1
|
Umapathy S, Pan I, Issac PK, Kumar MSK, Giri J, Guru A, Arockiaraj J. Selenium Nanoparticles as Neuroprotective Agents: Insights into Molecular Mechanisms for Parkinson's Disease Treatment. Mol Neurobiol 2024:10.1007/s12035-024-04253-x. [PMID: 38837103 DOI: 10.1007/s12035-024-04253-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/06/2024]
Abstract
Oxidative stress and the accumulation of misfolded proteins in the brain are the main causes of Parkinson's disease (PD). Several nanoparticles have been used as therapeutics for PD. Despite their therapeutic potential, these nanoparticles induce multiple stresses upon entry. Selenium (Se), an essential nutrient in the human body, helps in DNA formation, stress control, and cell protection from damage and infections. It can also regulate thyroid hormone metabolism, reduce brain damage, boost immunity, and promote reproductive health. Selenium nanoparticles (Se-NPs), a bioactive substance, have been employed as treatments in several disciplines, particularly as antioxidants. Se-NP, whether functionalized or not, can protect mitochondria by enhancing levels of reactive oxygen species (ROS) scavenging enzymes in the brain. They can also promote dopamine synthesis. By inhibiting the aggregation of tau, α-synuclein, and/or Aβ, they can reduce the cellular toxicities. The ability of the blood-brain barrier to absorb Se-NPs which maintain a healthy microenvironment is essential for brain homeostasis. This review focuses on stress-induced neurodegeneration and its critical control using Se-NP. Due to its ability to inhibit cellular stress and the pathophysiologies of PD, Se-NP is a promising neuroprotector with its anti-inflammatory, non-toxic, and antimicrobial properties.
Collapse
Affiliation(s)
- Suganiya Umapathy
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Ieshita Pan
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India.
| | - Praveen Kumar Issac
- Institute of Biotechnology, Department of Medical Biotechnology and Integrative Physiology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Thandalam, Tamil Nadu, 602105, India
| | - Meenakshi Sundaram Kishore Kumar
- Biomedical Research Unit and Laboratory Animal Centre (BRULAC), Department of Anatomy, Saveetha Dental College, Chennai, Tamil Nadu, 600077, India
| | - Jayant Giri
- Department of Mechanical Engineering, Yeshwantrao Chavan College of Engineering, Nagpur, India
| | - Ajay Guru
- Department of Cariology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India.
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu District, Tamil Nadu, 603203, India.
| |
Collapse
|
2
|
Pavelka L, Rauschenberger A, Hemedan A, Ostaszewski M, Glaab E, Krüger R. Converging peripheral blood microRNA profiles in Parkinson's disease and progressive supranuclear palsy. Brain Commun 2024; 6:fcae187. [PMID: 38863572 PMCID: PMC11166179 DOI: 10.1093/braincomms/fcae187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/02/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024] Open
Abstract
MicroRNAs act via targeted suppression of messenger RNA translation in the DNA-RNA-protein axis. The dysregulation of microRNA(s) reflects the epigenetic changes affecting the cellular processes in multiple disorders. To understand the complex effect of dysregulated microRNAs linked to neurodegeneration, we performed a cross-sectional microRNA expression analysis in idiopathic Parkinson's disease (n = 367), progressive supranuclear palsy (n = 35) and healthy controls (n = 416) from the Luxembourg Parkinson's Study, followed by prediction modelling, enriched pathway analysis and target simulation of dysregulated microRNAs using probabilistic Boolean modelling. Forty-six microRNAs were identified to be dysregulated in Parkinson's disease versus controls and 16 in progressive supranuclear palsy versus controls with 4 overlapping significantly dysregulated microRNAs between the comparisons. Predictive power of microRNA subsets (including up to 100 microRNAs) was modest for differentiating Parkinson's disease or progressive supranuclear palsy from controls (maximal cross-validated area under the receiver operating characteristic curve 0.76 and 0.86, respectively) and low for progressive supranuclear palsy versus Parkinson's disease (maximal cross-validated area under the receiver operating characteristic curve 0.63). The enriched pathway analysis revealed natural killer cell pathway to be dysregulated in both, Parkinson's disease and progressive supranuclear palsy versus controls, indicating that the immune system might play an important role in both diseases. Probabilistic Boolean modelling of pathway dynamics affected by dysregulated microRNAs in Parkinson's disease and progressive supranuclear palsy revealed partially overlapping dysregulation in activity of the transcription factor EB, endoplasmic reticulum stress signalling, calcium signalling pathway, dopaminergic transcription and peroxisome proliferator-activated receptor gamma coactivator-1α activity, though involving different mechanisms. These findings indicated a partially convergent (sub)cellular end-point dysfunction at multiple levels in Parkinson's disease and progressive supranuclear palsy, but with distinctive underlying molecular mechanisms.
Collapse
Affiliation(s)
- Lukas Pavelka
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Armin Rauschenberger
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
- Competence Centre for Methodology and Statistics, Translational Medicine Operations Hub, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
| | - Ahmed Hemedan
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Marek Ostaszewski
- Bioinformatics Core Unit, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Enrico Glaab
- Biomedical Data Science Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| | - Rejko Krüger
- Transversal Translational Medicine, Luxembourg Institute of Health (LIH), Strassen L-1445, Luxembourg
- Parkinson’s Research Clinic, Centre Hospitalier de Luxembourg (CHL), Luxembourg L-1210, Luxembourg
- Translational Neuroscience, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette L-4367, Luxembourg
| |
Collapse
|
3
|
Huang Z, Song E, Chen Z, Yu P, Chen W, Lin H. Integrated bioinformatics analysis for exploring potential biomarkers related to Parkinson's disease progression. BMC Med Genomics 2024; 17:133. [PMID: 38760670 PMCID: PMC11100188 DOI: 10.1186/s12920-024-01885-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/19/2024] [Indexed: 05/19/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disease with increasing prevalence. Effective diagnostic markers and therapeutic methods are still lacking. Exploring key molecular markers and mechanisms for PD can help with early diagnosis and treatment improvement. METHODS Three datasets GSE174052, GSE77668, and GSE168496 were obtained from the GEO database to search differentially expressed circRNA (DECs), miRNAs (DEMis), and mRNAs (DEMs). GO and KEGG enrichment analyses, and protein-protein interaction (PPI) network construction were implemented to explore possible actions of DEMs. Hub genes were selected to establish circRNA-related competing endogenous RNA (ceRNA) networks. RESULTS There were 1005 downregulated DECs, 21 upregulated and 21 downregulated DEMis, and 266 upregulated and 234 downregulated DEMs identified. The DEMs were significantly enriched in various PD-associated functions and pathways such as extracellular matrix organization, dopamine synthesis, PI3K-Akt, and calcium signaling pathways. Twenty-one hub genes were screened out, and a PD-related ceRNA regulatory network was constructed containing 31 circRNAs, one miRNA (miR-371a-3p), and one hub gene (KCNJ6). CONCLUSION We identified PD-related molecular markers and ceRNA regulatory networks, providing new directions for PD diagnosis and treatment.
Collapse
Affiliation(s)
- Zhenchao Huang
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China.
| | - En'peng Song
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Zhijie Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Peng Yu
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Weiwen Chen
- Department of Neurosurgery, Lingnan Hospital, Branch of The Third Affiliated Hospital of Sun Yat-Sen University, No 2693, Kaichuang Avenue, Huangpu District, Guangzhou, 510530, Guangdong, China
| | - Huiqin Lin
- Guangzhou BiDa Biological Technology CO., LTD, Guangzhou, 510530, Guangdong, China
| |
Collapse
|
4
|
Chen Q, Hu X, Zhang T, Ruan Q, Wu H. Association between Parkinson disease and selenium levels in the body: A systematic review and meta-analysis. Medicine (Baltimore) 2024; 103:e37919. [PMID: 38669409 PMCID: PMC11049729 DOI: 10.1097/md.0000000000037919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/27/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Parkinson disease (PD) is a common neurodegenerative disorder, but its pathogenesis is still not entirely understood. While some trace elements, such as selenium, iron, and copper, are considered pivotal in PD onset due to their role in oxidative stress, the association between selenium concentrations and PD susceptibility remains ambiguous. METHODS A systematic review and meta-analysis was conducted in adherence to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines and framed by the Patient, Intervention, Comparison, Outcome paradigm. Data were sourced from 4 prominent electronic databases: PubMed, Embase, Web of Science, and Cochrane Library. Eligible studies must have had a PD case group and a control group, both of which presented data on selenium concentrations. The quality of the studies was assessed using the Newcastle-Ottawa Scale. RESULTS Of 1541 initially identified articles, 12 studies comprising a total of 597 PD cases and 733 controls were selected for the meta-analysis. Pronounced heterogeneity was observed among these studies. When assessing blood selenium levels, no significant difference was found between patients with PD and the controls. However, when examining the cerebrospinal fluid, selenium levels in PD patients were significantly elevated compared to controls (standard mean difference = 1.21, 95% CI 0.04-2.39, P < .05). Subgroup analyses, sensitivity analyses, and evaluation of publication bias were performed to ensure data robustness. CONCLUSIONS Elevated selenium levels in cerebrospinal fluid may be associated with a higher risk of Parkinson. Further prospective research is required to solidify this potential link and to offer avenues for novel therapeutic interventions or preventive measures.
Collapse
Affiliation(s)
- Quanyi Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaofei Hu
- Department of Nuclear Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ting Zhang
- Department of Emergency Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qianying Ruan
- Department of Blood Transfusion Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| | - Hongye Wu
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
5
|
Kispotta S, Das D, Prusty SK. A recent update on drugs and alternative approaches for parkinsonism. Neuropeptides 2024; 104:102415. [PMID: 38402775 DOI: 10.1016/j.npep.2024.102415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 02/27/2024]
Abstract
Parkinson's disease, often known as PD, is a more common age-related neurological disorder that affects a huge number of older adults worldwide. Parkinson's disease is predominantly a movement-related pathosis and is distinguished by the deposition of intra-neuronal aggregates, as the alpha-synuclein gene is expressed as Lewy bodies (LB) causing dopaminergic neurons to die. Stress in early life may contribute to the development of depression, and depression in patients may result in the development of Parkinson's disease as they mature. Depression is a non-motor condition that leads to motor symptoms, such as Parkinson's disease. PD Patients are currently utilizing a variety of other therapies like utilizing nutritional supplements, herbal remedies, vitamins, and massage. When a patient's functional ability is impaired, drug treatment is usually initiated according to the individual's condition and the severity of signs and symptoms. The current marketed anti-Parkinson drugs, has low brain distribution and failing to repair dopaminergic neurons or delaying the progression of the disease these negative effects were unavoidable. To overcome these disadvantages, this review considers the inclusion of drugs used in Parkinson's disease, focusing on strategies to reuse existing compounds to speed up drug development, their capacity to traverse the BBB, and drug dispersion in the brain. We look at cellular therapies and repurposed drugs. We also investigate the mechanisms, effectiveness, as well as safety of several new medications that are being repositioned for Parkinson's disease pharmacotherapy. In this study, we focus on global trends in Parkinson's disease research. We hope to raise awareness about the present state of major factors for disability worldwide, including yearly prevalence's from international and national statistics. The pathophysiology of Parkinsonism and also analyze existing therapies for Parkinson's disease, moreover new and innovative drug therapies, and to assess the prospects for disease modification.
Collapse
Affiliation(s)
- Sneha Kispotta
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Debajyoti Das
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| | - Shakti Ketan Prusty
- School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar, India.
| |
Collapse
|
6
|
Salaramoli S, Joshaghani HR, Shoeibi A, Hashemy SI. Selenium and selenoproteins role in Parkinson's disease: Is there a link between selenoproteins and accumulated alpha-synuclein? J Trace Elem Med Biol 2024; 81:127344. [PMID: 37995510 DOI: 10.1016/j.jtemb.2023.127344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
BACKGROUND While Parkinson's disease (PD) etiology is not clear yet, accumulated alpha-synuclein is proposed to induce neurodegeneration. Selenium (Se) and its functional proteins play a key role in aggregation of misfolded proteins. However, their implications in neurodegenerative process are unclear. AIM Diagnosing Se and selenoprotein P (SelP), selenoprotein S (SelS) proportions in serum of PD patients to compare with healthy controls, whether the changes in their concentration could be a biomarker for PD. METHODS Se concentration was investigated in 30 PD patients and 30 controls using atomic absorption spectrometry. Also, alpha-Synuclein, SelP, and SelS levels were evaluated by ELISA. The parameters were compared in PD patients and controls. Also, the variations within the case group according to their age, disorder stage, and drug administration were evaluated. RESULTS PD subjects had higher Se concentration. The mean SelP in PD patients was lower from controls, whilst SelS levels were higher. Also, the concentration of alpha-synuclein was higher in PD patients. However, age, stage (except UPDRS III), and disorder duration had no influence on the Se and selenoproteins level, whilst there was a direct association between alpha-synuclein levels and disorder stage. Also, alpha-synuclein proportions in subjects using levodopa was significantly higher. CONCLUSION Our results suggest that serum levels of Se and SelP could be a biomarker or risk factor for PD. Although SelS interferes to reduce aggregated proteins, its pathway in PD is not clearly understood. Future studies could focus on how SelS can reduce on alpha-synuclein aggregation. Thus, other studies should be performed on this issue to induce the selenoproteins in PD.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ali Shoeibi
- Department of Neurology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Parkinson and Other Movement Disorders Center, Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
7
|
Prajjwal P, Flores Sanga HS, Acharya K, Tango T, John J, Rodriguez RS, Dheyaa Marsool Marsool M, Sulaimanov M, Ahmed A, Hussin OA. Parkinson's disease updates: Addressing the pathophysiology, risk factors, genetics, diagnosis, along with the medical and surgical treatment. Ann Med Surg (Lond) 2023; 85:4887-4902. [PMID: 37811009 PMCID: PMC10553032 DOI: 10.1097/ms9.0000000000001142] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/31/2023] [Indexed: 10/10/2023] Open
Abstract
After only Alzheimer's disease (AD), Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. The incidence of this disease increases with age, especially for those above 70 years old. There are many risk factors that are well-established in the contribution to the development of PD, such as age, gender, ethnicity, rapid eye movement sleep disorder, high consumption of dairy products, traumatic brain injury, genetics, and pesticides/herbicides. Interestingly, smoking, consumption of caffeine, and physical activities are the protective factors of PD. A deficiency of dopamine in the substantia nigra of the brainstem is the main pathology. This, subsequently, alters the neurotransmitter, causing an imbalance between excitatory and inhibitory signals. In addition, genetics is also involved in the pathogenesis of the disease. As a result, patients exhibit characteristic motor symptoms such as tremors, stiffness, bradykinesia, and postural instability, along with non-motor symptoms, including dementia, urinary incontinence, sleeping disturbances, and orthostatic hypotension. PD may resemble other diseases; therefore, it is important to pay attention to the diagnosis criteria. Parkinson's disease dementia can share common features with AD; this can include behavioral as well as psychiatric symptoms, in addition to the pathology being protein aggregate accumulation in the brain. For PD management, the administration of pharmacological treatment depends on the motor symptoms experienced by the patients. Non-pharmacological treatment plays a role as adjuvant therapy, while surgical management is indicated in chronic cases. This paper aims to review the etiology, risk factors, protective factors, pathophysiology, signs and symptoms, associated conditions, and management of PD.
Collapse
Affiliation(s)
| | - Herson S Flores Sanga
- Department of Telemedicine, Hospital Nacional Carlos Alberto Seguin Escobedo, Arequipa, Peru
| | - Kirtish Acharya
- Maharaja Krishna Chandra Gajapati Medical College and Hospital, Brahmapur, Odisha
| | - Tamara Tango
- Faculty of Medicine Universitas, Jakarta, Indonesia
| | - Jobby John
- Dr. Somervell Memorial CSI Medical College and Hospital, Neyyāttinkara, Kerala, India
| | | | | | | | - Aneeqa Ahmed
- Shadan Hospital and Institute of Medical Sciences, Hyderabad, Telangana
| | - Omniat A. Hussin
- Department of Medicine, Sudan Academy of Sciences, Khartoum, Sudan
| |
Collapse
|
8
|
Zhou J, Zhang W, Cao Z, Lian S, Li J, Nie J, Huang Y, Zhao K, He J, Liu C. Association of Selenium Levels with Neurodegenerative Disease: A Systemic Review and Meta-Analysis. Nutrients 2023; 15:3706. [PMID: 37686737 PMCID: PMC10490073 DOI: 10.3390/nu15173706] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 09/10/2023] Open
Abstract
BACKGROUND Neurodegenerative diseases (NDs) have posed significant challenges to public health, and it is crucial to understand their mechanisms in order to develop effective therapeutic strategies. Recent studies have highlighted the potential role of selenium in ND pathogenesis, as it plays a vital role in maintaining cellular homeostasis and preventing oxidative damage. However, a comprehensive analysis of the association between selenium and NDs is still lacking. METHOD Five public databases, namely PubMed, Web of Science, EMBASE, Cochrane and Clinical Trials, were searched in our research. Random model effects were chosen, and Higgins inconsistency analyses (I2), Cochrane's Q test and Tau2 were calculated to evaluate the heterogeneity. RESULT The association of selenium in ND patients with Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD) was studied. A statistically significant relationship was only found for AD patients (SMD = -0.41, 95% CI (-0.64, -0.17), p < 0.001), especially for erythrocytes. However, no significant relationship was observed in the analysis of the other four diseases. CONCLUSION Generally, this meta-analysis indicated that AD patients are strongly associated with lower selenium concentrations compared with healthy people, which may provide a clinical reference in the future. However, more studies are urgently needed for further study and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jiaxin Zhou
- International School, Jinan University, Guangzhou 510080, China;
| | - Wenfen Zhang
- School of Basic Medicine and Public Health, Jinan University, Guangzhou 510632, China;
| | - Zhiwen Cao
- Center for Data Science, New York University, New York, NY 10011, USA;
| | - Shaoyan Lian
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jieying Li
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiaying Nie
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ying Huang
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Ke Zhao
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
| | - Jiang He
- School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, China
| | - Chaoqun Liu
- Department of Nutrition, School of Medicine, Jinan University, Guangzhou 510632, China; (S.L.); (J.L.); (J.N.); (Y.H.); (K.Z.)
- Disease Control and Prevention Institute, Jinan University, Guangzhou 510632, China
| |
Collapse
|
9
|
Salaramoli S, Amiri H, Joshaghani HR, Hosseini M, Hashemy SI. Bio-synthesized selenium nanoparticles ameliorate Brain oxidative stress in Parkinson disease rat models. Metab Brain Dis 2023; 38:2055-2064. [PMID: 37133801 DOI: 10.1007/s11011-023-01222-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 04/20/2023] [Indexed: 05/04/2023]
Abstract
AIM Parkinson disease (PD) is a prevalent central nervous system degenerative condition that impacts elderly people. Recent clinical and experimental study findings have established oxidative stress as one of the main pathogeneses of PD. Selenium, a trace metals with antioxidant effects, might reverse the neurobehavioral impairments and oxidative stress in rats. Thus, the goal of this study was to ascertain if Selenium Nano Particles (SeNPs) are also effective to protect brain cells from oxidative stress or not. MAIN METHODS SeNPs were synthesized utilizing Ascorbic acid and chitosan as a reducing and stabilizing agent. Next, eight groups (N: 6) of male Wistar rats were randomly assigned and injected by different dosage (0.1, 0,2, and 0.3 mg/kg) of Se and SeNP. Finally, to ascertain the protective benefits of SeNP on PD rats, behavioral evaluation, clinical symptoms, antioxidant activity, and oxidant levels were examined. KEY FINDINGS According to the findings, PD rats' motor functions had developed by SeNP injection. Higher MDA levels and inhibited antioxidant activities (SOD, CAT, and GPX) in lesion group are highlighting the significant role of oxidative stress in dopaminergic neuron death and neurobehavioral abnormalities. SeNP also protect against oxidative stress as compared to the lesion group. The levels of MDA had greatly reduced while the activities of enzymes, TAC, and SeNP both had significantly increased. SIGNIFICANCE By enhancing antioxidant activity, administration of SeNP can reduce the hazardous consequences of oxidative stress.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Amiri
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Salaramoli S, Joshaghani HR, Hashemy SI. Salivary Biomarkers: Noninvasive Ways for Diagnosis of Parkinson's Disease. Neurol Res Int 2023; 2023:3555418. [PMID: 37434876 PMCID: PMC10332915 DOI: 10.1155/2023/3555418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/13/2023] Open
Abstract
Finding reliable biomarkers has a crucial role in Parkinson's disease (PD) assessments. Saliva is a bodily fluid, which might be used as a source of biomarkers for PD. Our article has reviewed several publications on salivary proteins in PD patients and their potential as biomarkers. We find out that α-Syn's proportion in oligomeric form is higher in PD patients' saliva, which is potent to use as a biomarker for PD. The salivary concentration of DJ-1 and alpha-amylase is lower in PD patients. Also, substance P level is more moderate in PD patients. Although salivary flow rate is decreased in PD patients, high levels of heme oxygenase and acetylcholinesterase might be used as noninvasive biomarkers. Salivary miRNAs (miR-153, miR-223, miR-874, and miR-145-3p) are novel diagnostic biomarkers that should be given more attention.
Collapse
Affiliation(s)
- Sanaz Salaramoli
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Joshaghani
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Seyed Isaac Hashemy
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
11
|
Cai H, Wang Z, Tang W, Ke X, Zhao E. Recent advances of the mammalian target of rapamycin signaling in mesenchymal stem cells. Front Genet 2022; 13:970699. [PMID: 36110206 PMCID: PMC9468880 DOI: 10.3389/fgene.2022.970699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/11/2022] [Indexed: 11/22/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) is a serine/threonine kinase involved in a variety of cellular functions, such as cell proliferation, metabolism, autophagy, survival and cytoskeletal organization. Furthermore, mTOR is made up of three multisubunit complexes, mTOR complex 1, mTOR complex 2, and putative mTOR complex 3. In recent years, increasing evidence has suggested that mTOR plays important roles in the differentiation and immune responses of mesenchymal stem cells (MSCs). In addition, mTOR is a vital regulator of pivotal cellular and physiological functions, such as cell metabolism, survival and ageing, where it has emerged as a novel therapeutic target for ageing-related diseases. Therefore, the mTOR signaling may develop a large impact on the treatment of ageing-related diseases with MSCs. In this review, we discuss prospects for future research in this field.
Collapse
Affiliation(s)
- Huarui Cai
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Zhongze Wang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Wenhan Tang
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
| | - Xiaoxue Ke
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| | - Erhu Zhao
- State Key Laboratory of Silkworm Genome Biology, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- *Correspondence: Xiaoxue Ke, ; Erhu Zhao,
| |
Collapse
|