1
|
Xu B, Yang L, Yang L, Al-Maamari A, Zhang J, Song H, Wang M, Su S, Song Z. Role of glutaminyl-peptide cyclotransferase in breast cancer doxorubicin sensitivity. Cancer Biol Ther 2024; 25:2321767. [PMID: 38417050 PMCID: PMC10903679 DOI: 10.1080/15384047.2024.2321767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 02/18/2024] [Indexed: 03/01/2024] Open
Abstract
Doxorubicin (DOX) is one of the most effective and widely used chemotherapeutic drugs. However, DOX resistance is a critical risk problem for breast cancer treatment. Previous studies have demonstrated that metadherin (MTDH) involves in DOX resistance in breast cancer, but the exact mechanism remains unclear. In this study, we found that glutaminyl-peptide cyclotransferase (QPCT) was a MTDH DOX resistance-related downstream gene in breast cancer. Elevated expression of QPCT was found in the GEPIA database, breast cancer tissue, and breast cancer cells. Clinical data showed that QPCT expression was positively associated with poor prognosis in DOX-treated patients. Overexpression of QPCT could promote the proliferation, invasion and migration, and reduce DOX sensitivity in MCF-7 and MDA-MB-231 cells. Mechanistically, MTDH positively regulates the expressions of NF-κB (p65) and QPCT, and NF-κB (p65) directly regulates the expression of QPCT. Therefore, MTDH/NF-κB (p65)/QPCT signal axis was proposed. Collectively, our findings delineate the mechanism by which the MTDH/NF-κB (p65) axis regulate QPCT signaling and suggest that this complex may play an essential role in breast cancer progression and affect DOX sensitivity.
Collapse
Affiliation(s)
- Bin Xu
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Liu Yang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Lixian Yang
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, Hebei, China
| | - Ahmed Al-Maamari
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Jingyu Zhang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Heng Song
- Department of Radiotherapy, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Meiqi Wang
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Suwen Su
- Department of Pharmacology, The Key Laboratory of Neural and Vascular Biology, Ministry of Education, The Key Laboratory of New Drug Pharmacology and Toxicology, Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhenchuan Song
- Department of Breast Center, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
2
|
Yang L, Han M, Zhao X, Zheng L, Kong F, Zhang S, Jia L, Li X, Wang M. Comprehensive pan‑cancer analysis of MTDH for human tumor prognosis and as an immunological biomarker including breast and kidney cancer. Oncol Lett 2024; 28:349. [PMID: 38872862 PMCID: PMC11170258 DOI: 10.3892/ol.2024.14482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/13/2024] [Indexed: 06/15/2024] Open
Abstract
Metadherin (MTDH), initially discovered in primary astrocytes of the human fetus through rapid subtraction hybridization and labeled as astrocyte elevated gene-1, represents a widely recognized oncogene present in multiple types of cancers. However, the role of MTDH in different types of cancer remains unclear. To address this, a comprehensive analysis of MTDH across various types of cancers was conducted by utilizing multiple databases such as The Cancer Genome Atlas. The present analysis discovered that MTDH exhibits differential expression in different types of cancer and is associated with important factors including tumor mutational burden and microsatellite instability. These findings highlighted the significance of MTDH in the tumor microenvironment and its involvement in the development of immune cells in specific cancers. Furthermore, the results of the present study indicated that the expression of MTDH is strongly correlated with clinical prognosis, mutations and immune cell infiltration. MTDH could serve as a potential indicator of patient prognosis and potentially play a role in modulating the immune system. Given its potential as a novel immunological checkpoint, MTDH may be a viable target for tumor immunotherapy.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Mingqiang Han
- Department of Thyroid Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaoling Zhao
- Oncology Laboratory, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Lei Zheng
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Lining Jia
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| | - Meng Wang
- Department of Breast Surgery, Xingtai People's Hospital, Xingtai, Hebei 054001, P.R. China
| |
Collapse
|
3
|
Wang YY, Shen MM, Gao J. Metadherin promotes stem cell phenotypes and correlated with immune infiltration in hepatocellular carcinoma. World J Gastroenterol 2024; 30:901-918. [PMID: 38516242 PMCID: PMC10950638 DOI: 10.3748/wjg.v30.i8.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/18/2023] [Accepted: 01/24/2024] [Indexed: 02/26/2024] Open
Abstract
BACKGROUND Metadherin (MTDH) is a key oncogene in most cancer types, including hepatocellular carcinoma (HCC). Notably, MTDH does not affect the stemness pheno-type or immune infiltration of HCC. AIM To explore the role of MTDH on stemness and immune infiltration in HCC. METHODS MTDH expression in HCC tissues was detected using TCGA and GEO databases. Immunohistochemistry was used to analyze the tissue samples. MTDH was stably knocked down or overexpressed by lentiviral transfection in the two HCC cell lines. The invasion and migration abilities of HCC cells were evaluated using Matrigel invasion and wound healing assays. Next, we obtained liver cancer stem cells from the spheroids by culturing them in a serum-free medium. Gene expression was determined by western blotting and quantitative reverse transcri-ption PCR. Flow cytometry, immunofluorescence, and tumor sphere formation assays were used to characterize stem-like cells. The effects of MTDH inhibition on tumor growth were evaluated in vivo. The correlation of MTDH with immune cells, immunomodulators, and chemokines was analyzed using ssGSEA and TISIDB databases. RESULTS HCC tissues expressed higher levels of MTDH than normal liver tissues. High MTDH expression was associated with a poor prognosis. HCC cells overexpressing MTDH exhibited stronger invasion and migration abilities, exhibited a stem cell-like phenotype, and formed spheres; however, MTDH inhibition attenuated these effects. MTDH inhibition suppressed HCC progression and CD133 expression in vivo. MTDH was positively correlated with immature dendritic, T helper 2 cells, central memory CD8+ T, memory B, activated dendritic, natural killer (NK) T, NK, activated CD4+ T, and central memory CD4+ T cells. MTDH was negatively correlated with activated CD8+ T cells, eosinophils, activated B cells, monocytes, macrophages, and mast cells. A positive correlation was observed between the MTDH level and CXCL2 expression, whereas a negative correlation was observed between the MTDH level and CX3CL1 and CXCL12 expression. CONCLUSION High levels of MTDH expression in patients with HCC are associated with poor prognosis, promoting tumor stemness, immune infiltration, and HCC progression.
Collapse
Affiliation(s)
- Yi-Ying Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Mei-Mei Shen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| | - Jian Gao
- Department of Gastroenterology and Hepatology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, China
| |
Collapse
|
4
|
Yang L, Yang L, Kong F, Zhang S, Pu P, Li X, Song Z. Bioinformatic analysis reveals an association between Metadherin with breast cancer prognosis and tumor immune infiltration. Sci Rep 2024; 14:1949. [PMID: 38253625 PMCID: PMC10803374 DOI: 10.1038/s41598-024-52403-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 01/18/2024] [Indexed: 01/24/2024] Open
Abstract
Breast cancer metastasis and invasion are both promoted by the oncoprotein Metadherin (MTDH). However, the the role of Metadherin in breast cancer progression and its role in the immune microenvironment. Are not clear. A bioinformatic analysis was performed to demonstrate the prognostic value of Metadherin in BC. In the present study, we found that Metadherin is overexpressed in BC and is significantly correlated with individual cancer stage, age, subclasses, menopause and nodal metastasis status. Metadherin overexpression was associated with a significant decrease in OS and DSS. Cox multivariate analysis indicated that Metadherin was an independent negative prognostic indicator for OS and DSS. Moreover, Metadherin hypomethylation status was associated with poor prognosis. A negative correlation was also noted between Metadherin overexpression and the number of plasmacytoid dendritic cells, cluster of differentiation 8+ T cells, and natural killer cells. Association patterns varied with different subtypes. Various associations between Metadherin levels and immune cell surface markers were revealed. A total of 40 groups of BC and adjacent normal breast tissue samples were collected. Metadherin mRNA was detected by PCR, and its expression levels in BC tissues were significantly increased compared with those noted in normal tissues. The expression levels of Metadherin were also measured in normal and BC cell lines, respectively, and similar conclusions were obtained. The Metadherin mRNA levels were knocked down in SK-BR3 and MDA-MB-231 cell lines and the cell proliferative and migratory activities were determined using Cell Counting Kit-8 and scratch assays, respectively. The results indicated that the cell proliferative and migratory abilities were reduced following knockdown of Metadherin expression. Therefore, Metadherin may be considered as a novel prognostic biomarker in BC.
Collapse
Affiliation(s)
- Lixian Yang
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Liu Yang
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Changjiang Avenue, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Fanting Kong
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Shiyu Zhang
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Pengpeng Pu
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Xiaowei Li
- Department of Breast Surgery, Xingtai People's Hospital, No. 818 Xiangdu district, Xingtai, 054000, Hebei, People's Republic of China
| | - Zhenchuan Song
- Breast Center, The Fourth Hospital of Hebei Medical University, 169 Changjiang Avenue, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
5
|
Zhao X, Wang Y, Xia H, Liu S, Huang Z, He R, Yu L, Meng N, Wang H, You J, Li J, Yam JWP, Xu Y, Cui Y. Roles and Molecular Mechanisms of Biomarkers in Hepatocellular Carcinoma with Microvascular Invasion: A Review. J Clin Transl Hepatol 2023; 11:1170-1183. [PMID: 37577231 PMCID: PMC10412705 DOI: 10.14218/jcth.2022.00013s] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 01/18/2023] [Accepted: 03/21/2023] [Indexed: 07/03/2023] Open
Abstract
Hepatocellular carcinoma (HCC) being a leading cause of cancer-related death, has high associated mortality and recurrence rates. It has been of great necessity and urgency to find effective HCC diagnosis and treatment measures. Studies have shown that microvascular invasion (MVI) is an independent risk factor for poor prognosis after hepatectomy. The abnormal expression of biomacromolecules such as circ-RNAs, lncRNAs, STIP1, and PD-L1 in HCC patients is strongly correlated with MVI. Deregulation of several markers mentioned in this review affects the proliferation, invasion, metastasis, EMT, and anti-apoptotic processes of HCC cells through multiple complex mechanisms. Therefore, these biomarkers may have an important clinical role and serve as promising interventional targets for HCC. In this review, we provide a comprehensive overview on the functions and regulatory mechanisms of MVI-related biomarkers in HCC.
Collapse
Affiliation(s)
- Xudong Zhao
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yudan Wang
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Haoming Xia
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Shuqiang Liu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ziyue Huang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Risheng He
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Yu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nanfeng Meng
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Hang Wang
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Junqi You
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Jinglin Li
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Judy Wai Ping Yam
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yi Xu
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
- Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
- Key Laboratory of Functional and Clinical Translational Medicine, Fujian Province University, Xiamen Medical College, Xiamen, Fujian, China
- Jiangsu Province Engineering Research Center of Tumor Targeted Nano Diagnostic and Therapeutic Materials, Yancheng Teachers University, Yancheng, Jiangsu, China
- Key Laboratory of Biomarkers and In Vitro Diagnosis Translation of Zhejiang province, Hangzhou, Zhejiang, China
- Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, China
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Key Laboratory of Intelligent Pharmacy and Individualized Therapy of Huzhou, Department of Pharmacy, Changxing People’s Hospital, Changxing, Zhejiang, China
| | - Yunfu Cui
- Department of Hepatopancreatobiliary Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
6
|
Neeli PK, Sahoo S, Karnewar S, Singuru G, Pulipaka S, Annamaneni S, Kotamraju S. DOT1L regulates MTDH-mediated angiogenesis in triple-negative breast cancer: intermediacy of NF-κB-HIF1α axis. FEBS J 2023; 290:502-520. [PMID: 36017623 DOI: 10.1111/febs.16605] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/18/2022] [Accepted: 08/25/2022] [Indexed: 02/05/2023]
Abstract
DOT1L, a specific H3K79 methyltransferase, has a tumour-promoting role in various cancers, including triple-negative breast cancer (TNBC). However, the molecular mechanism by which the deregulated DOT1L promotes cancer progression is unclear. Herein, we show that a significantly higher basal level of DOTL1 strongly correlates with MTDH, an oncogene, in clinical TNBC patient cohorts and mediates TNBC progression by enhancing MTDH-induced angiogenesis. In parallel, severe combined immunodeficiency mice-bearing MDA-MB-231 cells with MTDH-Wt or MTDHΔ7 (spliced isoform of MTDH) overexpression constructs showed enhanced blood vessel formations at the tumour site in comparison with control groups. Selective inhibition of DOT1L by EPZ004777, a specific DOT1L inhibitor, or siDOT1L, significantly impaired MTDH-induced proliferation, invasion and angiogenic markers expression in TNBC cells. ChIP assay revealed that Dot1L promotes MTDH-Wt/Δ7 transcription by increasing H3K79me3 levels on its promoter. Dot1L depletion reversed this effect. Mechanistically, DOT1L-induced MTDH caused enhanced nuclear factor kappa B (NF-κB) occupancy on the hypoxia-inducible factor1α (HIF1α) promoter and increased its transcription, leading to elevated levels of proangiogenic mediators in TNBC cells. Moreover, the condition media obtained from MDA-MB-231 cells stably expressing either MTDH-Wt or MTDHΔ7 treated with EPZ004777 or Bay-11-7082 (NF-κB inhibitor) or FM19G11 (HIF1α inhibitor) significantly inhibited MTDH-induced tube formation in human umbilical vein endothelial cells, rat aortic ring sprouting and vessel formations by chick chorioallantoic membrane assay mimicking physiological angiogenic vasculature. Collectively, our findings reveal a novel epigenetic regulation of MTDH by DOTL1, which drives angiogenesis, and that the therapeutic disruption of the DOT1L-MTDH-NF-κB-HIF1α axis may have usefulness in the management of TNBC.
Collapse
Affiliation(s)
- Praveen Kumar Neeli
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Shashikanta Sahoo
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Santosh Karnewar
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Gajalakshmi Singuru
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | - Sriravali Pulipaka
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| | | | - Srigiridhar Kotamraju
- Department of Applied Biology, CSIR-Indian Institute of Chemical Technology, Hyderabad, India.,Academy of Scientific and Innovative Research, Ghaziabad, India
| |
Collapse
|
7
|
Wang H, Li Y, Qi Y, Zhao E, Kong X, Yang C, Yang Q, Zhang C, Liu Y, Song Z. Pegylated Liposomal Doxorubicin, Docetaxel, and Trastuzumab as Neoadjuvant Treatment for HER2-Positive Breast Cancer Patients: A Phase II and Biomarker Study. Front Oncol 2022; 12:909426. [PMID: 35875123 PMCID: PMC9304895 DOI: 10.3389/fonc.2022.909426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/30/2022] [Indexed: 11/25/2022] Open
Abstract
Background Combined neoadjuvant chemotherapy with trastuzumab and pertuzumab is the standard regimen for human epidermal growth receptor 2 (HER2)-positive breast cancer (BC). However, pertuzumab is not available because it is not on the market or covered by medicare in some regions or poor economy. Anthracyclines and taxanes are cornerstones in BC chemotherapy, and their combination contributes to satisfactory efficiency in neoadjuvant settings. Nonetheless, concomitant administration of trastuzumab and an anthracycline is generally avoided clinically due to cardiotoxicity. Pegylated liposomal doxorubicin (PLD) is less cardiotoxic compared with traditional anthracyclines. Here, we conducted this prospective study to evaluate the efficacy, safety, and potential biomarkers for PLD plus trastuzumab and docetaxel as neoadjuvant treatment in HER2-positive BC. Patients and Methods Patients with stage II or III HER2-positive BC were recruited in this multicenter, open-label, single-arm, phase II study. Eligible patients were given 6 cycles of PLD plus docetaxel and trastuzumab. Primary endpoint was total pathological complete response (tpCR, ypT0/is ypN0). Secondary endpoints were breast pathological complete response (bpCR, ypT0/is), objective response rate (ORR), operation rate, breast-conserving surgery rate, and safety. Metadherin (MTDH), glutaminyl-peptide cyclotransferase (QPCT), topoisomerase II alpha (TOP2A), programmed death ligand 1 (PD-L1), and tumor-infiltrating lymphocytes (TILs) were evaluated in BC tissues pre-neoadjuvant for potential biomarkers. Results Between March 2019 and February 2021, 54 patients were enrolled, 50 were included in the analysis, and 35 (70.0%) completed 6 cycles of neoadjuvant treatment. Forty-nine (98.0%) patients underwent surgery with a breast-conserving rate of 44.0%. The tpCR rate, bpCR rate, and ORR were 48.0% (95% CI, 33.7%–62.6%), 60.0% (95% CI, 45.2%–73.6%), and 84.0% (95% CI, 70.9%–92.8%), respectively. tpCR was associated with MTDH (p = 0.002) and QPCT (p = 0.036) expression but not with TOP2A (p = 0.75), PD-L1 (p = 0.155), or TILs (p = 0.76). Patients with HR-negative status were more likely to achieve bpCR compared with those with HR-positive status (76.2% vs. 48.3%, p = 0.047). Grade ≥3 adverse events occurred in 38.0% of patients. Left ventricular ejection fraction decline by ≥10% was reported in 18.0% of patients, and no patient experienced congestive heart failure. Conclusions PLD plus docetaxel and trastuzumab might be a potential neoadjuvant regimen for HER2-positive BC with a high tpCR rate and manageable tolerability. MTDH and QPCT are potential predictive markers for tpCR.
Collapse
Affiliation(s)
- Haoqi Wang
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
| | - Yuntao Li
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
| | - Yixin Qi
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
| | - Erbao Zhao
- Department of Breast Center, Shanxi Cancer Hospital, Taiyuan, China
| | - Xiangshun Kong
- Department of Breast Surgery, Xingtai People’s Hospital, Xingtai, China
| | - Chao Yang
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
| | - Qiqi Yang
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
| | - Chengyuan Zhang
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
| | - Yueping Liu
- Pathology Department, Fourth Hospital of Hebei Medical University, Hebei Province Key Laboratory of Breast Cancer Molecular Medicine, Shijiazhuang, China
- *Correspondence: Zhenchuan Song, ; Yueping Liu,
| | - Zhenchuan Song
- Breast Center, Fourth Hospital of Hebei Medical University, Key Laboratory for Breast Cancer Molecular Medicine of Hebei Province, Shijiazhuang, China
- *Correspondence: Zhenchuan Song, ; Yueping Liu,
| |
Collapse
|
8
|
Abdel Ghafar MT, Soliman NA. Metadherin (AEG-1/MTDH/LYRIC) expression: Significance in malignancy and crucial role in colorectal cancer. Adv Clin Chem 2022; 106:235-280. [PMID: 35152973 DOI: 10.1016/bs.acc.2021.09.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Metadherin (AEG-1/MTDH/LYRIC) is a 582-amino acid transmembrane protein, encoded by a gene located at chromosome 8q22, and distributed throughout the cytoplasm, peri-nuclear region, nucleus, and nucleolus as well as the endoplasmic reticulum (ER). It contains several structural and interacting domains through which it interacts with transcription factors such as nuclear factor-κB (NF-κB), promyelocytic leukemia zinc finger (PLZF), staphylococcal nuclease domain containing 1 (SND1) and lung homing domain (LHD). It is regulated by miRNAs and mediates its oncogenic function via activation of cell proliferation, survival, migration and metastasis, as well as, angiogenesis and chemoresistance via phosphatidylinositol-3-kinase/AKT (PI3K/AKT), NF-κB, mitogen-activated protein kinase (MAPK) and Wnt signaling pathways. In this chapter, metadherin is reviewed highlighting its role in mediating growth, metastasis and chemoresistance in colorectal cancer (CRC). Metadherin, as well as its variants, and antibodies are associated with CRC progression, poorer prognosis, decreased survival and advanced clinico-pathology. The potential of AEG-1/MTDH/LYRIC as a diagnostic and prognostic marker as well as a therapeutic target in CRC is explored.
Collapse
Affiliation(s)
| | - Nema A Soliman
- Department of Medical Biochemistry, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
9
|
Cai Y, Zhao X, Chen D, Zhang F, Chen Q, Shao CC, Ouyang YX, Feng J, Cui L, Chen M, Xu J. circ-NOL10 regulated by MTDH/CASC3 inhibits breast cancer progression and metastasis via multiple miRNAs and PDCD4. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:773-786. [PMID: 34729247 PMCID: PMC8526500 DOI: 10.1016/j.omtn.2021.09.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 09/24/2021] [Indexed: 02/05/2023]
Abstract
Circular RNAs (circRNAs) play important roles in carcinogenesis. Here, we investigated the mechanisms and clinical significance of circ-NOL10, a highly repressed circRNA in breast cancer. Subsequently, we also identified RNA-binding proteins (RBPs) that regulate circ-NOL10. Bioinformatics analysis was utilized to predict regulatory RBPs as well as circ-NOL10 downstream microRNAs (miRNAs) and mRNA targets. RNA immunoprecipitation, luciferase assay, fluorescence in situ hybridization, cell proliferation, wound healing, Matrigel invasion, cell apoptosis assays, and a xenograft model were used to investigate the function and mechanisms of circ-NOL10 in vitro and in vivo. The clinical value of circ-NOL10 was evaluated in a large cohort of breast cancer by quantitative real-time PCR. Circ-NOL10 is downregulated in breast cancer and associated with aggressive characteristics and shorter survival time. Upregulation of circ-NOL10 promotes apoptosis, decreases proliferation, and inhibits invasion and migration. Furthermore, circ-NOL10 binds multiple miRNAs to alleviate carcinogenesis by regulating PDCD4. CASC3 and metadherin (MTDH) can bind directly to circ-NOL10 with characterized motifs. Accordingly, ectopic expression or depletion of CASC3 or MTDH leads to circ-NOL10 expression changes, suggesting that these two RBPs modulate circ-NOL10 in cancer cells. circ-NOL10 is a novel biomarker for diagnosis and prognosis in breast cancer. These results highlight the importance of therapeutic targeting of the RBP-noncoding RNA (ncRNA) regulation network.
Collapse
Affiliation(s)
- Yujie Cai
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Xing Zhao
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center, Groningen, 9700 RB Groningen, the Netherlands
| | - Danze Chen
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Fan Zhang
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Qiuyang Chen
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Chang-Chun Shao
- ChangJiang Scholar’s Laboratory, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Yan-Xiu Ouyang
- ChangJiang Scholar’s Laboratory, Shantou University Medical College (SUMC), 515041 Shantou, China
| | - Jun Feng
- Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101 Fujian, China
| | - Lili Cui
- Guangdong Key Laboratory of Age-Related Cardiac and Cerebral Diseases, Affiliated Hospital of Guangdong Medical University, 524000 Zhanjiang, China
| | - Min Chen
- Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101 Fujian, China
- Corresponding author Min Chen, Clinical Central Research Core, Xiang’an Hospital of Xiamen University, No. 2000, Xiang’an Road East, Xiamen, 361101, Fujian, China
| | - Jianzhen Xu
- Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China
- Corresponding author Jianzhen Xu, Systems Biology Lab, Shantou University Medical College (SUMC), 515041 Shantou, China.
| |
Collapse
|
10
|
Chen Y, Huang S, Guo R, Chen D. Metadherin-mediated mechanisms in human malignancies. Biomark Med 2021; 15:1769-1783. [PMID: 34783585 DOI: 10.2217/bmm-2021-0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Metadherin (MTDH) has been recognized as a novel protein that is critical for the progression of multiple types of human malignancies. Studies have reported that MTDH enhances the metastatic potential of cancer cells by regulating multiple signaling pathways. miRNAs and various tumor-related proteins have been shown to interact with MTDH, making it a potential therapeutic target as well as a biomarker in human malignancies. MTDH plays a critical role in inflammation, angiogenesis, hypoxia, epithelial-mesenchymal transition and autophagy. In this review, we present the function and mechanisms of MTDH for cancer initiation and progression.
Collapse
Affiliation(s)
- Yuyuan Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Sheng Huang
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Rong Guo
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| | - Dedian Chen
- The Second Department of Breast Surgery, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital, Kunming, 650000, PR China
| |
Collapse
|
11
|
Sriramulu S, Sun XF, Malayaperumal S, Ganesan H, Zhang H, Ramachandran M, Banerjee A, Pathak S. Emerging Role and Clinicopathological Significance of AEG-1 in Different Cancer Types: A Concise Review. Cells 2021; 10:1497. [PMID: 34203598 PMCID: PMC8232086 DOI: 10.3390/cells10061497] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 12/29/2022] Open
Abstract
Tumor breakthrough is driven by genetic or epigenetic variations which assist in initiation, migration, invasion and metastasis of tumors. Astrocyte elevated gene-1 (AEG-1) protein has risen recently as the crucial factor in malignancies and plays a potential role in diverse complex oncogenic signaling cascades. AEG-1 has multiple roles in tumor growth and development and is found to be involved in various signaling pathways of: (i) Ha-ras and PI3K/AKT; (ii) the NF-κB; (iii) the ERK or mitogen-activated protein kinase and Wnt or β-catenin and (iv) the Aurora-A kinase. Recent studies have confirmed that in all the hallmarks of cancers, AEG-1 plays a key functionality including progression, transformation, sustained angiogenesis, evading apoptosis, and invasion and metastasis. Clinical studies have supported that AEG-1 is actively intricated in tumor growth and progression which includes esophageal squamous cell, gastric, colorectal, hepatocellular, gallbladder, breast, prostate and non-small cell lung cancers, as well as renal cell carcinomas, melanoma, glioma, neuroblastoma and osteosarcoma. Existing studies have reported that AEG-1 expression has been induced by Ha-ras through intrication of PI3K/AKT signaling. Conversely, AEG-1 also activates PI3K/AKT pathway and modulates the defined subset of downstream target proteins via crosstalk between the PI3K/AKT/mTOR and Hedgehog signaling cascade which further plays a crucial role in metastasis. Thus, AEG-1 may be employed as a biomarker to discern the patients of those who are likely to get aid from AEG-1-targeted medication. AEG-1 may play as an effective target to repress tumor development, occlude metastasis, and magnify the effectiveness of treatments. In this review, we focus on the molecular mechanism of AEG-1 in the process of carcinogenesis and its involvement in regulation of crosstalk between the PI3K/AKT/mTOR and Hedgehog signaling. We also highlight the multifaceted functions, expression, clinicopathological significance and molecular inhibitors of AEG-1 in various cancer types.
Collapse
Affiliation(s)
- Sushmitha Sriramulu
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Xiao-Feng Sun
- Department of Oncology, Linköping University, SE-581 83 Linköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, SE-581 83 Linköping, Sweden
| | - Sarubala Malayaperumal
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Harsha Ganesan
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Hong Zhang
- Department of Medical Sciences, School of Medicine, Orebro University, SE-701 82 Orebro, Sweden;
| | - Murugesan Ramachandran
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Kelambakkam, Chennai 603103, India; (S.S.); (S.M.); (H.G.); (M.R.); (A.B.)
| |
Collapse
|
12
|
Lee SJ, Choi KM, Bang G, Park SG, Kim EB, Choi JW, Chung YH, Kim J, Lee SG, Kim E, Kim JY. Identification of Nucleolin as a Novel AEG-1-Interacting Protein in Breast Cancer via Interactome Profiling. Cancers (Basel) 2021; 13:cancers13112842. [PMID: 34200450 PMCID: PMC8201222 DOI: 10.3390/cancers13112842] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 01/22/2023] Open
Abstract
Breast cancer is one of the most common malignant diseases worldwide. Astrocyte elevated gene-1 (AEG-1) is upregulated in breast cancer and regulates breast cancer cell proliferation and invasion. However, the molecular mechanisms by which AEG-1 promotes breast cancer have yet to be fully elucidated. In order to delineate the function of AEG-1 in breast cancer development, we mapped the AEG-1 interactome via affinity purification followed by LC-MS/MS. We identified nucleolin (NCL) as a novel AEG-1 interacting protein, and co-immunoprecipitation experiments validated the interaction between AEG-1 and NCL in breast cancer cells. The silencing of NCL markedly reduced not only migration/invasion, but also the proliferation induced by the ectopic expression of AEG-1. Further, we found that the ectopic expression of AEG-1 induced the tyrosine phosphorylation of c-Met, and NCL knockdown markedly reduced this AEG-1 mediated phosphorylation. Taken together, our report identifies NCL as a novel mediator of the oncogenic function of AEG-1, and suggests that c-Met could be associated with the oncogenic function of the AEG-1-NCL complex in the context of breast cancer.
Collapse
Affiliation(s)
- Seong-Jae Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Kyoung-Min Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Geul Bang
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seo-Gyu Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Eun-Bi Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Jin-Woong Choi
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
| | - Young-Ho Chung
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Jinyoung Kim
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute (KBSI), Ochang 28119, Korea; (G.B.); (Y.-H.C.); (J.K.)
| | - Seok-Geun Lee
- Bionanocomposite Research Center, Department of Science in Korean Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Eunjung Kim
- Natural Product Informatics Center, Korea Institute of Science and Technology (KIST), Gangneung 25451, Korea
- Correspondence: (E.K.); (J.-Y.K.)
| | - Jae-Young Kim
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, Korea; (S.-J.L.); (K.-M.C.); (S.-G.P.); (E.-B.K.); (J.-W.C.)
- Correspondence: (E.K.); (J.-Y.K.)
| |
Collapse
|
13
|
The negative correlation between miR-140-3-p and Metadherin gene in estrogen and progesterone receptor positive–breast cancer. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
Expression of MTDH and IL-10 Is an Independent Predictor of Worse Prognosis in ER-Negative or PR-Negative Breast Cancer Patients. J Clin Med 2020; 9:jcm9103153. [PMID: 33003428 PMCID: PMC7601725 DOI: 10.3390/jcm9103153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/19/2020] [Accepted: 09/25/2020] [Indexed: 01/10/2023] Open
Abstract
(1) Background: Tumor hypoxia leads to metastasis and certain immune responses, and interferes with normal biological functions. It also affects glucose intake, down-regulates oxidative phosphorylation, and inhibits fatty-acid desaturation regulated by hypoxia-inducible factor 1α (HIF-1α). Although tumor hypoxia has been found to promote tumor metastasis, the roles of HIF-1α-regulated genes and their application are not completely integrated in clinical practice. (2) Methods: We examined the correlation between HIF-1α, metadherin (MTDH), and interleukin (IL)-10 mRNA expression, as well as their expression patterns in the prognosis of breast cancer using the Gene Expression Profiling Interactive Analysis (GEPIA) databases via a web interface; tissue microarrays (TMAs) were stained for MTDH and IL-10 protein expression using immunohistochemistry. (3) Results: HIF-1α, MTDH, and IL-10 mRNA expression are highly correlated and strongly associated with poor prognosis. MTDH and IL-10 protein expression of breast cancer patients usually harbored negative estrogen receptor (ER) or progesterone receptor (PR) status, and late-stage tumors have higher IL-10 expression. With regard to MTDH and IL-10 protein expression status for using univariate and multivariate analysis, the results showed that the protein expression of MTDH and IL-10 in ER-negative or PR-negative breast cancer patients have the worse prognosis. (4) Conclusions: we propose a new insight into hypoxia tumors in the metabolism and immune evidence for breast cancer therapy.
Collapse
|
15
|
Han C, Fu Y, Zeng N, Yin J, Li Q. LncRNA FAM83H-AS1 promotes triple-negative breast cancer progression by regulating the miR-136-5p/metadherin axis. Aging (Albany NY) 2020; 12:3594-3616. [PMID: 32074085 PMCID: PMC7066879 DOI: 10.18632/aging.102832] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 01/27/2020] [Indexed: 12/12/2022]
Abstract
In this study, we evaluated the function and regulation of the long non-coding RNA (lncRNA) FAM83H-AS1 in triple-negative breast cancer (TNBC). Our data show that the FAM83H-AS1 levels are increased in human TNBC cells and tissues. Proliferation, migration, and invasion of TNBC cells are decreased by FAM83H-AS1 suppression, but increased by FAM83H-AS1 overexpression. Bioinformatics analysis revealed that miR-136-5p is a potential target of FAM83H-AS1. MiR-136-5p expression is decreased in TNBC tissues, and its overexpression suppresses TNBC cell proliferation, migration, and invasion. MiR-136-5p suppression reverses the FAM83H-AS1 silencing-mediated inhibition of TNBC cell proliferation, migration, and invasion, suggesting that FAM83H-AS1 exerts its oncogenic effect by inhibiting miR-136-5p. Our data identify metadherin (MTDH) as the target gene of miR-136-5p, and demonstrate that the MTDH expression is increased in human TNBC tissues, which induces proliferation, migration, and invasion of TNBC cells. Importantly, our in vivo data show that FAM83H-AS1 also promotes tumor growth in TNBC mouse xenografts. Together, our results demonstrate that FAM83H-AS1 functions as an oncogenic lncRNA that regulates miR-136-5p and MTDH expression during TNBC progression, and suggest that targeting the FAM83H-AS1/miR-136-5p/MTDH axis may serve as a novel therapeutic target in TNBC.
Collapse
Affiliation(s)
- Chunyong Han
- Department of Breast Reconstruction, The Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yiwei Fu
- Department of Cell Biology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| | - Ni Zeng
- Department of Respiratory, Tianjin Fifth Central Hospital, Tianjin 300457, China
| | - Jian Yin
- Department of Breast Reconstruction, The Sino-Russian Joint Research Center for Oncoplastic Breast Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Treatment of Tianjin, Tianjin Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China.,Department of Cell Biology, Basic Medical College, Tianjin Medical University, Tianjin 300070, China
| |
Collapse
|
16
|
A novel metadherinΔ7 splice variant enhances triple negative breast cancer aggressiveness by modulating mitochondrial function via NFĸB-SIRT3 axis. Oncogene 2019; 39:2088-2102. [PMID: 31806873 DOI: 10.1038/s41388-019-1126-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/15/2019] [Accepted: 11/20/2019] [Indexed: 12/15/2022]
Abstract
Metadherin (MTDH) expression inversely correlates with prognosis of several cancers including mammary carcinomas. In this work, we identified a novel splice variant of MTDH with exon7 skipping (MTDHΔ7) and its levels were found significantly high in triple negative breast cancer (TNBC) cells and in patients diagnosed with TNBC. Selective overexpression of MTDHΔ7 in MDA-MB-231 and BT-549 cells enhanced proliferation, invasion, and epithelial-to-mesenchymal (EMT) transition markers in comparison to its wildtype counterpart. In contrast, knockdown of MTDHΔ7 induced antiproliferative/antiinvasive effects. Mechanistically, MTDH-NFĸB-p65 complex activated SIRT3 transcription by binding to its promoter that in turn enhanced MnSOD levels and promoted EMT in TNBC cells. Intriguingly, mitochondrial OCR through Complex-I and -IV, and glycolytic rate (ECAR) were significantly high in MDA-MB-231 cells stably expressing MTDHΔ7. While depletion of SIRT3 inhibited MTDH-Wt/Δ7-induced OCR and ECAR, knockdown of MnSOD inhibited only ECAR. In addition, MTDH-Wt/Δ7-mediated pro-proliferative/-invasive effects were greatly obviated with either siSIRT3 or siMnSOD in these cells. The functional relevance of MTDHΔ7 was further proved under in vivo conditions in an orthotopic mouse model of breast cancer. Mice bearing labeled MDA-MB-231 cells stably expressing MTDHΔ7 showed significantly more tumor growth and metastatic ability to various organs in comparison to MTDH-Wt bearing mice. Taken together, MTDHΔ7 promotes TNBC aggressiveness through enhanced mitochondrial biogenesis/function, which perhaps serves as a biomarker.
Collapse
|
17
|
Wang X, Cai L, Ye F, Li M, Ma L, Geng C, Song Z, Liu Y. Elevated expression of MTDH predicts better prognosis of locally advanced HER-2 positive breast cancer patients receiving neoadjuvant chemotherapy plus trastuzumab. Medicine (Baltimore) 2019; 98:e16937. [PMID: 31490377 PMCID: PMC6739014 DOI: 10.1097/md.0000000000016937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Metadherin (MTDH), also known as astrocyte elevated gene-1 (AEG-1), is an oncoprotein closely related to the development of breast cancer. However, few studies have been done on the expression and clinical significance of MTDH in human epidermal growth factor receptor-2 (HER-2) positive breast cancer patients.This study aimed to investigate the expression of MTDH in locally advanced HER-2 positive breast cancer, and evaluate the clinical significance of MTDH in predicting the prognosis of patients with HER-2 positive advanced breast cancer who received the neoadjuvant chemotherapy plus trastuzumab.In 144 HER-2 positive breast cancer tissues, 79 cases showed high expression of MTDH and 65 cases showed low expression. The expression of MTDH in locally advanced HER-2 positive breast cancer tissues was correlated with TNM stage, lymph node metastasis, Miller-Payne (MP) grade, and pathologic complete response (pCR) status (P < .05), but was not correlated with patient age, estrogen receptor (ER) expression level, progesterone receptor (PR) expression level, and Ki-67 expression level (P > .05). Kaplan-Meier univariate analysis revealed a negative correlation between MTDH expression and the disease-free survival (DFS) and overall survival (OS) in the post-operative patients with locally advanced HER-2 positive breast cancer (log rank test: P < .001). By using the COX proportional hazard regression model, it was found that MTDH expression, TNM stage, lymph node metastasis, and Ki-67 expression were closely related to DFS in patients. The hazard ratio (HR) of high MTDH expression was 1.816 (95% CI: 1.165-2.829). In addition, MTDH expression, TNM stage, and lymph node metastasis were also closely related to the OS of patient. The HR of the high expression of MTDH was 2.512 (95% CI: 1.472-4.286). The expression of MTDH in tumor tissues of patients with HER2-positive locally advanced breast cancer was significantly elevated, which was related to the poor pathological features.High MTDH expression was closely correlated with poor prognosis of patients and was an important factor affecting tumor progression.
Collapse
Affiliation(s)
| | - Lijing Cai
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang
| | - Feng Ye
- Department of Pathology, West China Hospital of Sichuan University, Chengdu, China
| | | | | | | | | | - Yueping Liu
- Department of Pathology, Fourth Hospital of Hebei Medical University, Shijiazhuang
| |
Collapse
|
18
|
Liang Y, Zhang H, Song X, Yang Q. Metastatic heterogeneity of breast cancer: Molecular mechanism and potential therapeutic targets. Semin Cancer Biol 2019; 60:14-27. [PMID: 31421262 DOI: 10.1016/j.semcancer.2019.08.012] [Citation(s) in RCA: 468] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 02/08/2023]
Abstract
Breast cancer is one of the most common malignancies among women throughout the world and is the major cause of most cancer-related deaths. Several explanations account for the high rate of mortality of breast cancer, and metastasis to vital organs is identified as the principal cause. Over the past few years, intensive efforts have demonstrated that breast cancer exhibits metastatic heterogeneity with distinct metastatic precedence to various organs, giving rise to differences in prognoses and responses to therapy in breast cancer patients. Bone, lung, liver, and brain are generally accepted as the primary target sites of breast cancer metastasis. However, the underlying molecular mechanism of metastatic heterogeneity of breast cancer remains to be further elucidated. Recently, the advent of novel genomic and pathologic approaches as well as technological breakthroughs in imaging analysis and animal modelling have yielded an unprecedented change in our understanding of the heterogeneity of breast cancer metastasis and provided novel insight for establishing more effective therapeutics. This review summarizes recent molecular mechanisms and emerging concepts on the metastatic heterogeneity of breast cancer and discusses the potential of identifying specific molecules against tumor cells or tumor microenvironments to thwart the development of metastatic disease and improve the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Yiran Liang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Hanwen Zhang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Xiaojin Song
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China; Pathology Tissue Bank, Qilu Hospital, Shandong University, Jinan, Shandong, 250012, PR China.
| |
Collapse
|
19
|
Li T, Li Y, Sun H. MicroRNA-876 is sponged by long noncoding RNA LINC00707 and directly targets metadherin to inhibit breast cancer malignancy. Cancer Manag Res 2019; 11:5255-5269. [PMID: 31239777 PMCID: PMC6559252 DOI: 10.2147/cmar.s210845] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 05/06/2019] [Indexed: 12/13/2022] Open
Abstract
Background: MicroRNA-876-5p (miR-876) dysregulation contributes to the aggressiveness of various types of human cancer. This study was aimed at measuring miR-876 expression in breast cancer, determining the specific roles of miR-876 in the progression of breast cancer and understanding the corresponding molecular mechanisms. Materials and methods: miR-876 expression in breast cancer tissues and cell lines was quantified via RT-qPCR. The effect of miR-876 upregulation on the malignant phenotype of breast cancer cells was investigated using CCK-8 assays, flow cytometry, Transwell migration and invasion assays and tumor xenograft experiments. The mechanisms underlying the tumor-suppressive action of miR-876 in breast cancer cells were explored using bioinformatic analysis, luciferase reporter assays, RT-qPCR and Western blot analysis. Results: miR-876 was found to be underexpressed in breast cancer tissues and cell lines. Decreased miR-876 expression notably correlated with lymphatic invasion metastasis, TNM stage and differentiation grade. Overall survival was lower among patients with breast cancer and low miR-876 expression than in patients with high miR-876 expression. Restoration of miR-876 expression decreased breast cancer cell proliferation, migration and invasion in vitro and restricted tumor growth in vivo as well as increased cell apoptosis. Metadherin (MTDH) was identified as a novel target of miR-876 in breast cancer cells. Furthermore, long intergenic nonprotein-coding RNA 707 (LINC00707) acted as a molecular sponge for miR-876, thereby regulating MTDH expression in breast cancer. Finally, silencing miR-876 expression attenuated the influence of a LINC00707 knockdown on the malignancy of breast cancer cells. Conclusion: This study, thus, revealed the vital functions of the LINC00707–miR-876–MTDH pathway in breast cancer and provided attractive targets and markers for its treatment.
Collapse
Affiliation(s)
- Tong Li
- Department of General Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, People's Republic of China
| | - Yunpeng Li
- Department of General Surgery, Ningjin County People's Hospital, Ningjin, Shandong 253400, People's Republic of China
| | - Hongyan Sun
- Department of General Surgery, The Fourth People's Hospital of Jinan, Jinan, Shandong 250031, People's Republic of China
| |
Collapse
|
20
|
Dhiman G, Srivastava N, Goyal M, Rakha E, Lothion-Roy J, Mongan NP, Miftakhova RR, Khaiboullina SF, Rizvanov AA, Baranwal M. Metadherin: A Therapeutic Target in Multiple Cancers. Front Oncol 2019; 9:349. [PMID: 31131259 PMCID: PMC6509227 DOI: 10.3389/fonc.2019.00349] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/15/2019] [Indexed: 12/24/2022] Open
Abstract
Altered expression of many genes and proteins is essential for cancer development and progression. Recently, the affected expression of metadherin (MTDH), also known as AEG-1 (Astrocyte Elevated Gene 1) and Lyric, has been implicated in various aspects of cancer progression and metastasis. Elevated expression of MTDH/AEG-1 has been reported in many cancers including breast, prostate, liver, and esophageal cancers, whereas its expression is low or absent in non-malignant tissues. These expression studies suggest that MTDH may represent a potential tumor associated antigen. MTDH also regulates multiple signaling pathways including PI3K/Akt, NF-κB, Wnt/β-catenin, and MAPK which cooperate to promote the tumorigenic and metastatic potential of transformed cells. Several microRNA have also been found to be associated with the increased MTDH expression in different cancers. Increased MTDH levels were linked to the tumor chemoresistance making it an attractive novel therapeutic target. In this review, we summarize data on MTDH function in various cancers.
Collapse
Affiliation(s)
- Gourav Dhiman
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Neha Srivastava
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Mehendi Goyal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| | - Emad Rakha
- Faculty of Medicine and Health Sciences, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Jennifer Lothion-Roy
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Nigel P Mongan
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Regina R Miftakhova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Svetlana F Khaiboullina
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.,Department of Microbiology and Immunology, University of Nevada, Reno, NV, United States
| | - Albert A Rizvanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, India
| |
Collapse
|
21
|
Xu J, Wang Y, Li Z, Wang Q, Zhou X, Wu W. Ultrasound-Targeted Microbubble Destruction (UTMD) Combined with Liposome Increases the Effectiveness of Suppressing Proliferation, Migration, Invasion, and Epithelial- Mesenchymal Transition (EMT) via Targeting Metadherin (MTDH) by ShRNA. Med Sci Monit 2019; 25:2640-2648. [PMID: 30969950 PMCID: PMC6474295 DOI: 10.12659/msm.912955] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background Reports show that ultrasound-targeted microbubble destruction (UTMD) is a promising method of gene therapy, and metadherin (MTDH) is related to the development of breast cancer. Thus, we investigated the role of MTDH in breast cancer and compared the effect of suppressing MTDH by shRNA using liposome, UTMD, or the combination of these 2 methods. Material/Methods Graphing of survival curves of MTDH was analyzed by bioinformatics. UTMD was conducted using an ultrasonic therapeutic apparatus. Cell counting kit-8 (CCK-8) assay was used to measure cell viability. Migration and invasion rates were measured by wound healing test and Transwell invasion assay, respectively. The expression of MTDH, E-cadherin, metastasis-associated protein-1 (MTA-1), matrix metalloproteinase (MMP)-2, and MMP-9 were measured by Western blot and qPCR. Results The prognosis of breast cancer can be decreased by the high expression of MTDH, and elevated expression of MTDH was discovered in MCF-7, MCF-10A, and T47D cell lines. UTMD combined with liposome is most efficient in transfecting shRNA, clearly suppressing the expression of MTDH and thereby decreasing cell viability, migration, invasion rate, and epithelial- mesenchymal transition (EMT) processes in the MCF-7 cell line. Conclusions UTMD combined with liposome could be used as a more efficient way to transfect shRNA into cells to suppress the expression of MTDH and thus lead to the downregulation of proliferation, migration, and EMT processes of the MCF-7 cell line, showing the potential for use in gene therapy.
Collapse
Affiliation(s)
- Juan Xu
- Department of Medical Imaging, Zhangqiu Maternal and Child Health Care Hospital, Jinan, Shandong, China (mainland)
| | - Yeying Wang
- Department of Medical Imaging, Zhangqiu Maternal and Child Health Care Hospital, Jinan, Shandong, China (mainland)
| | - Zhizheng Li
- Department of Medical Imaging, Zhangqiu Maternal and Child Health Care Hospital, Jinan, Shandong, China (mainland)
| | - Qiannan Wang
- Department of Medical Imaging, Zhangqiu Maternal and Child Health Care Hospital, Jinan, Shandong, China (mainland)
| | - Xiao Zhou
- Department of Orthopedics, Zhangqiu People's Hospital, Jinan, Shandong, China (mainland)
| | - Wenhai Wu
- Department of Medical Imaging, Zhangqiu Maternal and Child Health Care Hospital, Jinan, Shandong, China (mainland)
| |
Collapse
|
22
|
Tian W, Hao S, Gao B, Jiang Y, Zhang X, Zhang S, Guo L, Zhao J, Zhang G, Chen Y, Li Z, Luo D. Lobaplatin inhibits breast cancer progression, cell proliferation while it induces cell apoptosis by downregulating MTDH expression. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:3563-3571. [PMID: 30464390 PMCID: PMC6211578 DOI: 10.2147/dddt.s163157] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Objective Lobaplatin shows antitumor activity against a wide range of tumors, including metastatic breast cancer (BCa). The overexpression of metadherin (MTDH) is associated with poor prognosis of BCa patients. This study was designed to investigate the effect of lobaplatin on MCF-7 cell proliferation and its association with MTDH expression. Patients and methods Clinical treatment for BCa using lobaplatin, in combination with other general chemotherapy drugs, was administered to 32 BCa patients. The safety, effectiveness, and prognosis in lobaplatin-treated BCa patients were compared with those in controls (n=32). In vitro experiments were performed in MCF-7 cells to investigate the effect of lobaplatin on cell proliferation, apoptosis, and MTDH expression. Results We found the intraoperative local chemotherapy using lobaplatin was safe and effective for BCa treatment, in comparison with the patients administered general chemotherapy drugs. Treatment of MCF-7 cell cultures with lobaplatin significantly reduced cell proliferation and increased cell apoptotic percentage. The expression of MTDH and Bcl-2 was inhibited by lobaplatin and that of Bax was increased by lobaplatin. Moreover, we observed the inhibition of MTDH by shRNA reduced cell proliferation and enhanced cell apoptosis. Conclusion Lobaplatin was a safe and effective adjuvant chemotherapy for BCa. The effect of lobaplatin on inhibiting MCF-7 cell proliferation and inducing cell apoptosis might be, as least in part, mediated by suppressing the expression of oncogene MTDH.
Collapse
Affiliation(s)
- Wuguo Tian
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Shuai Hao
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Bo Gao
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Yan Jiang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Xiaohua Zhang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Shu Zhang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Lingji Guo
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Jianjie Zhao
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Gang Zhang
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Yi Chen
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Zhirong Li
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| | - Donglin Luo
- Department of Breast, Thyroid Surgery, Research Institute of Surgery, Daping Hospital, Army Military Medical University, Chongqing 400042, China,
| |
Collapse
|
23
|
Zhang D, Liu Z, Zheng N, Wu H, Zhang Z, Xu J. MiR-30b-5p modulates glioma cell proliferation by direct targeting MTDH. Saudi J Biol Sci 2018; 25:947-952. [PMID: 30108445 PMCID: PMC6087807 DOI: 10.1016/j.sjbs.2018.02.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 02/20/2018] [Accepted: 02/22/2018] [Indexed: 02/05/2023] Open
Abstract
Malignant glioma is the most common and lethal type of primary tumor of the central nervous system. The incidence of glioma is increasing year by year. In recent years, a variety of new treatment methods have emerged, among which gene therapy has become a hotspot. MicroRNAs (miRNAs) are a class of small non-coding single-strand RNAs that negatively regulate gene expression at the post-transcriptional and/or translational level by binding loosely complimentary sequences in the 3′ untranslated regions (UTRs) of target mRNAs. Several miRNAs have been reported to modulate glioma progression. This study aimed to determine the function of miR-30b-5p in glioma and its underlying molecular mechanism. miR-30b-5p expression was significantly lower in gliomas than the normal brain tissues. Overexpression of miR-30b-5p was found to significantly inhibit glioma cell proliferation in vitro. Further, MTDH expression was significantly higher in the gliomas compared with the normal brain tissues. In addition, MTDH was validated as direct target of miR-30b-5p. Moreover, cellular proliferation was increased after MTDH overexpression in the glioma cells, which reversed the effects of miR-30b-5p. Taken together, these results reveal miR-30b-5p impacts glioma cell proliferation via direct targeting MTDH and could be a potential novel therapeutic target for the treatment of glioma.
Collapse
Affiliation(s)
- Daobao Zhang
- Neurosurgery of West China Hospital, Sichuan University, Chengdu 610000, PR China.,Neurosurgery of the People's Hospital of Leshan, Leshan 614000, PR China
| | - Zhiyong Liu
- Neurosurgery of West China Hospital, Sichuan University, Chengdu 610000, PR China
| | - Niandong Zheng
- Neurosurgery of the People's Hospital of Leshan, Leshan 614000, PR China
| | - Honggang Wu
- Neurosurgery of the People's Hospital of Leshan, Leshan 614000, PR China
| | - Zhao Zhang
- Neurosurgery of the People's Hospital of Leshan, Leshan 614000, PR China
| | - Jianguo Xu
- Neurosurgery of West China Hospital, Sichuan University, Chengdu 610000, PR China
| |
Collapse
|
24
|
Vermeulen MA, Doebar SC, van Deurzen CHM, Martens JWM, van Diest PJ, Moelans CB. Copy number profiling of oncogenes in ductal carcinoma in situ of the male breast. Endocr Relat Cancer 2018; 25:173-184. [PMID: 29203614 DOI: 10.1530/erc-17-0338] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 12/04/2017] [Indexed: 01/09/2023]
Abstract
Characterizing male breast cancer (BC) and unraveling male breast carcinogenesis is challenging because of the rarity of this disease. We investigated copy number status of 22 BC-related genes in 18 cases of pure ductal carcinoma in situ (DCIS) and in 49 cases of invasive carcinoma (IC) with adjacent DCIS (DCIS-AIC) in males using multiplex ligation-dependent probe amplification (MLPA). Results were compared to female BC and correlated with survival. Overall, copy number ratio and aberration frequency including all 22 genes showed no significant difference between the 3 groups. Individual unpaired analysis revealed a significantly higher MTDH copy number ratio in IC compared to DCIS-AIC and pure DCIS (P = 0.009 and P = 0.038, respectively). ADAM9 showed a significantly lower copy number aberration frequency in male BC, compared to female BC (P = 0.020). In DCIS-AIC, MTDH, CPD, CDC6 and TOP2A showed a lower frequency of copy number increase in males compared to females (P < 0.001 for all 4 genes). In IC, CPD gain and CCNE1 gain were independent predictors of poor overall survival. In conclusion, male DCIS and IC showed a similar copy number profile for 21 out of 22 interrogated BC-related genes, illustrating their clonal relation and the genetically advanced state of male DCIS. MTDH showed a higher copy number ratio in IC compared to adjacent and pure DCIS and may therefore play a role in male breast carcinogenesis. Differences were detected between male and female DCIS for 4 genes pointing to differences in breast carcinogenesis between the sexes.
Collapse
Affiliation(s)
- Marijn A Vermeulen
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Shusma C Doebar
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Carolien H M van Deurzen
- Department of PathologyErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
| | - John W M Martens
- BOOG Study Center/Dutch Breast Cancer Research GroupAmsterdam, The Netherlands
- Department of Medical Oncology and Cancer Genomics NetherlandsErasmus MC Cancer Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Cathy B Moelans
- Department of PathologyUniversity Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
25
|
Ran L, Hong T, Xiao X, Xie L, Zhou J, Wen G. GABARAPL1 acts as a potential marker and promotes tumor proliferation and metastasis in triple negative breast cancer. Oncotarget 2017; 8:74519-74526. [PMID: 29088804 PMCID: PMC5650359 DOI: 10.18632/oncotarget.20159] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 06/04/2017] [Indexed: 12/22/2022] Open
Abstract
GABAA-receptor-associated protein like-1 (GABARAPL1) is involved in a variety of cancers. The purpose of this study was to investigate the expression, prognostic roles and functions of GABARAPL1 in triple negative breast cancer (TNBC). Quantitative real-time PCR (qRT-PCR) showed that GABARAPL1 was up regulated in both TNBC cell lines and clinical TNBC tissues. High GABARAPL1 expression level was associated with shorter overall survival (OS) and disease free survival (DFS). Furthermore, inhibition of GABARAPL1 suppressed cell proliferation, tumorigenesis, invasion and metastasis, and induced cell apoptosis. We found that metadherin (MTDH) was a downstream target of GABARAPL1. Inhibition of GABARAPL1 suppressed the mRNA and protein expression of MTDH, and overexpression of MTDH could reverse the effects of GABARAPL1 inhibition, which meant GABARAPL1 performed its function partly through MTDH. Our findings demonstrate that GABARAPL1 acts as a tumor promoter in TNBC partly through MTDH. Targeting at GABARAPL1 could be a potential therapeutic strategy for TNBC.
Collapse
Affiliation(s)
- Li Ran
- Department of Endocrine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Tao Hong
- Department of Endocrine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Xinhua Xiao
- Department of Endocrine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Liming Xie
- Center for Gastric Cancer Research of Human Province, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Junlin Zhou
- Department of Endocrine, The First Affiliated Hospital, University of South China, Hengyang, China
| | - Gebo Wen
- Department of Endocrine, The First Affiliated Hospital, University of South China, Hengyang, China
| |
Collapse
|
26
|
Suzuki K, Takano S, Yoshitomi H, Nishino H, Kagawa S, Shimizu H, Furukawa K, Miyazaki M, Ohtsuka M. Metadherin promotes metastasis by supporting putative cancer stem cell properties and epithelial plasticity in pancreatic cancer. Oncotarget 2017; 8:66098-66111. [PMID: 29029495 PMCID: PMC5630395 DOI: 10.18632/oncotarget.19802] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 07/12/2017] [Indexed: 12/31/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has a high metastatic potential. However, the mechanism of metastatic colonization in PDAC remains poorly understood. Metadherin (MTDH) has emerged in recent years as a crucial mediator of metastasis in several cancer types, although the biological role of MTDH in PDAC has not been investigated. Here, we demonstrated the functional roles of MTDH in PDAC progression, especially focusing on the metastatic cascade. In vitro studies showed that MTDH provides cancer stem cell (CSC) properties in metastatic PDAC cells and contributes to anoikis resistance with epithelial characteristics in PDAC cells. We also performed in vivo studies using both orthotopic transplantation and intra-portal vein injection as experimental models of liver metastasis to examine the function of MTDH at the metastatic site. MTDH knockdown dramatically reduced the incidence of liver metastases along with epithelial features in both experimental mouse models. Collectively, MTDH facilitates metastatic colonization with putative CSC and epithelial properties in PDAC cells. PDAC cells were transiently treated with TGF-β1 to investigate the roles of MTDH on epithelial plasticity. Intriguingly, MTDH expression was negatively correlated with Twist1 expression during the Mesenchymal-Epithelial transition (MET) induction in metastatic PDAC cells. These results suggest that MTDH may contribute to MET induction via downregulation of Twsit1. Lastly, immunohistochemistry indicated that MTDH overexpression is closely associated with hematogenous metastasis and predicts poor prognosis in patients with PDAC. This is the first demonstration of MTDH function in PDAC metastatic colonization. Our data suggest that MTDH targeting therapy could be applied to control PDAC metastasis.
Collapse
Affiliation(s)
- Kensuke Suzuki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hitoe Nishino
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Kagawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hiroaki Shimizu
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masaru Miyazaki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
27
|
Li Y, Gonzalez Bosquet J, Yang S, Thiel KW, Zhang Y, Liu H, Leslie KK, Meng X. Role of metadherin in estrogen-regulated gene expression. Int J Mol Med 2017. [PMID: 28627585 PMCID: PMC5504974 DOI: 10.3892/ijmm.2017.3020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The disruption of estrogen signaling is widely associated with the development of breast, endometrial and ovarian cancers. As a multifunctional mediator of carcinogenesis, metadherin (MTDH)/astrocyte elevated gene-1 (AEG-1) overexpression has been associated with numerous types of cancer, with reported roles in tumor initiation, proliferation, invasion, metastasis and chemoresistance. At the molecular level, MTDH has been shown to interact with proteins that drive tumorigenesis, including nuclear factor-κB (NF-κB), promyelocytic leukaemia zinc finger (PLZF), BRCA2- and CDKN1A (p21Cip1/Waf-1/mda-6)-interacting protein α (BCCIPα) and staphylococcal nuclease and tudor domain containing 1 (SND1). Through the analysis of the Cancer Genome Atlas (TCGA) datasets for estrogen receptor (ER)-positive endometrial and breast cancers, we found that over 25% of all gene expression correlated with MTDH. Using Affymetrix microarrays, we characterized the differences in gene expression between estrogen-treated parental and MTDH-deficient endometrial and breast cancer cells. We also explored a possible interaction between MTDH and ER by immunoprecipitation, and found that MTDH and ER associated in both breast and endometrial cancer cells in response to estrogen. Reciprocal co-immunoprecipitation analysis demonstrated that acute estrogen stimulation promoted the interaction of MTDH with ER in the nucleus. These data, to the best of our knowledge, provide the first evidence that MTDH and ERα interact in the nucleus with estrogen treatment to regulate gene expression.
Collapse
Affiliation(s)
- Yujun Li
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | | | - Shujie Yang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Kristina W Thiel
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Yuping Zhang
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Haitao Liu
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| | - Xiangbing Meng
- Department of Obstetrics and Gynecology, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
28
|
Qi D, Lin H, Gao Y, Lin J, Hu LT, Zhao GQ. The expressions of metadherin and LEF-1 in mucosa-associated lymphoid tissue lymphoma of ocular adnexal. Int J Ophthalmol 2017; 10:705-710. [PMID: 28546924 DOI: 10.18240/ijo.2017.05.07] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 02/23/2017] [Indexed: 11/23/2022] Open
Abstract
AIM To investigate the expressions of metadherin (astrocyte elevated gene-1, AEG-1) and lymphoid enhancer-binding factor-1 (LEF-1) in ocular adnexal mucosa-associated lymphoid tissue (MALT) lymphoma. METHODS The expressions of AEG-1 and LEF-1 were detected on specimens harvested from patients suffering from MALT lymphoma and lymphadenosis of ocular adnexal in Ophthalmology Department, Affiliated Hospital of Qingdao University from 2000 to 2015 by immunohistochemical and polymerase chain reaction (PCR) analysis. RESULTS AEG-1 and LEF-1 expressions in MALT lymphoma was respectively higher than that in lymphadenosis, both by immunohistochemical and PCR analysis (P<0.05). Diversity of AEG-1 and LEF-1 expressions in different Ann Arbor clinical stages showed a statistically significant result (P<0.05). A positive relevance between AEG-1 and LEF-1 was observed in MALT ocular adnexal lymphoma (r=0.435, P=0.016). CONCLUSION The over expressions of AEG-1 and LEF-1 at the level of protein and mRNA participates in the tumorigenesis of ocular adnexal MALT lymphoma. They should act as a new biological marker for pathological diagnosis in the future.
Collapse
Affiliation(s)
- Dan Qi
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Hong Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Yan Gao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Jing Lin
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Li-Ting Hu
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| | - Gui-Qiu Zhao
- Department of Ophthalmology, the Affiliated Hospital of Qingdao University, Qingdao 266003, Shandong Province, China
| |
Collapse
|
29
|
Zhou CX, Wang CL, Yu AL, Wang QY, Zhan MN, Tang J, Gong XF, Yin QQ, He M, He JR, Chen GQ, Zhao Q. MiR-630 suppresses breast cancer progression by targeting metadherin. Oncotarget 2016; 7:1288-99. [PMID: 26595523 PMCID: PMC4811460 DOI: 10.18632/oncotarget.6339] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/06/2015] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs have been integrated into tumorigenic programs as either oncogenes or tumor suppressor genes. The miR-630 was reported to be deregulated and involved in tumor progression of several human malignancies. However, its expression regulation shows diversity in different kinds of cancers and its potential roles remain greatly elusive. Herein, we demonstrate that miR-630 is significantly suppressed in human breast cancer specimens, as well as in various breast cancer cell lines. In aggressive MDA-MB-231-luc and BT549 breast cancer cells, ectopic expression of miR-630 strongly inhibits cell motility and invasive capacity in vitro. Moreover, lentivirus delivered miR-630 bestows MDA-MB-231-luc cells with the ability to suppress cell colony formation in vitro and pulmonary metastasis in vivo. Further studies identify metadherin (MTDH) as a direct target gene of miR-630. Functional studies shows that MTDH contributes to miR-630-endowed effects including cell migration and invasion as well as colony formation in vitro. Taken together, these findings highlight an important role for miR-630 in the regulation of metastatic potential of breast cancer and suggest a potential application of miR-630 in breast cancer treatment.
Collapse
Affiliation(s)
- Ci-Xiang Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Chen-Long Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - An-Lu Yu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qiu-Yu Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Meng-Na Zhan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jun Tang
- Institute of Health Sciences, SJTU-SM & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Xiu-Feng Gong
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Qian-Qian Yin
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Ming He
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| | - Jian-Rong He
- Department of General Surgery, Rui-Jin Hospital, SJTU-SM, Shanghai 200025, China
| | - Guo-Qiang Chen
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China.,Institute of Health Sciences, SJTU-SM & Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai 200025, China
| | - Qian Zhao
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Shanghai Jiao Tong University School of Medicine (SJTU-SM), Shanghai 200025, China
| |
Collapse
|
30
|
Hou Y, Yu L, Mi Y, Zhang J, Wang K, Hu L. Association of MTDH immunohistochemical expression with metastasis and prognosis in female reproduction malignancies: a systematic review and meta-analysis. Sci Rep 2016; 6:38365. [PMID: 27917902 PMCID: PMC5137005 DOI: 10.1038/srep38365] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/08/2016] [Indexed: 02/04/2023] Open
Abstract
Various literatures have demonstrated that overexpression of Metadherin (MTDH) is correlated with tumor metastasis and it can predict poor survival outcomes in female reproduction malignancies. In order to enhance the statistical power and reach a recognized conclusion, we conducted a systematic review and meta-analysis to thoroughly investigate the association of MTDH expression with tumor metastasis and survival outcomes following PRISMA guidelines. Odds ratios (ORs) and hazard ratios (HRs) were used to demonstrate the impact of MTDH on tumor metastasis and prognosis respectively. Data were pooled with appropriate effects model on STATA12.0. Our results indicated that high MTDH expression is significantly correlated with higher mortality for breast, ovarian and cervical cancer. High immunohistochemical expression of MTDH is remarkably associated with shorter disease-free survival (DFS) in breast cancer but not in ovarian cancer. The pooled results suggested that high level of MTDH significantly predicted distant metastasis and lymph node metastasis in breast cancer. Strong associations were observed between MTDH expression and lymph node metastasis in ovarian and cervical cancer. In conclusion, MTDH might be a novel biomarker which can effectively reflect metastasis status and prognosis of breast cancer. However, its application in clinical practice needs more prospective studies with large samples.
Collapse
Affiliation(s)
- Yongbin Hou
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Lihua Yu
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Yonghua Mi
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Jiwang Zhang
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Ke Wang
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| | - Liyi Hu
- Department of clinical laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China.,Department of CIK treatment laboratory, Affiliated Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, China
| |
Collapse
|
31
|
Gu C, Feng L, Peng H, Yang H, Feng Z, Yang Y. MTDH is an oncogene in multiple myeloma, which is suppressed by Bortezomib treatment. Oncotarget 2016; 7:4559-69. [PMID: 26683226 PMCID: PMC4826226 DOI: 10.18632/oncotarget.6610] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 11/26/2015] [Indexed: 12/19/2022] Open
Abstract
Metadherin (MTDH) is identified as an oncogene in multiple cancers including breast cancer, bladder cancer and endometrial cancer. However, the function of MTDH in multiple myeloma (MM) is still unexplored. In this study, we disclose that MTDH is an oncogene in MM. This is characterized by an elevation mRNA level of MTDH and chromosomal gain of MTDH locus in MM cells compared to normal samples. Moreover, MTDH expression significantly increased in MMSET translocation (MS) subgroup, one of the high-risk subgroups in MM, and was significantly correlated with MM patients' poor outcomes in Total Therapy 2 (TT2) cohort. Further knockdown of MTDH expression by shRNA in MM cells induced cell apoptosis, inhibited MM cells growth in vitro and decreased xenograft tumor formation in vivo. Interestingly, opposite to TT2, MM patients with high-MTDH expression showed favorable survival outcomes in the TT3 cohort, while Bortezomib treatment was the major difference between TT2 and TT3 cohort. Furthermore we proved that Bortezomib suppressed pre- and post-transcription levels of MTDH expression of MM cells in vitro and in vivo. Finally, our studies demonstrated that MTDH is a transcriptional gene of MMSET/NFκB /MYC signaling in MM cells, which is inhibited by Bortezomib treatment.
Collapse
Affiliation(s)
- Chunyan Gu
- Department of Pathology, Nanjing Medical University, 210029, Nanjing, China.,Basic Medical College, Nanjing University of Chinese Medicine, 210046, Nanjing, China.,Department of Pathology, University of Iowa Carver College of Medicine, 52242, Iowa City, IA, USA
| | - Lang Feng
- Department of Urology, Beijing Friendship Hospital, Capital Medical University, 100050, Beijing, China.,Department of Urology, University of Iowa Carver College of Medicine, 52242, Iowa City, IA, USA
| | - Hailin Peng
- Department of Laboratory Medicine, Taizhou people's hospital, 225300, Taizhou, China
| | - Hongbao Yang
- Center for New Drug Safety Evaluation and Research, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenqing Feng
- Department of Pathology, Nanjing Medical University, 210029, Nanjing, China
| | - Ye Yang
- Basic Medical College, Nanjing University of Chinese Medicine, 210046, Nanjing, China.,Department of Internal Medicine, University of Iowa Carver College of Medicine, 52242, Iowa City, IA, USA
| |
Collapse
|
32
|
Emdad L, Das SK, Hu B, Kegelman T, Kang DC, Lee SG, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: A Promiscuous Protein Partner Critical in Cancer, Obesity, and CNS Diseases. Adv Cancer Res 2016; 131:97-132. [PMID: 27451125 DOI: 10.1016/bs.acr.2016.05.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Since its original discovery in 2002, AEG-1/MTDH/LYRIC has emerged as a primary regulator of several diseases including cancer, inflammatory diseases, and neurodegenerative diseases. AEG-1/MTDH/LYRIC has emerged as a key contributory molecule in almost every aspect of cancer progression, including uncontrolled cell growth, evasion of apoptosis, increased cell migration and invasion, angiogenesis, chemoresistance, and metastasis. Additionally, recent studies highlight a seminal role of AEG-1/MTDH/LYRIC in neurodegenerative diseases and obesity. By interacting with multiple protein partners, AEG-1/MTDH/LYRIC plays multifaceted roles in the pathogenesis of a wide variety of diseases. This review discusses the current state of understanding of AEG-1/MTDH/LYRIC regulation and function in cancer and other diseases with a focus on its association/interaction with several pivotal protein partners.
Collapse
Affiliation(s)
- L Emdad
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| | - S K Das
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - B Hu
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - T Kegelman
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - D-C Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Republic of Korea
| | - S-G Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - D Sarkar
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States
| | - P B Fisher
- Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States; VCU Institute of Molecular Medicine, Virginia Commonwealth University, School of Medicine, Richmond, VA, United States.
| |
Collapse
|
33
|
Wang Z, Tang ZY, Yin Z, Wei YB, Liu LF, Yan B, Zhou KQ, Nian YQ, Gao YL, Yang JR. Metadherin regulates epithelial-mesenchymal transition in carcinoma. Onco Targets Ther 2016; 9:2429-36. [PMID: 27143938 PMCID: PMC4844438 DOI: 10.2147/ott.s104556] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Metadherin (MTDH) was first identified in primary human fetal astrocytes exposed to HIV-1 in 2002 and then recognized as an important oncogene mediating tumorigenesis, progression, invasiveness, and metastasis of carcinomas. Epithelial–mesenchymal transition (EMT) is a vital process in embryonic development, organ repair, and cancer progression. MTDH and EMT have also been proved to be related to the prognosis of patients with cancers. Recent studies reveal a relationship between MTDH overexpression and EMT in some malignancies. This review highlights the overexpression of MTDH and EMT in cancers and their correlations in clinical studies. Positive correlations have been established between MTDH and mesenchymal biomarkers, and negative correlations between MTDH and epithelial biomarkers have also been established. Furthermore, experiments reveal EMT regulated by MTDH, and some signal pathways have been established. Some anticancer drugs targeting MTDH and EMT are introduced in this review. Some perspectives concerning EMT regulation by MTDH are also presented in this review.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China; Department of Urology, Xiangya Hospital, Central South University, Kai Fu District, People's Republic of China
| | - Zheng-Yan Tang
- Department of Urology, Xiangya Hospital, Central South University, Kai Fu District, People's Republic of China
| | - Zhuo Yin
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Yong-Bao Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China; Department of Urology, Fujian Provincial Hospital, The Teaching Hospital of Fujian Medical University, Fuzhou, People's Republic of China
| | - Long-Fei Liu
- Department of Urology, Xiangya Hospital, Central South University, Kai Fu District, People's Republic of China
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Ke-Qin Zhou
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Ye-Qi Nian
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Yun-Liang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| | - Jin-Rui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Fu Rong District, Changsha, People's Republic of China
| |
Collapse
|
34
|
Vartak-Sharma N, Nooka S, Ghorpade A. Astrocyte elevated gene-1 (AEG-1) and the A(E)Ging HIV/AIDS-HAND. Prog Neurobiol 2016; 157:133-157. [PMID: 27090750 DOI: 10.1016/j.pneurobio.2016.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 03/11/2016] [Accepted: 03/19/2016] [Indexed: 12/23/2022]
Abstract
Recent attempts to analyze human immunodeficiency virus (HIV)-1-induced gene expression changes in astrocytes uncovered a multifunctional oncogene, astrocyte elevated gene-1 (AEG-1). Our previous studies revealed that AEG-1 regulates reactive astrocytes proliferation, migration and inflammation, hallmarks of aging and CNS injury. Moreover, the involvement of AEG-1 in neurodegenerative disorders, such as Huntington's disease and migraine, and its induction in the aged brain suggest a plausible role in regulating overall CNS homeostasis and aging. Therefore, it is important to investigate AEG-1 specifically in aging-associated cognitive decline. In this study, we decipher the common mechanistic links in cancer, aging and HIV-1-associated neurocognitive disorders that likely contribute to AEG-1-based regulation of astrocyte responses and function. Despite AEG-1 incorporation into HIV-1 virions and its induction by HIV-1, tumor necrosis factor-α and interleukin-1β, the specific role(s) of AEG-1 in astrocyte-driven HIV-1 neuropathogenesis are incompletely defined. We propose that AEG-1 plays a central role in a multitude of cellular stress responses involving mitochondria, endoplasmic reticulum and the nucleolus. It is thus important to further investigate AEG-1-based cellular and molecular regulation in order to successfully develop better therapeutic approaches that target AEG-1 to combat cancer, HIV-1 and aging.
Collapse
Affiliation(s)
- Neha Vartak-Sharma
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA; Institute for Integrated Cell-Material Sciences, Kyoto University, Japan; Institute for Stem Cell Research and Regenerative Medicine, National Center for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
| | - Shruthi Nooka
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA
| | - Anuja Ghorpade
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, 76107-2699, USA.
| |
Collapse
|
35
|
Liu Y, Kong X, Li X, Li B, Yang Q. Knockdown of metadherin inhibits angiogenesis in breast cancer. Int J Oncol 2015; 46:2459-66. [PMID: 25902416 DOI: 10.3892/ijo.2015.2973] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 04/02/2015] [Indexed: 11/05/2022] Open
Abstract
Angiogenesis plays an important role in cancer growth, invasion and metastasis. It has been confirmed that metadherin (MTDH) is associated with angiogenesis. However, the detailed mechanism of MTDH on angiogenesis has not yet been reported. In this study, we demonstrate the anti-angiogenic function of MTDH in breast cancer. With RNA interference strategies, we found that knockdown of MTDH inhibits cellular angiogenesis both in vitro and ex vivo. Furthermore, we revealed that ERK1/2 pathway is involved in the anti-angiogenic function of MTDH, and the function can be partially reversed via upregulation of microRNA-21 (miR-21). In conclusion, knockdown of MTDH can inhibit angiogenesis in breast cancer. These results show that MTDH is a viable therapeutic target for anti-angiogenesis in breast cancer.
Collapse
Affiliation(s)
- Yan Liu
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiangnan Kong
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoyan Li
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Baojiang Li
- Department of Breast Surgery, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Qifeng Yang
- Department of Breast Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
36
|
Metadherin contributes to the pathogenesis of chronic lymphocytic leukemia partially through Wnt/β-catenin pathway. Med Oncol 2015; 32:479. [PMID: 25575438 DOI: 10.1007/s12032-014-0479-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 12/20/2014] [Indexed: 01/22/2023]
Abstract
Metadherin (MTDH) is involved in aberrant proliferation, migration, and chemoresistance of tumor cells. It has been demonstrated that it can promote tumor growth by modulation multiple oncogenic signaling pathways. However, MTDH expression, significance, and related mechanism in chronic lymphocytic leukemia (CLL) are still unclear. The objective of this study was to investigate the expression of MTDH in CLL and the involvement of Wnt/β-catenin signaling pathway in MTDH effects. Overexpression of MTDH mRNAs was seen in CLL samples. MTDH expression was associated with Rai stage classification of CLL, and altered levels of β2-MG and lactate dehydrogenase in serum samples from patients. Overexpression of MTDH protein was seen in 87 % of CLL samples. Specific siRNAs inhibited MEC-1 cell growth and enhanced cell apoptosis (P < 0.05). Inhibition of MTDH expression resulted in decreased expression levels of lymphoid enhancer-binding factor 1 (LEF-1), and its downstream target genes c-myc and cyclin D1. And there was a strong correlation between MTDH and LEF-1 protein expression in 14 patients with CLL. The results demonstrate that MTDH is specifically expressed in B cell of CLL and exert a preservative role through activation of Wnt signaling pathway. Our findings indicated that MTDH may be a potential therapeutic target of CLL.
Collapse
|
37
|
miR-26a suppresses tumour proliferation and metastasis by targeting metadherin in triple negative breast cancer. Cancer Lett 2014; 357:384-392. [PMID: 25434799 DOI: 10.1016/j.canlet.2014.11.050] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 11/20/2014] [Accepted: 11/20/2014] [Indexed: 12/19/2022]
Abstract
It has been reported that miR-26a plays an important role in various cancers. In this study, we found that miR-26a was downregulated in triple-negative breast cancer (TNBC), and its expression levels were associated with lymph node metastasis and overall survival in TNBC. We also found that the ectopic expression of miR-26a inhibited TNBC cell proliferation and metastasis in vitro and in vivo by downregulating MTDH (a miR-26a' target gene) mRNA and protein and that the overexpression of MTDH could partially abrogate miR-26a-mediated suppression. Our data suggest that miR-26a functions as a tumour suppressor in TNBC development and serves as a prognostic marker for breast cancer.
Collapse
|
38
|
Du C, Yi X, Liu W, Han T, Liu Z, Ding Z, Zheng Z, Piao Y, Yuan J, Han Y, Xie M, Xie X. MTDH mediates trastuzumab resistance in HER2 positive breast cancer by decreasing PTEN expression through an NFκB-dependent pathway. BMC Cancer 2014; 14:869. [PMID: 25417825 PMCID: PMC4254009 DOI: 10.1186/1471-2407-14-869] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 11/14/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Trastuzumab resistance is almost inevitable in the management of human epidermal growth factor receptor (HER) 2 positive breast cancer, in which phosphatase and tensin homolog deleted from chromosome 10 (PTEN) loss is implicated. Since metadherin (MTDH) promotes malignant phenotype of breast cancer, we sought to define whether MTDH promotes trastuzumab resistance by decreasing PTEN expression through an NFκB-dependent pathway. METHODS The correlations between MTDH and PTEN expressions were analyzed both in HER2 positive breast cancer tissues and trastuzumab resistant SK-BR-3 (SK-BR-3/R) cells. Gene manipulations of MTDH and PTEN levels by knockdown or overexpression were utilized to elucidate molecular mechanisms of MTDH and PTEN implication in trastuzumab resistance. For in vivo studies, SK-BR-3 and SK-BR-3/R cells and modified derivatives were inoculated into nude mice alone or under trastuzumab exposure. Tumor volumes, histological examinations as well as Ki67 and PTEN expressions were revealed. RESULTS Elevated MTDH expression indicated poor clinical benefit, shortened progression free survival time, and was negatively correlated with PTEN level both in HER2 positive breast cancer patients and SK-BR-3/R cells. MTDH knockdown restored PTEN expression and trastuzumab sensitivity in SK-BR-3/R cells, while MTDH overexpression prevented SK-BR-3 cell death under trastuzumab exposure, probably through IκBα inhibition and nuclear translocation of p65 which subsequently decreased PTEN expression. Synergized effect of PTEN regulation were observed upon MTDH and p65 co-transfection. Forced PTEN expression in SK-BR-3/R cells restored trastuzumab sensitivity. Furthermore, decreased tumor volume and Ki67 level as well as increased PTEN expression were observed after MTDH knockdown in subcutaneous breast cancer xenografts from SK-BR-3/R cells, while the opposite effect were found in grafts from MTDH overexpressing SK-BR-3 cells. CONCLUSIONS MTDH overexpression confers trastuzumab resistance in HER2 positive breast cancer. MTDH mediates trastuzumab resistance, at least in part, by PTEN inhibition through an NFκB-dependent pathway, which may be utilized as a promising therapeutic target for HER2 positive breast cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yaling Han
- Department of Oncology, General Hospital of Shenyang Military Area Command, Shenyang 110016, P, R, China.
| | | | | |
Collapse
|
39
|
Tang Y, Liu X, Su B, Zhang Z, Zeng X, Lei Y, Shan J, Wu Y, Tang H, Su Q. microRNA-22 acts as a metastasis suppressor by targeting metadherin in gastric cancer. Mol Med Rep 2014; 11:454-60. [PMID: 25323629 DOI: 10.3892/mmr.2014.2682] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 08/29/2014] [Indexed: 11/06/2022] Open
Abstract
microRNA (miR)-22 has been reported to be downregulated in hepatocellular, lung, colorectal, ovarian and breast cancer, acting as a tumor suppressor. The present study investigated the potential effects of miR-22 on gastric cancer invasion and metastasis and the molecular mechanism. miR-22 expression was examined in tumor tissues of in 89 gastric cancer patients by in situ hybridization (ISH) analysis. Additionally, the association between miR-22 levels and clinicopathological parameters was analyzed. A luciferase assay was conducted for target identification. The ability of invasion and metastasis of gastric cancer cells in vitro and in vivo was evaluated by cell migration and invasion assays and in a xenograft model. The results showed that miR-22 was downregulated in the gastric cancer specimens and significantly correlated with the advanced clinical stage and lymph node metastasis. In addition, metadherin (MTDH) was shown to be a direct target of miR-22 and the expression of MTDH was inversely correlated with miR-22 expression in gastric cancer. Ectopic expression of miR-22 suppressed cell invasion and metastasis in vitro and in vivo. The present study suggested that miR-22 may be a valuable prognostic factor in gastric cancer. miR-22 inhibited gastric cancer cell invasion and metastasis by directly targeting MTDH. The novel miR-22/MTDH link confirmed in the present study provided a novel, potential therapeutic target for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Yunyun Tang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xiaoping Liu
- Sun Yat‑Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Bo Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Zhiwei Zhang
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Xi Zeng
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yanping Lei
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Jian Shan
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| | - Yongjun Wu
- Cancer Research Institute, University of South China, Key Laboratory of Cancer Cellular and Molecular Pathology of Hunan Provincial University, Hengyang, Hunan 421001, P.R. China
| | - Hailin Tang
- Sun Yat‑Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong 510060, P.R. China
| | - Qi Su
- Center for Gastric Cancer Research of Hunan Province, First Affiliated Hospital, University of South China, Hengyang, Hunan 421001, P.R. China
| |
Collapse
|
40
|
Wang Z, Wei YB, Gao YL, Yan B, Yang JR, Guo Q. Metadherin in prostate, bladder, and kidney cancer: A systematic review. Mol Clin Oncol 2014; 2:1139-1144. [PMID: 25279212 DOI: 10.3892/mco.2014.392] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 08/11/2014] [Indexed: 01/25/2023] Open
Abstract
Metadherin (MTDH) has been identified as an important oncogene in carcinogenesis, tumor progression and metastasis in numerous malignancies, through signal transduction pathways. MTDH is a potential biomarker and therapeutic target in cancers. The present systematic review was performed to search for studies regarding MTDH and prostate, bladder and kidney cancer using several databases and the eligible studies were reviewed. MTDH expression was found to significantly increase in prostate, bladder and kidney cancers, not only in clinical tissue samples, but also in cancer cell lines. Reviewing the clinical and statistical analysis revealed that MTDH may be involved in urologic cancer progression, metastasis and prognosis. MTDH may be an independent or one of the cofactors in urologic cancers for prediction of patient survival, and may be involved in potential anticancer strategies. MTDH may be associated with several signal transduction pathways in urologic cancers, indicating latent targets to develop anticancer therapeutic strategy. Further studies are required to confirm these findings.
Collapse
Affiliation(s)
- Zhao Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yong-Bao Wei
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Yun-Liang Gao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Bin Yan
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Jin-Rui Yang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, P.R. China
| | - Qiong Guo
- Department of Urology, The Third Hospital of Changsha, Changsha, Hunan 410015, P.R. China
| |
Collapse
|
41
|
Huang Y, Li LEP. Progress of cancer research on astrocyte elevated gene-1/Metadherin (Review). Oncol Lett 2014; 8:493-501. [PMID: 25009642 PMCID: PMC4081432 DOI: 10.3892/ol.2014.2231] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Accepted: 05/23/2014] [Indexed: 12/15/2022] Open
Abstract
Tumor development is initiated by an accumulation of numerous genetic and epigenetic alterations that promote tumor initiation, invasion and metastasis. Astrocyte elevated gene-1 [AEG-1; also known as Metadherin (MTDH) and Lysine-rich CEACAM1 co-isolated (LYRIC)] has emerged in recent years as a potentially crucial mediator of tumor malignancy, and a key converging point of a complex network of oncogenic signaling pathways. AEG-1/MTDH has a multifunctional role in tumor development that has been found to be involved in the following signaling cascades: i) The Ha-Ras and PI3K/Akt pathways; ii) the nuclear factor-κB signaling pathway; iii) the ERK/mitogen-activated protein kinase and Wnt/β-catenin pathways; and iv) the Aurora-A kinase signaling pathway. Studies have established that AEG-1/MTDH is crucial in tumor progression, including transformation, the evasion of apoptosis, invasion, angiogenesis and metastasis. In addition, recent clinical studies have convincingly associated AEG-1/MTDH with tumor progression and poor prognosis in a number of cancer types, including hepatocellular, esophageal squamous cell, gallbladder and renal cell carcinomas, breast, non-small cell lung, prostate, gastric and colorectal cancers, and glioma, melanoma, neuroblastoma and osteosarcoma. AEG-1/MTDH may be used as a biomarker to identify subgroups of patients who require more intensive treatments and who are likely to benefit from AEG-1/MTDH-targeted therapies. The therapeutic targeting of AEG-1/MTDH may simultaneously block metastasis, suppress tumor growth and enhance the efficacy of chemotherapeutic treatments.
Collapse
Affiliation(s)
- Yong Huang
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China ; Department of General Surgery, Zao Zhuang Municipal Hospital, Zaozhuang, Shandong 277101, P.R. China
| | - LE-Ping Li
- Department of Gastrointestinal Surgery, Provincial Hospital Affiliated to Shandong University, Jinan, Shandong 250021, P.R. China
| |
Collapse
|
42
|
Abstract
Since the initial discovery of AEG-1/MTDH/LYRIC, our appreciation for this novel protein's involvement in cancer has increased dramatically over the past few years. AEG-1/MTDH/LYRIC is a key functional target of the 8q22 genomic gain that is frequently observed in poor-prognosis breast cancer, where it plays a dual role in promoting chemoresistance and metastasis. Beyond this, growing evidence from clinical research indicates a strong correlation between AEG-1/MTDH/LYRIC expression and the pathogenesis of a large spectrum of cancer types, and multiple studies employing in vitro cell culture systems and in vivo xenograft models have revealed multifaceted roles of AEG-1/MTDH/LYRIC in cancer biology, including tumor cell proliferation, apoptosis, angiogenesis, and autophagy. With increasing mechanistic understanding of AEG-1/MTDH/LYRIC, discovery of agents that can block AEG-1/MTDH/LYRIC and its regulated pathways will be beneficial to cancer patients with aberrant expression of AEG-1/MTDH/LYRIC.
Collapse
Affiliation(s)
- Liling Wan
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | | |
Collapse
|
43
|
Abstract
AEG-1/MTDH/LYRIC has been shown to promote cancer progression and development. Overexpression of AEG-1/MTDH/LYRIC correlates with angiogenesis, metastasis, and chemoresistance to various chemotherapy agents in cancer cells originating from a variety of tissues. In this chapter, we focus on the role of AEG-1/MTDH/LYRIC in drug resistance. Mechanistic studies have shown that AEG-1/MTDH/LYRIC is involved in classical oncogenic pathways including Ha-Ras, myc, NFκB, and PI3K/Akt. AEG-1/MTDH/LYRIC also promotes protective autophagy by activating AMP kinase and autophagy-related gene 5. Another reported mechanism by which AEG-1/MTDH/LYRIC regulates drug resistance is by increasing loading of multidrug resistance gene (MDR) 1 mRNA to the polysome, thereby facilitating MDR1 protein translation. More recently, a novel function for AEG-1/MTDH/LYRIC as an RNA-binding protein was elucidated, which has the potential to impact expression of drug sensitivity or resistance genes. Finally, AEG-1/MTDH/LYRIC acts in microRNA-directed gene silencing via an interaction with staphylococcal nuclease and tudor domain containing 1, a component of the RNA-induced silencing complex. Altered microRNA expression and activity induced by AEG-1/MTDH/LYRIC represent an additional way that AEG-1/MTDH/LYRIC may cause drug resistance in cancer. The multiple functions of AEG-1/MTDH/LYRIC in drug resistance highlight that it is a viable target as an anticancer agent for a wide variety of cancers.
Collapse
Affiliation(s)
- Xiangbing Meng
- Department of Obstetrics and Gynecology, The University of Iowa, Iowa City, Iowa, USA.
| | | | | |
Collapse
|
44
|
Lee SG, Kang DC, DeSalle R, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res 2014; 120:1-38. [PMID: 23889986 DOI: 10.1016/b978-0-12-401676-7.00001-2] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Since its initial identification as a HIV-1-inducible gene in 2002, astrocyte elevated gene-1 (AEG-1), subsequently cloned as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), has emerged over the past 10 years as an important oncogene providing a valuable prognostic marker in patients with various cancers. Recent studies demonstrate that AEG-1/MTDH/LYRIC is a pleiotropic protein that can localize in the cell membrane, cytoplasm, endoplasmic reticulum (ER), nucleus, and nucleolus, and contributes to diverse signaling pathways such as PI3K-AKT, NF-κB, MAPK, and Wnt. In addition to tumorigenesis, this multifunctional protein is implicated in various physiological and pathological processes including development, neurodegeneration, and inflammation. The present review focuses on the discovery of AEG-1/MTDH/LYRIC and conceptualizes areas of future direction for this intriguing gene. We begin by describing how AEG-1, MTDH, and LYRIC were initially identified by different research groups and then discuss AEG-1 structure, functions, localization, and evolution. We conclude with a discussion of the expression profile of AEG-1/MTDH/LYRIC in the context of cancer, neurological disorders, inflammation, and embryogenesis, and discuss how AEG-1/MTDH/LYRIC is regulated. This introductory discussion of AEG-1/MTDH/LYRIC will serve as the basis for the detailed discussions in other chapters of the unique properties of this intriguing molecule.
Collapse
Affiliation(s)
- Seok-Geun Lee
- Cancer Preventive Material Development Research Center, Institute of Korean Medicine, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Dong-Chul Kang
- Ilsong Institute of Life Science, Hallym University, Anyang, Kyonggi-do, Republic of Korea
| | - Rob DeSalle
- Division of Invertebrate Zoology, American Museum of Natural History, New York, New York, USA.,Department of Biology, New York University, New York, New York, USA
| | - Devanand Sarkar
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| | - Paul B Fisher
- Department of Human and Molecular Genetics, VCU Institute of Molecular Medicine, VCU Massey Cancer Center, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA
| |
Collapse
|
45
|
Emdad L, Das SK, Dasgupta S, Hu B, Sarkar D, Fisher PB. AEG-1/MTDH/LYRIC: signaling pathways, downstream genes, interacting proteins, and regulation of tumor angiogenesis. Adv Cancer Res 2014; 120:75-111. [PMID: 23889988 DOI: 10.1016/b978-0-12-401676-7.00003-6] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astrocyte elevated gene-1 (AEG-1), also known as metadherin (MTDH) and lysine-rich CEACAM1 coisolated (LYRIC), was initially cloned in 2002. AEG-1/MTDH/LYRIC has emerged as an important oncogene that is overexpressed in multiple types of human cancer. Expanded research on AEG-1/MTDH/LYRIC has established a functional role of this molecule in several crucial aspects of tumor progression, including transformation, proliferation, cell survival, evasion of apoptosis, migration and invasion, metastasis, angiogenesis, and chemoresistance. The multifunctional role of AEG-1/MTDH/LYRIC in tumor development and progression is associated with a number of signaling cascades, and recent studies identified several important interacting partners of AEG-1/MTDH/LYRIC in regulating cancer promotion and other biological functions. This review evaluates the current literature on AEG-1/MTDH/LYRIC function relative to signaling changes, interacting partners, and angiogenesis and highlights new perspectives of this molecule, indicating its potential as a significant target for the clinical treatment of various cancers and other diseases.
Collapse
Affiliation(s)
- Luni Emdad
- Department of Human and Molecular Genetics, Virginia Commonwealth University, School of Medicine, Richmond, Virginia, USA.
| | | | | | | | | | | |
Collapse
|