G+C content of 45.5 mol%. The most abundant fatty acids were C16 : 0 (28.1 %), summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c, 29.4 %) and summed feature 8 (C18 : 1ω7c and/or C18 : 1ω6c, 10.1 %). The isoprenoid quinones detected were Q7 and Q8. The predominant polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Strain HBUAS61001T could grow in the presence of up to 17 % NaCl. The calculated average nucleotide identity and in silico DNA-DNA hybridization (GGDC) values of the strain against the closest related type strains were all lower than 95 and 70 %, respectively. Putative genes in the genome associated with survival under high salinity stress were identified. Based on whole genome sequence analysis and phenotypic characteristics, strain HBUAS61001T is a new species in the genus Vibrio, and the name Vibrio zhugei (=GDMCC 1.1416T=KCTC 62784T) is proposed.
Collapse
Affiliation(s)
- Zhuang Guo
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Weicheng Li
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Yurong Wang
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Qiangchuan Hou
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Huijun Zhao
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| | - Zhihong Sun
- 2Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Huhhot, PR China
| | - Zhendong Zhang
- 1Northwest Hubei Research Institute of Traditional Fermented Food, College of Food Science and Technology, Hubei University of Arts and Science, Xiangyang, Hubei, PR China
| |
Collapse
|
16
|
Matanza XM, Osorio CR. Transcriptome changes in response to temperature in the fish pathogen Photobacterium damselae subsp. damselae: Clues to understand the emergence of disease outbreaks at increased seawater temperatures. PLoS One 2018; 13:e0210118. [PMID: 30596794 PMCID: PMC6312309 DOI: 10.1371/journal.pone.0210118] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/17/2018] [Indexed: 01/22/2023] Open
Abstract
The marine bacterium Photobacterium damselae subsp. damselae (Pdd) is a generalist and facultative pathogen that causes disease in a wide range of marine animals including fish species of importance in aquaculture. Disease outbreaks in fish farms have been correlated with an increased water temperature during summer months. In this study, we have used RNA sequencing to analyze the transcriptome of Pdd RM-71 cultured at two different temperatures, which simulated temperature conditions experienced during free swimming lifestyle at mid latitudes in winter months (15°C) and during outbreaks in aquaculture in warm summer months (25°C). The enhanced bacterial growth of Pdd observed at 25°C in comparison to 15°C suggests that an elevated seawater temperature contributes to the build-up of a sufficient bacterial population to cause disease. In comparison to growth at 15°C, growth at 25°C resulted in the upregulation of genes involved in DNA synthesis, nutrient uptake, chemotaxis, flagellar motility, secretion systems and antimicrobial resistance. Plasmid-encoded virulence factors, which include a putative adhesin/invasin OmpU, a transferrin receptor and a serum resistance protein, were also upregulated. Transcription factor RpoS, genes involved in cold shock response, modulation of cell envelope and amino acid metabolism, as well as genes of yet unknown function were downregulated at 25°C. Notably, the gene encoding damselysin cytotoxin (Dly) was among the most highly transcribed genes at the two assayed temperatures, at levels comparable to the most highly expressed housekeeping genes. This study contributes to our understanding of the regulatory networks and biology of a generalist marine bacterial pathogen, and provides evidence that temperature regulates multiple physiological and virulence-related functions in Pdd.
Collapse
Affiliation(s)
- Xosé M. Matanza
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos R. Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
17
|
Virtanen JP, Keto-Timonen R, Jaakkola K, Salin N, Korkeala H. Changes in Transcriptome of Yersinia pseudotuberculosis IP32953 Grown at 3 and 28°C Detected by RNA Sequencing Shed Light on Cold Adaptation. Front Cell Infect Microbiol 2018; 8:416. [PMID: 30538955 PMCID: PMC6277586 DOI: 10.3389/fcimb.2018.00416] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/09/2018] [Indexed: 11/17/2022] Open
Abstract
Yersinia pseudotuberculosis is a bacterium that not only survives, but also thrives, proliferates, and remains infective at cold-storage temperatures, making it an adept foodborne pathogen. We analyzed the differences in gene expression between Y. pseudotuberculosis IP32953 grown at 3 and 28°C to investigate which genes were significantly more expressed at low temperature at different phases of growth. We isolated and sequenced the RNA from six distinct corresponding growth points at both temperatures to also outline the expression patterns of the differentially expressed genes. Genes involved in motility, chemotaxis, phosphotransferase systems (PTS), and ATP-binding cassette (ABC) transporters of different nutrients such as fructose and mannose showed higher levels of transcripts at 3°C. At the beginning of growth, especially genes involved in securing nutrients, glycolysis, transcription, and translation were upregulated at 3°C. To thrive as well as it does at low temperature, Y. pseudotuberculosis seems to require certain cold shock proteins, especially those encoded by yptb3585, yptb3586, yptb2414, yptb2950, and yptb1423, and transcription factors, like Rho, IF-1, and RbfA, to maintain its protein synthesis. We also found that genes encoding RNA-helicases CsdA (yptb0468), RhlE (yptb1214), and DbpA (yptb1652), which unwind frozen secondary structures of nucleic acids with cold shock proteins, were significantly more expressed at 3°C, indicating that these RNA-helicases are important or even necessary during cold. Genes involved in excreting poisonous spermidine and acquiring compatible solute glycine betaine, by either uptake or biosynthesis, showed higher levels of transcripts at low temperatures. This is the first finding of a strong connection between the aforementioned genes and the cold adaptation of Y. pseudotuberculosis. Understanding the mechanisms behind the cold adaptation of Y. pseudotuberculosis is crucial for controlling its growth during cold storage of food, and will also shed light on microbial cold adaptation in general.
Collapse
Affiliation(s)
- Jussa-Pekka Virtanen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Riikka Keto-Timonen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Kaisa Jaakkola
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Noora Salin
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Ma Y, Wang Q, Xu W, Liu X, Gao X, Zhang Y. Stationary phase-dependent accumulation of ectoine is an efficient adaptation strategy in Vibrio anguillarum against cold stress. Microbiol Res 2017; 205:8-18. [PMID: 28942848 DOI: 10.1016/j.micres.2017.08.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 10/19/2022]
Abstract
The capability of cold-adaptation is a prerequisite of microorganisms that survive in an environment with frequent fluctuations in temperature. As a global causative agent of vibriosis in marine fish farming, Vibrio anguillarum can efficiently grow and proliferate under cold-stress conditions, which is 15°C lower than the optimal growth temperatures (25-30°C). Our data showed that V. anguillarum was able to synthesize ectoine de novo and that ectoine was essential for its growth under cold stress. Using 1H nuclear magnetic resonance spectroscopy and mutants lacking ectABC and proVWX (ectoine synthesis and transporter system genes, respectively), we confirmed that accumulation of this compatible solute occurs strictly at low temperatures and that the expression of ectA and proV is highly activated in the stationary growth phase. However, the synthesis of ectoine was repressed by exogenous choline (precursor of glycine betaine), suggesting that ectoine is an alternative compatible solute as a cold-stress protectant in V. anguillarum. Based on these results, we present possible scenarios of the synthesis and uptake of ectoine, which will facilitate the understanding of the molecular mechanism of V. anguillarum adaptation to cold environments and help improve freezing-dry processes for the V. anguillarum live vaccine.
Collapse
Affiliation(s)
- Yue Ma
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China.
| | - Wensheng Xu
- Food Science and Engineering College, Beijing University of Agriculture, Beijing 102206, China
| | - Xiaohong Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China
| | - Xiating Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China; Shanghai Engineering Research Center of Maricultured Animal Vaccines, Shanghai 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai 200237, China.
| |
Collapse
|