1
|
Sung D, Choi G, Ahn M, Byun H, Kim TY, Lee H, Lee ZW, Park JY, Jung YH, Han HJ, Choi SH. Genome-wide phenotypic profiling of transcription factors and identification of novel targets to control the virulence of Vibrio vulnificus. Nucleic Acids Res 2024:gkae1238. [PMID: 39704106 DOI: 10.1093/nar/gkae1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/15/2024] [Accepted: 12/12/2024] [Indexed: 12/21/2024] Open
Abstract
For successful infection, the life-threatening pathogen Vibrio vulnificus elaborately regulates the expression of survival and virulence genes using various transcription factors (TFs). In this study, a library of the V. vulnificus mutants carrying specific signature tags in 285 TF genes was constructed and subjected to 16 phenotypic analyses. Consequently, 89 TFs affecting more than one phenotype of V. vulnificus were identified. Of these, 59 TFs affected the in vitro survival including growth, stress resistance, biofilm formation and motility, and 64 TFs affected the virulence of V. vulnificus. Particularly, 27 of the 64 TFs enhanced the in vitro hemolytic or cytotoxic activities, and 8 of the 27 TFs also increased the in vivo brine shrimp or murine infectivities of V. vulnificus. Among the eight TFs, HlyU, IscR, NagC, MetJ and Tet2 did not affect the growth of V. vulnificus but still regulated the expression of major exotoxin genes, including rtxA, vvhA and plpA, thereby emerging as potential drug targets for anti-virulence therapies with low selective pressure for developing resistance. Altogether, this study characterized the functions of TFs at a genome-wide scale and identified novel targets to control the virulence of V. vulnificus.
Collapse
Affiliation(s)
- Dayoung Sung
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Garam Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Minji Ahn
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hokyung Byun
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae Young Kim
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Hojun Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Zee-Won Lee
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji Yong Park
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Young Hyun Jung
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ho Jae Han
- Department of Veterinary Physiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sang Ho Choi
- National Research Laboratory of Molecular Microbiology and Toxicology, Department of Agricultural Biotechnology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
- Center for Food and Bioconvergence, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Li C, Wei Z, He X, He H, Liu Y, Zuo Y, Xiao H, Wang Y, Shen X, Zhu L. OxyR-regulated T6SS functions in coordination with siderophore to resist oxidative stress. Microbiol Spectr 2024; 12:e0323123. [PMID: 38189330 PMCID: PMC10846153 DOI: 10.1128/spectrum.03231-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 12/02/2023] [Indexed: 01/09/2024] Open
Abstract
The formation of reactive oxygen species is harmful and can destroy intracellular macromolecules such as lipids, proteins, and DNA, even leading to bacterial death. To cope with this situation, microbes have evolved a variety of sophisticated mechanisms, including antioxidant enzymes, siderophores, and the type VI secretion system (T6SS). However, the mechanism of oxidative stress resistance in Cupriavidus pinatubonensis is unclear. In this study, we identified Reut_A2805 as an OxyR ortholog in C. pinatubonensis, which positively regulated the expression of T6SS1 by directly binding to its operon promoter region. The study revealed that OxyR-regulated T6SS1 combats oxidative stress by importing iron into bacterial cells. Moreover, the T6SS1-mediated outer membrane vesicles-dependent iron acquisition pathway played a crucial role in the oxidative stress resistance process. Finally, our study demonstrated that the T6SS1 and siderophore systems in C. pinatubonensis exhibit different responses in combating oxidative stress under low-iron conditions, providing a comprehensive understanding of how bacterial iron acquisition systems function in diverse conditions.IMPORTANCEThe ability to eliminate reactive oxygen species is crucial for bacterial survival. Continuous formation of hydroperoxides can damage metalloenzymes, disrupt DNA integrity, and even result in cell death. While various mechanisms have been identified in other bacterial species to combat oxidative stress, the specific mechanism of oxidative stress resistance in C. pinatubonensis remains unclear. The importance of this study is that we elucidate the mechanism that OxyR-regulated T6SS1 combats oxidative stress by importing iron with the help of bacterial outer membrane vesicle. Moreover, the study highlights the contrasting responses of T6SS1- and siderophore-mediated iron acquisition systems to oxidative stress. This study provides a comprehensive understanding of bacterial iron acquisition and its role in oxidative stress resistance in C. pinatubonensis under low-iron conditions.
Collapse
Affiliation(s)
- Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinquan He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Haiyang He
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - He Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
3
|
Impact of lead (Pb 2+) on the growth and biological activity of Serratia marcescens selected for wastewater treatment and identification of its zntR gene-a metal efflux regulator. World J Microbiol Biotechnol 2023; 39:91. [PMID: 36752862 DOI: 10.1007/s11274-023-03535-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
Microorganisms isolated from contaminated areas play an important role in bioremediation processes. They promote heavy metal removal from the environment by adsorbing ions onto the cell wall surface, accumulating them inside the cells, or reducing, complexing, or precipitating these substances in the environment. Microorganism-based bioremediation processes can be highly efficient, low-cost and have low environmental impact. Thus, the present study aimed to select Pb2+-resistant bacteria and evaluate the growth rate, biological activity, and the presence of genes associated with metal resistance. Serratia marcescens CCMA 1010, that was previously isolated from coffee processing wastewater, was selected since was able to growth in Pb2+ concentrations of up to 4.0 mM. The growth rate and generation time did not differ from those of the control (without Pb2+), although biological activity decreased in the first hour of exposure to these ions and stabilized after this period. The presence of the zntR, zntA and pbrA genes was analysed, and only zntR was detected. The zntR gene encodes a protein responsible for regulating the production of ZntA, a transmembrane protein that facilitates Pb2+ extrusion out of the cell. S. marcescens CCMA 1010 demonstrated a potential for use as bioindicator that has potential to be used in bioremediation processes due to its resistance to high concentrations of Pb2+, ability to grow until 24 h of exposure, and possession of a gene that indicates the existence of mechanisms associated with resistance to lead (Pb2+).
Collapse
|
4
|
Zhang Y, Huang Y, Ding H, Ma J, Tong X, Zhang Y, Tao Z, Wang Q. A σE-mediated temperature gauge orchestrates type VI secretion system, biofilm formation and cell invasion in pathogen Pseudomonas plecoglossicida. Microbiol Res 2023; 266:127220. [DOI: 10.1016/j.micres.2022.127220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022]
|
5
|
Wu J, Liu Y, Li W, Li F, Liu R, Sun H, Qin J, Feng X, Huang D, Liu B. MlrA, a MerR family regulator in Vibrio cholerae, senses the anaerobic signal in the small intestine of the host to promote bacterial intestinal colonization. Gut Microbes 2022; 14:2143216. [PMID: 36369865 PMCID: PMC9662190 DOI: 10.1080/19490976.2022.2143216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Vibrio cholerae (V. cholerae), one of the most important bacterial pathogens in history, is a gram-negative motile bacterium that causes fatal pandemic disease in humans via oral ingestion of contaminated water or food. This process involves the coordinated actions of numerous regulatory factors. The MerR family regulators, which are widespread in prokaryotes, have been reported to be associated with pathogenicity. However, the role of the MerR family regulators in V. cholerae virulence remains unknown. Our study systematically investigated the influence of MerR family regulators on intestinal colonization of V. cholerae within the host. Among the five MerR family regulators, MlrA was found to significantly promote the colonization capacity of V. cholerae in infant mice. Furthermore, we revealed that MlrA increases bacterial intestinal colonization by directly enhancing the expression of tcpA, which encodes one of the most important virulence factors in V. cholerae, by binding to its promoter region. In addition, we revealed that during infection, mlrA is activated by anaerobic signals in the small intestine of the host through Fnr. In summary, our findings reveal a MlrA-mediated virulence regulation pathway that enables V. cholerae to sense environmental signals at the infection site to precisely activate virulence gene expression, thus providing useful insights into the pathogenic mechanisms of V. cholerae.
Collapse
Affiliation(s)
- Jialin Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China
| | - Wendi Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Fan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Ruiying Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Hao Sun
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Jingliang Qin
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Xiaohui Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,Di Huang TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| | - Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, China,Key Laboratory of Molecular Microbiology and Technology, Nankai University, Ministry of Education, Tianjin, China,Nankai International Advanced Research Institute, Nankai University Shenzhen, China,CONTACT Bin Liu TEDA Institute of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, China
| |
Collapse
|
6
|
Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host-pathogen interface. Nat Rev Microbiol 2022; 20:657-670. [PMID: 35641670 PMCID: PMC9153222 DOI: 10.1038/s41579-022-00745-6] [Citation(s) in RCA: 220] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2022] [Indexed: 12/21/2022]
Abstract
Trace metals are essential micronutrients required for survival across all kingdoms of life. From bacteria to animals, metals have critical roles as both structural and catalytic cofactors for an estimated third of the proteome, representing a major contributor to the maintenance of cellular homeostasis. The reactivity of metal ions engenders them with the ability to promote enzyme catalysis and stabilize reaction intermediates. However, these properties render metals toxic at high concentrations and, therefore, metal levels must be tightly regulated. Having evolved in close association with bacteria, vertebrate hosts have developed numerous strategies of metal limitation and intoxication that prevent bacterial proliferation, a process termed nutritional immunity. In turn, bacterial pathogens have evolved adaptive mechanisms to survive in conditions of metal depletion or excess. In this Review, we discuss mechanisms by which nutrient metals shape the interactions between bacterial pathogens and animal hosts. We explore the cell-specific and tissue-specific roles of distinct trace metals in shaping bacterial infections, as well as implications for future research and new therapeutic development.
Collapse
Affiliation(s)
- Caitlin C Murdoch
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA.
| |
Collapse
|
7
|
Yang X, Liu H, Zhang Y, Shen X. Roles of Type VI Secretion System in Transport of Metal Ions. Front Microbiol 2021; 12:756136. [PMID: 34803980 PMCID: PMC8602904 DOI: 10.3389/fmicb.2021.756136] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/12/2021] [Indexed: 11/18/2022] Open
Abstract
The type VI secretion system (T6SS) is a transmembrane protein nanomachine employed by many gram-negative bacteria to directly translocate effectors into adjacent cells or the extracellular milieu, showing multiple functions in both interbacterial competition and bacteria-host interactions. Metal ion transport is a newly discovered T6SS function. This review summarizes the identified T6SS functions and highlights the features of metal ion transport mediated by T6SS and discusses its regulation.
Collapse
Affiliation(s)
- Xiaobing Yang
- College of Applied Engineering, Henan University of Science and Technology (HAUST), Sanmenxia, China.,Medical College, Sanmenxia Vocational Technical School, Sanmenxia, China
| | - Hai Liu
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Yanxiong Zhang
- Qingyang Longfeng Sponge City Construction Management & Operation Co., Ltd, Qingyang, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Xianyang, China
| |
Collapse
|
8
|
Lin J, Xu L, Yang J, Wang Z, Shen X. Beyond dueling: roles of the type VI secretion system in microbiome modulation, pathogenesis and stress resistance. STRESS BIOLOGY 2021; 1:11. [PMID: 37676535 PMCID: PMC10441901 DOI: 10.1007/s44154-021-00008-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 08/09/2021] [Indexed: 09/08/2023]
Abstract
Bacteria inhabit diverse and dynamic environments, where nutrients may be limited and toxic chemicals can be prevalent. To adapt to these stressful conditions, bacteria have evolved specialized protein secretion systems, such as the type VI secretion system (T6SS) to facilitate their survival. As a molecular syringe, the T6SS expels various effectors into neighboring bacterial cells, eukaryotic cells, or the extracellular environment. These effectors improve the competitive fitness and environmental adaption of bacterial cells. Although primarily recognized as antibacterial weapons, recent studies have demonstrated that T6SSs have functions beyond interspecies competition. Here, we summarize recent research on the role of T6SSs in microbiome modulation, pathogenesis, and stress resistance.
Collapse
Affiliation(s)
- Jinshui Lin
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianshe Yang
- Shaanxi Key Laboratory of Chinese Jujube, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, People's Republic of China
| | - Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
9
|
Price SL, Vadyvaloo V, DeMarco JK, Brady A, Gray PA, Kehl-Fie TE, Garneau-Tsodikova S, Perry RD, Lawrenz MB. Yersiniabactin contributes to overcoming zinc restriction during Yersinia pestis infection of mammalian and insect hosts. Proc Natl Acad Sci U S A 2021; 118:e2104073118. [PMID: 34716262 PMCID: PMC8612365 DOI: 10.1073/pnas.2104073118] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 09/09/2021] [Indexed: 02/04/2023] Open
Abstract
Yersinia pestis causes human plague and colonizes both a mammalian host and a flea vector during its transmission cycle. A key barrier to bacterial infection is the host's ability to actively sequester key biometals (e.g., iron, zinc, and manganese) required for bacterial growth. This is referred to as nutritional immunity. Mechanisms to overcome nutritional immunity are essential virulence factors for bacterial pathogens. Y. pestis produces an iron-scavenging siderophore called yersiniabactin (Ybt) that is required to overcome iron-mediated nutritional immunity and cause lethal infection. Recently, Ybt has been shown to bind to zinc, and in the absence of the zinc transporter ZnuABC, Ybt improves Y. pestis growth in zinc-limited medium. These data suggest that, in addition to iron acquisition, Ybt may also contribute to overcoming zinc-mediated nutritional immunity. To test this hypothesis, we used a mouse model defective in iron-mediated nutritional immunity to demonstrate that Ybt contributes to virulence in an iron-independent manner. Furthermore, using a combination of bacterial mutants and mice defective in zinc-mediated nutritional immunity, we identified calprotectin as the primary barrier for Y. pestis to acquire zinc during infection and that Y. pestis uses Ybt to compete with calprotectin for zinc. Finally, we discovered that Y. pestis encounters zinc limitation within the flea midgut, and Ybt contributes to overcoming this limitation. Together, these results demonstrate that Ybt is a bona fide zinc acquisition mechanism used by Y. pestis to surmount zinc limitation during the infection of both the mammalian and insect hosts.
Collapse
Affiliation(s)
- Sarah L Price
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Viveka Vadyvaloo
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA 99164
| | - Jennifer K DeMarco
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| | - Amanda Brady
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Phoenix A Gray
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202
| | - Thomas E Kehl-Fie
- Department of Microbiology and Carl R. Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Champaign, IL 61820
| | - Sylvie Garneau-Tsodikova
- Department of Pharmaceutical Sciences, University of Kentucky College of Pharmacy, Lexington, KY 40536
| | - Robert D Perry
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky School of Medicine, Lexington, KY 40506
| | - Matthew B Lawrenz
- Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, KY 40202;
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, University of Louisville, Louisville, KY 40292
| |
Collapse
|
10
|
Cai R, Gao F, Pan J, Hao X, Yu Z, Qu Y, Li J, Wang D, Wang Y, Shen X, Liu X, Yang Y. The transcriptional regulator Zur regulates the expression of ZnuABC and T6SS4 in response to stresses in Yersinia pseudotuberculosis. Microbiol Res 2021; 249:126787. [PMID: 33991717 DOI: 10.1016/j.micres.2021.126787] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/21/2023]
Abstract
Zinc homeostasis is crucial for the development and stress resistance of bacteria in the environment. Serial zinc sensing transcriptional regulators, zinc transporters and zinc binding proteins were found to maintain the zinc homeostasis in bacteria. Zur is a zinc uptake regulator that is widely distributed in species, and ZnuABC, as well as the Type VI Secretion System (T6SS4) function in zinc acquisition. Here, we report that the regulator Zur inhibits the expression of the ZnuABC which inhibition could be eliminated at low zinc level, and upregulates the T6SS4 operon in Yersinia pseudotuberculosis to facilitate Zn2+ uptake and oxidative stress resistance. Zur regulates the expression of ZnuABC and T6SS4 by directly binding to their promoter regions. Zur senses the Zn2+ concentration and represses ZnuABC in a Zn2+-containing environment. Zur works as an auxiliary regular activator of T6SS4, facilitating oxidative stress resistance. This study revealed the dual function of regulator Zur on ZnuABC and T6SS4, and enriched the knowledge of Zn2+ homeostasis maintenance in Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Ran Cai
- Beijing Capital Co., LTD, Beijing, 100044, China
| | - Fen Gao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Junfeng Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xinwei Hao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Zonglan Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yichen Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Jialin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Dandan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China
| | - Xingyu Liu
- General Research Institute for Nonferrous Metals, Beijing, 100088, China.
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
11
|
T6SS Mediated Stress Responses for Bacterial Environmental Survival and Host Adaptation. Int J Mol Sci 2021; 22:ijms22020478. [PMID: 33418898 PMCID: PMC7825059 DOI: 10.3390/ijms22020478] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/25/2020] [Accepted: 01/01/2021] [Indexed: 02/07/2023] Open
Abstract
The bacterial type VI secretion system (T6SS) is a protein secretion apparatus widely distributed in Gram-negative bacterial species. Many bacterial pathogens employ T6SS to compete with the host and to coordinate the invasion process. The T6SS apparatus consists of a membrane complex and an inner tail tube-like structure that is surrounded by a contractile sheath and capped with a spike complex. A series of antibacterial or antieukaryotic effectors is delivered by the puncturing device consisting of a Hcp tube decorated by the VgrG/PAAR complex into the target following the contraction of the TssB/C sheath, which often leads to damage and death of the competitor and/or host cells. As a tool for protein secretion and interspecies interactions, T6SS can be triggered by many different mechanisms to respond to various physiological conditions. This review summarizes our current knowledge of T6SS in coordinating bacterial stress responses against the unfavorable environmental and host conditions.
Collapse
|
12
|
Knittel V, Sadana P, Seekircher S, Stolle AS, Körner B, Volk M, Jeffries CM, Svergun DI, Heroven AK, Scrima A, Dersch P. RovC - a novel type of hexameric transcriptional activator promoting type VI secretion gene expression. PLoS Pathog 2020; 16:e1008552. [PMID: 32966346 PMCID: PMC7535981 DOI: 10.1371/journal.ppat.1008552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 10/05/2020] [Accepted: 08/01/2020] [Indexed: 12/05/2022] Open
Abstract
Type VI secretion systems (T6SSs) are complex macromolecular injection machines which are widespread in Gram-negative bacteria. They are involved in host-cell interactions and pathogenesis, required to eliminate competing bacteria, or are important for the adaptation to environmental stress conditions. Here we identified regulatory elements controlling the T6SS4 of Yersinia pseudotuberculosis and found a novel type of hexameric transcription factor, RovC. RovC directly interacts with the T6SS4 promoter region and activates T6SS4 transcription alone or in cooperation with the LysR-type regulator RovM. A higher complexity of regulation was achieved by the nutrient-responsive global regulator CsrA, which controls rovC expression on the transcriptional and post-transcriptional level. In summary, our work unveils a central mechanism in which RovC, a novel key activator, orchestrates the expression of the T6SS weapons together with a global regulator to deploy the system in response to the availability of nutrients in the species' native environment.
Collapse
Affiliation(s)
- Vanessa Knittel
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Pooja Sadana
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Stephanie Seekircher
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Anne-Sophie Stolle
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Britta Körner
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Marcel Volk
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
| | - Cy M. Jeffries
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Dmitri I. Svergun
- European Molecular Biology Laboratory, Hamburg Unit, Hamburg, Germany
| | - Ann Kathrin Heroven
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Andrea Scrima
- Young Investigator Group Structural Biology of Autophagy, Department of Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research, Braunschweig, Germany
- Institute for Infectiology, Center for Molecular Biology of Inflammation (ZMBE), University of Münster, Germany
- German Center for Infection Research, Baunschweig, Germany
| |
Collapse
|
13
|
Wang T, Qi Y, Wang Z, Zhao J, Ji L, Li J, Cai Z, Yang L, Wu M, Liang H. Coordinated regulation of anthranilate metabolism and bacterial virulence by the GntR family regulator MpaR inPseudomonas aeruginosa. Mol Microbiol 2020; 114:857-869. [PMID: 32748556 DOI: 10.1111/mmi.14584] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Tietao Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Sciences Northwest University Xi'an China
| | - Yihang Qi
- Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Sciences Northwest University Xi'an China
| | - Zhihan Wang
- West China School of Basic Medical Science & Forensic Medicine Sichuan University ChengDu China
| | - Jingru Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Sciences Northwest University Xi'an China
| | - Linxuan Ji
- Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Sciences Northwest University Xi'an China
| | - Jun Li
- College of Bioengineering and Biotechnology Zhejiang University of Technology Hangzhou China
| | - Zhao Cai
- School of Medicine Southern University of Science and Technology ShenZhen China
| | - Liang Yang
- School of Medicine Southern University of Science and Technology ShenZhen China
| | - Min Wu
- Department of Basic Science School of Medicine and Health Science University of North Dakota Grand Forks ND USA
| | - Haihua Liang
- Key Laboratory of Resources Biology and Biotechnology in Western China Ministry of Education College of Life Sciences Northwest University Xi'an China
| |
Collapse
|
14
|
Wang Z, Wang T, Cui R, Zhang Z, Chen K, Li M, Hua Y, Gu H, Xu L, Wang Y, Yang Y, Shen X. HpaR, the Repressor of Aromatic Compound Metabolism, Positively Regulates the Expression of T6SS4 to Resist Oxidative Stress in Yersinia pseudotuberculosis. Front Microbiol 2020; 11:705. [PMID: 32362886 PMCID: PMC7180172 DOI: 10.3389/fmicb.2020.00705] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/26/2020] [Indexed: 12/25/2022] Open
Abstract
HpaR, a MarR family transcriptional regulator, was first identified in Escherichia coli W for its regulation of the hpa-meta operon. Little else is known regarding its functionality. Here, we report that in Yersinia pseudotuberculosis, HpaR negatively regulates the hpa-meta operon similar to in E. coli W. To investigate additional functions of HpaR, RNA sequencing was performed for both the wild-type and the ΔhpaR mutant, which revealed that the type VI secretion system (T6SS) was positively regulated by HpaR. T6SS4 is important for bacteria resisting environmental stress, especially oxidative stress. We demonstrate that HpaR facilitates bacteria resist oxidative stress by upregulating the expression of T6SS4 in Y. pseudotuberculosis. HpaR is also involved in biofilm formation, antibiotic resistance, adhesion to eukaryotic cells, and virulence in mice. These results greatly expand our knowledge of the functionality of HpaR and reveal a new pathway that regulates T6SS4.
Collapse
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Tietao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Rui Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Zhenxing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Keqi Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Mengyun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yueyue Hua
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Huawei Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
15
|
Lonergan ZR, Skaar EP. Nutrient Zinc at the Host-Pathogen Interface. Trends Biochem Sci 2019; 44:1041-1056. [PMID: 31326221 PMCID: PMC6864270 DOI: 10.1016/j.tibs.2019.06.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/13/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022]
Abstract
Zinc is an essential cofactor required for life and, as such, mechanisms exist for its homeostatic maintenance in biological systems. Despite the evolutionary distance between vertebrates and microbial life, there are parallel mechanisms to balance the essentiality of zinc with its inherent toxicity. Vertebrates regulate zinc homeostasis through a complex network of metal transporters and buffering systems that respond to changes in nutritional zinc availability or inflammation. Fine-tuning of this network becomes crucial during infections, where host nutritional immunity attempts to limit zinc availability to pathogens. However, accumulating evidence demonstrates that pathogens have evolved mechanisms to subvert host-mediated zinc withholding, and these metal homeostasis systems are important for survival within the host. We discuss here the mechanisms of vertebrate and bacterial zinc homeostasis and mobilization, as well as recent developments in our understanding of microbial zinc acquisition.
Collapse
Affiliation(s)
- Zachery R Lonergan
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Microbe-Host Interactions Training Program, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
16
|
The type VI secretion system protein AsaA in Acinetobacter baumannii is a periplasmic protein physically interacting with TssM and required for T6SS assembly. Sci Rep 2019; 9:9438. [PMID: 31263148 PMCID: PMC6602968 DOI: 10.1038/s41598-019-45875-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/13/2019] [Indexed: 11/11/2022] Open
Abstract
Type VI secretion system (T6SS) is described as a macromolecular secretion machine that is utilized for bacterial competition. The gene clusters encoding T6SS are composed of core tss genes and tag genes. However, the clusters differ greatly in different pathogens due to the great changes accumulated during the long-term evolution. In this work, we identified a novel hypothetical periplasmic protein designated as AsaA which is encoded by the first gene of the T6SS cluster in the genus Acinetobacter. By constructing asaA mutant, we delineated its relative contributions to bacterial competition and secretion of T6SS effector Hcp. Subsequently, we studied the localization of AsaA and potential proteins that may have interactions with AsaA. Our results showed that AsaA in Acinetobacter baumannii (A. baumannii) localized in the bacterial periplasmic space. Results based on bacterial two-hybrid system and protein pull-down assays indicated that it was most likely to affect the assembly or stability of T6SS by interacting with the T6SS core protein TssM. Collectively, our findings of AsaA is most likely a key step in understanding of the T6SS functions in A. baumannii.
Collapse
|
17
|
Chen C, Yang X, Shen X. Confirmed and Potential Roles of Bacterial T6SSs in the Intestinal Ecosystem. Front Microbiol 2019; 10:1484. [PMID: 31316495 PMCID: PMC6611333 DOI: 10.3389/fmicb.2019.01484] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 06/14/2019] [Indexed: 12/25/2022] Open
Abstract
The contact-dependent type VI secretion system (T6SS) in diverse microbes plays crucial roles in both inter-bacterial and bacteria-host interactions. As numerous microorganisms inhabit the intestinal ecosystem at a high density, it is necessary to consider the functions of T6SS in intestinal bacteria. In this mini-review, we discuss T6SS-dependent functions in intestinal microbes, including commensal microbes and enteric pathogens, and list experimentally verified species of intestinal bacteria containing T6SS clusters. Several seminal studies have shown that T6SS plays crucial antibacterial roles in colonization resistance, niche occupancy, activation of host innate immune responses, and modulation of host intestinal mechanics. Some potential roles of T6SS in the intestinal ecosystem, such as targeting of single cell eukaryotic competitors, competition for micronutrients, and stress resistance are also discussed. Considering the distinct activities of T6SS in diverse bacteria residing in the intestine, we suggest that T6SS research in intestinal microbes may be beneficial for the future development of new medicines and clinical treatments.
Collapse
Affiliation(s)
- Can Chen
- Institute of Food and Drug Inspection, College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou, China
| | - Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|
18
|
The stringent response factor, RelA, positively regulates T6SS4 expression through the RovM/RovA pathway in Yersinia pseudotuberculosis. Microbiol Res 2019; 220:32-41. [DOI: 10.1016/j.micres.2018.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 10/31/2018] [Accepted: 12/06/2018] [Indexed: 12/13/2022]
|
19
|
Yang X, Pan J, Wang Y, Shen X. Type VI Secretion Systems Present New Insights on Pathogenic Yersinia. Front Cell Infect Microbiol 2018; 8:260. [PMID: 30109217 PMCID: PMC6079546 DOI: 10.3389/fcimb.2018.00260] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/13/2018] [Indexed: 12/22/2022] Open
Abstract
The type VI secretion system (T6SS) is a versatile secretion system widely distributed in Gram-negative bacteria that delivers multiple effector proteins into either prokaryotic or eukaryotic cells, or into the extracellular milieu. T6SS participates in various physiological processes including bacterial competition, host infection, and stress response. Three pathogenic Yersinia species, namely Yersinia pestis, Yersinia pseudotuberculosis, and Yersinia enterocolitica, possess different copies of T6SSs with distinct biological functions. This review summarizes the pathogenic, antibacterial, and stress-resistant roles of T6SS in Yersinia and the ion-transporting ability in Y. pseudotuberculosis. In addition, the T6SS-related effectors and regulators identified in Yersinia are discussed.
Collapse
Affiliation(s)
- Xiaobing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Junfeng Pan
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Yao Wang
- Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, China.,Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, China
| |
Collapse
|