1
|
Wu L, Xu W, Jiang H, Yang M, Cun D. Respiratory delivered vaccines: Current status and perspectives in rational formulation design. Acta Pharm Sin B 2024; 14:5132-5160. [PMID: 39807330 PMCID: PMC11725141 DOI: 10.1016/j.apsb.2024.08.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 01/16/2025] Open
Abstract
The respiratory tract is susceptible to various infections and can be affected by many serious diseases. Vaccination is one of the most promising ways that prevent infectious diseases and treatment of some diseases such as malignancy. Direct delivery of vaccines to the respiratory tract could mimic the natural process of infection and shorten the delivery path, therefore unique mucosal immunity at the first line might be induced and the efficiency of delivery can be high. Despite considerable attempts at the development of respiratory vaccines, the rational formulation design still warrants attention, i.e., how the formulation composition, particle properties, formulation type (liquid or solid), and devices would influence the immune outcome. This article reviews the recent advances in the formulation design and development of respiratory vaccines. The focus is on the state of the art of delivering antigenic compounds through the respiratory tract, overcoming the pulmonary bio-barriers, enhancing delivery efficiencies of respiratory vaccines as well as maintaining the stability of vaccines during storage and use. The choice of devices and the influence of deposition sites on vaccine efficiencies were also reviewed.
Collapse
Affiliation(s)
- Lan Wu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Wenwen Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Huiyang Jiang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
| | - Mingshi Yang
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen DK-2100, Denmark
| | - Dongmei Cun
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
- Joint International Research Laboratory of Intelligent Drug Delivery Systems, Ministry of Education, Shenyang 110016, China
- School of Food and Drug, Shenzhen Polytechnic University, China, Shenzhen 518055, China
| |
Collapse
|
2
|
Yu H, Yang CJ, Ou-Yang YY, Tong Y, Lan HY, Gan JM, Li SW, Bai DY, Huang GH. Enhanced virulence of genetically engineered Autographa californica nucleopolyhedrovirus owing to accelerated viral DNA replication aided by inserted ascovirus genes. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 192:105382. [PMID: 37105642 DOI: 10.1016/j.pestbp.2023.105382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 06/19/2023]
Abstract
Genetic engineering technology is an ideal method to improve insecticidal efficiency by combining the advantages of different pathogenic microorganisms. Thus, six ascovirus genes were introduced into the genomic DNA of Autographa californica nucleopolyhedrovirus (AcMNPV) to possibly transfer the intrinsically valuable insecticidal properties from ascovirus to baculovirus. The viral budded virus (BV) production and viral DNA replication ability of AcMNPV-111 and AcMNPV-165 were significantly stronger than that of AcMNPV-Egfp (used as the wild-type virus in this study), whereas AcMNPV-33 had reduced ones. AcMNPV-111 and AcMNPV-165 also exhibited excellent insecticidal efficiency in the in vivo bioassays: AcMNPV-111 showed a 24.1% decrease in the LT50 value and AcMNPV-165 exhibited a 56.3% decrease in the LD50 value compared with AcMNPV-Egfp against the 3rd instar of Spodoptera exigua larvae, respectively. Furthermore, the size of the occlusion bodies (OBs) of AcMNPV-33, AcMNPV-111, and AcMNPV-165 were significantly increased compared to that of AcMNPV-Egfp. AcMNPV-111 and AcMNPV-165 had stable virulence against the 2nd to 4th instars tested larvae and higher OB yield than AcMNPV-Egfp in the 3rd and 4th instar larvae. Correlation and regression analyses indicated that it is better to use 5 OBs/larva virus to infect the 2nd instar larvae to produce AcMNPV-111 and 50 OBs/larva virus to infect the 3rd instar larvae to produce AcMNPV-165. The results of this study obtained recombinant viruses with enhanced virulence and exhibited a diversity of ascovirus gene function based on the baculovirus platform, which provided a novel strategy for the improvement of baculovirus as a biological insecticide.
Collapse
Affiliation(s)
- Huan Yu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Chang-Jin Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China; Agriculture and Rural Bureau of Xinhuang Dong Autonomous County, Huaihua, Hunan 419200, PR China
| | - Yi-Yi Ou-Yang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Yue Tong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Hui-Yu Lan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Jia-Min Gan
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Shi-Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Ding-Yi Bai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China
| | - Guo-Hua Huang
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, PR China; College of Plant Protection, Hunan Agricultural University, Changsha, Hunan 410128, PR China.
| |
Collapse
|
3
|
Fragoso-Saavedra M, Vega-López MA. Induction of mucosal immunity against pathogens by using recombinant baculoviral vectors: Mechanisms, advantages, and limitations. J Leukoc Biol 2020; 108:835-850. [PMID: 32392638 DOI: 10.1002/jlb.4mr0320-488r] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/19/2020] [Accepted: 04/09/2020] [Indexed: 12/13/2022] Open
Abstract
Over 90% of pathogens of medical importance invade the organism through mucosal surfaces, which makes it urgent to develop safe and effective mucosal vaccines and mucosal immunization protocols. Besides, parenteral immunization does not provide adequate protective immunity in mucosal surfaces. Effective mucosal vaccination could protect local and systemic compartments and favor herd immunity. Although various mucosal adjuvants and Ag-delivery systems have been developed, none has filled the gap to control diseases caused by complex mucosal pathogens. Among the strategies to counteract them, recombinant virions from the baculovirus Autographa californica multiple nucleopolyhedrovirus (rAcMNPV) are useful vectors, given their safety and efficacy to produce mucosal and systemic immunity in animal infection models. Here, we review the immunogenic properties of rAcMNPV virions from the perspectives of mucosal immunology and vaccinology. Some features, which are analyzed and extrapolated from studies with different particulate antigens, include size, shape, surface molecule organization, and danger signals, all needed to break the tolerogenic responses of the mucosal immune tissues. Also, we present a condensed discussion on the immunity provided by rAcMNPV virions against influenza virus and human papillomavirus in animal models. Through the text, we highlight the advantages and limitations of this experimental immunization platform.
Collapse
Affiliation(s)
- Mario Fragoso-Saavedra
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| | - Marco A Vega-López
- Laboratorio de Inmunobiología de las Mucosas, Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Colonia Zacatenco, Ciudad de México, México
| |
Collapse
|
4
|
Kwon JE, Lee YG, Kang JH, Bai YF, Jeong YJ, Baek NI, Seo YJ, Kang SC. Anti-viral activity of compounds from Agrimonia pilosa and Galla rhois extract mixture. Bioorg Chem 2019; 93:103320. [DOI: 10.1016/j.bioorg.2019.103320] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/22/2023]
|
5
|
Endogenous n-3 Polyunsaturated Fatty Acids Are Beneficial to Dampen CD8 + T Cell-Mediated Inflammatory Response upon the Viral Infection in Mice. Int J Mol Sci 2019; 20:ijms20184510. [PMID: 31547227 PMCID: PMC6770599 DOI: 10.3390/ijms20184510] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 11/16/2022] Open
Abstract
Omega-3 (n-3) polyunsaturated fatty acids (PUFAs) have been known to exert anti-inflammatory effects on various disease states. However, its effect on CD8+ T cell-mediated immunopathology upon viral infection has not been well elucidated yet. In this study, we investigated the possible implication of n-3 PUFAs in CD8+ T cell responses against an acute viral infection. Infection of FAT-1 transgenic mice that are capable of synthesizing n-3 PUFAs from n-6 PUFAs with lymphocytic choriomeningitis virus (LCMV) resulted in significant reduction of anti-viral CD8+ T cell responses. Interestingly, expansion of adoptively transferred wild-type (WT) LCMV-specific T cell receptor (TCR) transgenic CD8+ (P14) T cells into FAT-1 mice was significantly decreased. Also, activation of anti-viral CD4+ helper T cells was reduced in FAT-1 mice. Importantly, P14 cells carrying the fat-1 gene that were adoptively transferred into WT mice exhibited a substantially decreased ability to proliferate and produce cytokines against LCMV infection. Together, n-3 PUFAs attenuated anti-viral CD8+ T cell responses against an acute viral infection and thus could be used to alleviate immunopathology mediated by the viral infection.
Collapse
|
6
|
Kotomina T, Isakova-Sivak I, Matyushenko V, Kim KH, Lee Y, Jung YJ, Kang SM, Rudenko L. Recombinant live attenuated influenza vaccine viruses carrying CD8 T-cell epitopes of respiratory syncytial virus protect mice against both pathogens without inflammatory disease. Antiviral Res 2019; 168:9-17. [PMID: 31075351 PMCID: PMC6620116 DOI: 10.1016/j.antiviral.2019.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 05/01/2019] [Accepted: 05/02/2019] [Indexed: 12/29/2022]
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory disease in young children, elderly and immunocompromised adults. There is no licensed vaccine against RSV although development of an effective and safe RSV vaccine has been a high priority for several decades. Among the various vaccine platforms, the viral-vectored RSV vaccines based on licensed cold-adapted live attenuated influenza vaccine (LAIV) might offer an advantage of inducing adequate mucosal CD8 T cell immunity at the infection site of respiratory pathogens. We constructed two recombinant LAIV viruses expressing immunodominant T-cell epitopes of RSV M2-1 protein. The results in this study provide evidence that RSV CD8 T cell epitopes delivered by LAIV viral vector could confer protection against RSV infection without causing pulmonary eosinophilia and inflammatory RSV disease in mice. In addition, these chimeric LAIV-RSV vaccines retained their attenuated phenotype and ability to protect against virulent influenza virus, thus providing a unique approach to fight against two dangerous respiratory viral pathogens using a single vaccine preparation.
Collapse
Affiliation(s)
- Tatiana Kotomina
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| | - Irina Isakova-Sivak
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia.
| | - Victoria Matyushenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| | - Ki-Hye Kim
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Youri Lee
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Yu-Jin Jung
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Sang-Moo Kang
- Center for Inflammation, Immunity & Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, 30303, USA
| | - Larisa Rudenko
- Department of Virology, Institute of Experimental Medicine, 12 Acad. Pavlov Street, 197376, Russia
| |
Collapse
|
7
|
Jo YM, Kim J, Chang J. Vaccine containing G protein fragment and recombinant baculovirus expressing M2 protein induces protective immunity to respiratory syncytial virus. Clin Exp Vaccine Res 2019; 8:43-53. [PMID: 30775350 PMCID: PMC6369125 DOI: 10.7774/cevr.2019.8.1.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 01/12/2019] [Accepted: 01/25/2019] [Indexed: 12/02/2022] Open
Abstract
Purpose Respiratory syncytial virus (RSV) can cause serious respiratory illnesses such as pneumonia, asthma, and bronchiolitis in infants and elderly or immunocompromised individuals. An RSV vaccine has yet to be developed; only prophylactic anti-RSV antibody is commercially available. So, we investigated whether our vaccine candidate is able to induce type 1 CD4+ T helper (Th1), CD8+ T-cell responses, and protective immunity without vaccine-enhanced disease (VED) against RSV. Materials and Methods We used RSV G protein fragment (Gcf A) with recombinant baculovirus capable of expressing the RSV M2 protein (Bac M2) as a vaccine candidate, and injected this vaccine (Gcf A/Bac M2) intramuscularly, and challenged with RSV intranasally into mice. Enzyme-linked immunosorbent assay, flow cytometry, plaque assay, and weight measurement were performed to confirm humoral immunity, cellular immunity, and protective immunity. Results The Gcf A/Bac M2 formulation induced a stronger IgG response to Gcf A than Gcf A inoculation alone, and the ratio of IgG1/IgG2a indicated that the responses shifted predominantly to Th1. In addition, both RSV G-specific Th1 responses and RSV M2-specific CD8+ T-cell responses were induced, and G protein-associated eosinophilic infiltration was suppressed compared to the control group. Moreover, the Gcf A/Bac M2 group showed effective protection after an RSV challenge. Conclusion Bac M2 could serve as a vaccine with intrinsic adjuvant activity, and the Gcf A/Bac M2 shows promise as a vaccine candidate for inducing protective immunity without inciting VED.
Collapse
Affiliation(s)
- Yeong-Min Jo
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jungwoo Kim
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| | - Jun Chang
- Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, Korea
| |
Collapse
|
8
|
Schmidt ME, Varga SM. Cytokines and CD8 T cell immunity during respiratory syncytial virus infection. Cytokine 2018; 133:154481. [PMID: 30031680 PMCID: PMC6551303 DOI: 10.1016/j.cyto.2018.07.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 01/10/2023]
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection and hospitalization in infants. In spite of the enormous clinical burden caused by RSV infections, there remains no efficacious RSV vaccine. CD8 T cells mediate viral clearance as well as provide protection against a secondary RSV infection. However, RSV-specific CD8 T cells may also induce immunopathology leading to exacerbated morbidity and mortality. Many of the crucial functions performed by CD8 T cells are mediated by the cytokines they produce. IFN-γ and TNF are produced by CD8 T cells following RSV infection and contribute to both the acceleration of viral clearance and the induction of immunopathology. To prevent immunopathology, regulatory mechanisms are in place within the immune system to inhibit CD8 T cell effector functions after the infection has been cleared. The actions of a variety of cytokines, including IL-10 and IL-4, play a critical role in the regulation of CD8 T cell effector activity. Herein, we review the current literature on CD8 T cell responses and the functions of the cytokines they produce following RSV infection. Additionally, we discuss the regulation of CD8 T cell activation and effector functions through the actions of various cytokines.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, USA; Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Department of Pathology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
9
|
Schmidt ME, Varga SM. The CD8 T Cell Response to Respiratory Virus Infections. Front Immunol 2018; 9:678. [PMID: 29686673 PMCID: PMC5900024 DOI: 10.3389/fimmu.2018.00678] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Humans are highly susceptible to infection with respiratory viruses including respiratory syncytial virus (RSV), influenza virus, human metapneumovirus, rhinovirus, coronavirus, and parainfluenza virus. While some viruses simply cause symptoms of the common cold, many respiratory viruses induce severe bronchiolitis, pneumonia, and even death following infection. Despite the immense clinical burden, the majority of the most common pulmonary viruses lack long-lasting efficacious vaccines. Nearly all current vaccination strategies are designed to elicit broadly neutralizing antibodies, which prevent severe disease following a subsequent infection. However, the mucosal antibody response to many respiratory viruses is not long-lasting and declines with age. CD8 T cells are critical for mediating clearance following many acute viral infections in the lung. In addition, memory CD8 T cells are capable of providing protection against secondary infections. Therefore, the combined induction of virus-specific CD8 T cells and antibodies may provide optimal protective immunity. Herein, we review the current literature on CD8 T cell responses induced by respiratory virus infections. Additionally, we explore how this knowledge could be utilized in the development of future vaccines against respiratory viruses, with a special emphasis on RSV vaccination.
Collapse
Affiliation(s)
- Megan E Schmidt
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Steven M Varga
- Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States.,Department of Pathology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|