1
|
Das P, Grover M, Mishra DC, Guha Majumdar S, Shree B, Kumar S, Mir ZA, Chaturvedi KK, Bhardwaj SC, Singh AK, Rai A. Genome-wide identification and characterization of Puccinia striiformis-responsive lncRNAs in Triticum aestivum. FRONTIERS IN PLANT SCIENCE 2023; 14:1120898. [PMID: 37650000 PMCID: PMC10465180 DOI: 10.3389/fpls.2023.1120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/10/2023] [Indexed: 09/01/2023]
Abstract
Wheat stripe rust (yellow rust) caused by Puccinia striiformis f. sp. tritici (Pst) is a serious biotic stress factor limiting wheat production worldwide. Emerging evidence demonstrates that long non-coding RNAs (lncRNAs) participate in various developmental processes in plants via post-transcription regulation. In this study, RNA sequencing (RNA-seq) was performed on a pair of near-isogenic lines-rust resistance line FLW29 and rust susceptible line PBW343-which differed only in the rust susceptibility trait. A total of 6,807 lncRNA transcripts were identified using bioinformatics analyses, among which 10 lncRNAs were found to be differentially expressed between resistance and susceptible lines. In order to find the target genes of the identified lncRNAs, their interactions with wheat microRNA (miRNAs) were predicted. A total of 199 lncRNAs showed interactions with 65 miRNAs, which further target 757 distinct mRNA transcripts. Moreover, detailed functional annotations of the target genes were used to identify the candidate genes, pathways, domains, families, and transcription factors that may be related to stripe rust resistance response in wheat plants. The NAC domain protein, disease resistance proteins RPP13 and RPM1, At1g58400, monodehydroascorbate reductase, NBS-LRR-like protein, rust resistance kinase Lr10-like, LRR receptor, serine/threonine-protein kinase, and cysteine proteinase are among the identified targets that are crucial for wheat stripe rust resistance. Semiquantitative PCR analysis of some of the differentially expressed lncRNAs revealed variations in expression profiles of two lncRNAs between the Pst-resistant and Pst-susceptible genotypes at least under one condition. Additionally, simple sequence repeats (SSRs) were also identified from wheat lncRNA sequences, which may be very useful for conducting targeted gene mapping studies of stripe rust resistance in wheat. These findings improved our understanding of the molecular mechanism responsible for the stripe rust disease that can be further utilized to develop wheat varieties with durable resistance to this disease.
Collapse
Affiliation(s)
- Parinita Das
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Monendra Grover
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | | | | | - Bharti Shree
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Zahoor Ahmad Mir
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| |
Collapse
|
2
|
Xu P, Huang S, Zhai X, Fan Y, Li X, Yang H, Cao Y, Fan G. N6-methyladenosine modification changes during the recovery processes for Paulownia witches' broom disease under the methyl methanesulfonate treatment. PLANT DIRECT 2023; 7:e508. [PMID: 37426893 PMCID: PMC10325887 DOI: 10.1002/pld3.508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/05/2023] [Accepted: 06/04/2023] [Indexed: 07/11/2023]
Abstract
Phytoplasmas induce diseases in more than 1000 plant species and cause substantial ecological damage and economic losses, but the specific pathogenesis of phytoplasma has not yet been clarified. N 6-methyladenosine (m6A) is the most common internal modification of the eukaryotic Messenger RNA (mRNA). As one of the species susceptible to phytoplasma infection, the pathogenesis and mechanism of Paulownia has been extensively studied by scholars, but the m6A transcriptome map of Paulownia fortunei (P. fortunei) has not been reported. Therefore, this study aimed to explore the effect of phytoplasma infection on m6A modification of P. fortunei and obtained the whole transcriptome m6A map in P. fortunei by m6A-seq. The m6A-seq results of Paulownia witches' broom (PaWB) disease and healthy samples indicate that PaWB infection increased the degree of m6A modification of P. fortunei. The correlation analysis between the RNA-seq and m6A-seq data detected that a total of 315 differentially methylated genes were predicted to be significantly differentially expressed at the transcriptome level. Moreover, the functions of PaWB-related genes were predicted by functional enrichment analysis, and two genes related to maintenance of the basic mechanism of stem cells in shoot apical meristem were discovered. One of the genes encodes the receptor protein kinase CLV2 (Paulownia_LG2G000076), and the other gene encodes the homeobox transcription factor STM (Paulownia_LG15G000976). In addition, genes F-box (Paulownia_LG17G000760) and MSH5 (Paulownia_LG8G001160) had exon skipping and mutually exclusive exon types of alternative splicing in PaWB-infected seedling treated with methyl methanesulfonate, and m6A modification was found in m6A-seq results. Moreover, Reverse Transcription-Polymerase Chain Reaction (RT-PCR) verified that the alternative splicing of these two genes was associated with m6A modification. This comprehensive map provides a solid foundation for revealing the potential function of the mRNA m6A modification in the process of PaWB. In future studies, we plan to verify genes directly related to PaWB and methylation-related enzymes in Paulownia to elucidate the pathogenic mechanism of PaWB caused by phytoplasma invasion.
Collapse
Affiliation(s)
- Pingluo Xu
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Shunmou Huang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaoqiao Zhai
- Key Laboratory of Forest Germplasm Resources Protection and Improved Variety Selection in Henan ProvinceHenan Province Academy of ForestryZhengzhouP. R. China
| | - Yujie Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| | - Xiaofan Li
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Haibo Yang
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Yabing Cao
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
| | - Guoqiang Fan
- Institute of PaulowniaHenan Agricultural UniversityZhengzhouP. R. China
- College of ForestryHenan Agricultural UniversityZhengzhouP. R. China
| |
Collapse
|
3
|
Wang L, Gao J, Wang C, Xu Y, Li X, Yang J, Chen K, Kang Y, Wang Y, Cao P, Xie X. Comprehensive Analysis of Long Non-coding RNA Modulates Axillary Bud Development in Tobacco ( Nicotiana tabacum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:809435. [PMID: 35237286 PMCID: PMC8884251 DOI: 10.3389/fpls.2022.809435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulate gene expression and are crucial for plant growth and development. However, the mechanisms underlying the effects of activated lncRNAs on axillary bud development remain largely unknown. By lncRNA transcriptomes of axillary buds in topped and untopped tobacco plants, we identified a total of 13,694 lncRNAs. LncRNA analysis indicated that the promoted growth of axillary bud by topping might be partially ascribed to the genes related to hormone signal transduction and glycometabolism, trans-regulated by differentially expressed lncRNAs, such as MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1. Metabolite profiling indicated that auxin, abscisic acid and gibberellin were decreased in axillary buds of topped tobacco lines, while cytokinin was increased, consistent with the expression levels of related lncRNAs. MSTRG.52498.1, MSTRG.60026.1, MSTRG.17770.1, and MSTRG.32431.1 were shown to be influenced by hormones and sucrose treatments, and were associated with changes of axillary bud growth in the overexpression of NtCCD8 plants (with reduced axillary buds) and RNA interference of NtTB1 plants (with increased axillary buds). Moreover, MSTRG.28151.1 was identified as the antisense lncRNA of NtTB1. Silencing of MSTRG.28151.1 in tobacco significantly attenuated the expression of NtTB1 and resulted in larger axillary buds, suggesting the vital function of MSTRG.28151.1 axillary bud developmen by NtTB1. Our findings shed light on lncRNA-mRNA interactions and their functional roles in axillary bud growth, which would improve our understanding of lncRNAs as important regulators of axillary bud development and plant architecture.
Collapse
Affiliation(s)
- Lin Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Junping Gao
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Chen Wang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yalong Xu
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaoxu Li
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Jun Yang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Kai Chen
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yile Kang
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Yaofu Wang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Peijian Cao
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| | - Xiaodong Xie
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of China National Tobacco Corporation (CNTC), Zhengzhou, China
| |
Collapse
|
4
|
PLncWX: A Machine-Learning Algorithm for Plant lncRNA Identification Based on WOA-XGBoost. J CHEM-NY 2021. [DOI: 10.1155/2021/6256021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) are a class of RNAs longer than 200 nt and cannot encode the protein. Studies have shown that lncRNAs can regulate gene expression at the epigenetic, transcriptional, and posttranscriptional levels, which are not only closely related to the occurrence, development, and prevention of human diseases, but also can regulate plant flowering and participate in plant abiotic stress responses such as drought and salt. Therefore, how to accurately and efficiently identify lncRNAs is still an essential job of relevant researches. There have been a large number of identification tools based on machine-learning and deep learning algorithms, mostly using human and mouse gene sequences as training sets, seldom plants, and only using one or one class of feature selection methods after feature extraction. We developed an identification model containing dicot, monocot, algae, moss, and fern. After comparing 20 feature selection methods (seven filter and thirteen wrapper methods) combined with seven classifiers, respectively, considering the correlation between features and model redundancy at the same time, we found that the WOA-XGBoost-based model had better performance with 91.55%, 96.78%, and 91.68% of accuracy, AUC, and F1_score. Meanwhile, the number of elements in the feature subset was reduced to 23, which effectively improved the prediction accuracy and modeling efficiency.
Collapse
|
5
|
Kumar N, Bharadwaj C, Sahu S, Shiv A, Shrivastava AK, Reddy SPP, Soren KR, Patil BS, Pal M, Soni A, Roorkiwal M, Varshney RK. Genome-wide identification and functional prediction of salt- stress related long non-coding RNAs (lncRNAs) in chickpea ( Cicer arietinum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2605-2619. [PMID: 34916736 PMCID: PMC8639897 DOI: 10.1007/s12298-021-01093-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 05/14/2023]
Abstract
LncRNAs (long noncoding RNAs) are 200 bp length crucial RNA molecules, lacking coding potential and having important roles in regulating gene expression, particularly in response to abiotic stresses. In this study, we identified salt stress-induced lncRNAs in chickpea roots and predicted their intricate regulatory roles. A total of 3452 novel lncRNAs were identified to be distributed across all 08 chickpea chromosomes. On comparing salt-tolerant (ICCV 10, JG 11) and salt-sensitive cultivars (DCP 92-3, Pusa 256), 4446 differentially expressed lncRNAs were detected under various salt treatments. We predicted 3373 lncRNAs to be regulating their target genes in cis regulating manner and 80 unique lncRNAs were observed as interacting with 136 different miRNAs, as eTMs (endogenous target mimic) targets of miRNAs and implicated them in the regulatory network of salt stress response. Functional analysis of these lncRNA revealed their association in targeting salt stress response-related genes like potassium transporter, transporter family genes, serine/threonine-protein kinase, aquaporins like TIP1-2, PIP2-5 and transcription factors like, AP2, NAC, bZIP, ERF, MYB and WRKY. Furthermore, about 614 lncRNA-SSRs (simple sequence repeats) were identified as a new generation of molecular markers with higher efficiency and specificity in chickpea. Overall, these findings will pave the understanding of comprehensive functional role of potential lncRNAs, which can help in providing insight into the molecular mechanism of salt tolerance in chickpea. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01093-0.
Collapse
Affiliation(s)
- Neeraj Kumar
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Chellapilla Bharadwaj
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, Pusa, New Delhi 110012 India
| | - Aalok Shiv
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
- Present Address: ICAR-Indian Institute of Sugarcane Research, Lucknow, 226002 India
| | | | | | - Khela Ram Soren
- ICAR-Indian Institute of Pulses Research, Kanpur, 282 004 India
| | | | - Madan Pal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Anjali Soni
- Division of Genetics, ICAR-Indian Agricultural Research Institute, Pusa, New Delhi 110012 India
| | - Manish Roorkiwal
- Centre of Excellence in Genomics, ICRISAT, Hyderabad, 502324 India
| | | |
Collapse
|
6
|
Chen Z, Wang Y, Zhao J, Zhou D, Lv J, Zhang G, Di T, Li P. A study on the pathogenesis of blood-heat psoriasis with transcriptome analysis. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1523. [PMID: 33313268 PMCID: PMC7729302 DOI: 10.21037/atm-20-7137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Most existing studies on psoriasis' pathogenesis have focused on collecting epithelial cell gene sequences from psoriasis patients and normal subjects. In this paper, for the first time, high-throughput microarray was used to study the differential expression of genes in venous blood between patients with blood-heat psoriasis and normal subjects, providing theoretical support for studying the pathogenesis of blood-heat psoriasis. Methods Peripheral venous blood was collected from ten patients with blood-heat psoriasis and ten healthy volunteers for high-throughput microarray. The mRNAs, lncRNAs, and circRNAs related to blood-heat psoriasis were selected by analyzing the transcriptome microarray results. Then gene ontology (GO) analysis and KEGG signaling pathway analysis were used to explore further the biological functions of these mRNAs, lncRNAs, and circRNAs in blood-heat pathogenesis psoriasis. Network pharmacology was used to analyze the protein-protein interaction (PPI) network of the genes with differential expression, and the core genes to transmit information were obtained. Results A total of 205 circRNAs, 393 lncRNAs, and 157 mRNAs with differential expression associated with psoriasis were selected using high-throughput microarray. GO analysis showed these mRNAs, lncRNAs, and circRNAs were mainly enriched in cellular processes, biological regulation, ribosome formation, and negative regulation of protein binding. However, KEGG enrichment analysis suggested they were mainly enriched in autoimmunity pathways, lipid metabolism, translation, and signal transduction. PPI network analysis of mRNAs with significant difference revealed 11 core genes that transmitted information in psoriasis primarily. Conclusions The mRNAs, lncRNAs, and circRNAs with differential expression related to the pathogenesis of blood-heat psoriasis were found using high-throughput microarray for the first time. And the mRNAs, lncRNAs, and circRNAs with potential regulatory functions related to blood-heat psoriasis were then screened by bioinformatics analysis, effectively providing a new research entry point to the pathogenesis of blood-heat psoriasis.
Collapse
Affiliation(s)
- Zhaoxia Chen
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Jingxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Dongmei Zhou
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Jingjing Lv
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Guangzhong Zhang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Institute of Traditional Chinese Medicine, Beijing, China.,Beijing Key Laboratory of Clinic and Basic Research with Traditional Chinese Medicine on Psoriasis, Beijing, China
| |
Collapse
|
7
|
Zhou X, Cui J, Meng J, Luan Y. Interactions and links among the noncoding RNAs in plants under stresses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3235-3248. [PMID: 33025081 DOI: 10.1007/s00122-020-03690-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/16/2020] [Indexed: 05/11/2023]
Abstract
The complex interplay among sRNAs, lncRNAs and circRNAs has been implicated in plants under biotic and abiotic stresses. Here, we review current advances in our understanding of ncRNA interactions and links, which have considerable potential for improving the agronomic traits and the environmental adaptability of plants. Plants can respond to biotic or abiotic stresses. To cope with various conditions, numerous intricate molecular regulatory mechanisms have evolved in plants. Noncoding RNAs (ncRNAs) can be divided into small noncoding RNAs (sRNAs), long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs). Emerging evidence has demonstrated that interplay among the ncRNAs acts as a novel layer in the regulatory mechanisms, which has attracted substantial interest. Links between sRNAs can affect plant immune responses and development in synergistic or antagonistic manners. Additionally, multiple interactions between lncRNAs and sRNAs are involved in crop breeding, disease resistance and high tolerance to environmental stresses. Here, we summarize current knowledge of the interactions and links among the ncRNAs in plant responses to stresses and the methods for identifying ncRNA interactions. Furthermore, challenges and prospects for further progress in elucidating ncRNA interactions and links are highlighted.
Collapse
Affiliation(s)
- Xiaoxu Zhou
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Cui
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Jun Meng
- School of Computer Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Yushi Luan
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Sun X, Zheng H, Li J, Liu L, Zhang X, Sui N. Comparative Transcriptome Analysis Reveals New lncRNAs Responding to Salt Stress in Sweet Sorghum. Front Bioeng Biotechnol 2020; 8:331. [PMID: 32351954 PMCID: PMC7174691 DOI: 10.3389/fbioe.2020.00331] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/25/2020] [Indexed: 12/18/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) can enhance plant stress resistance by regulating the expression of functional genes. Sweet sorghum is a salt-tolerant energy crop. However, little is known about how lncRNAs in sweet sorghum respond to salt stress. In this study, we identified 126 and 133 differentially expressed lncRNAs in the salt-tolerant M-81E and the salt-sensitive Roma strains, respectively. Salt stress induced three new lncRNAs in M-81E and inhibited two new lncRNAs in Roma. These lncRNAs included lncRNA13472, lncRNA11310, lncRNA2846, lncRNA26929, and lncRNA14798, which potentially function as competitive endogenous RNAs (ceRNAs) that influence plant responses to salt stress by regulating the expression of target genes related to ion transport, protein modification, transcriptional regulation, and material synthesis and transport. Additionally, M-81E had a more complex ceRNA network than Roma. This study provides new information regarding lncRNAs and the complex regulatory network underlying salt-stress responses in sweet sorghum.
Collapse
Affiliation(s)
- Xi Sun
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Hongxiang Zheng
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jinlu Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Luning Liu
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom.,College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Xiansheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, China
| | - Na Sui
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
9
|
Liu H, Wang R, Mao B, Zhao B, Wang J. Identification of lncRNAs involved in rice ovule development and female gametophyte abortion by genome-wide screening and functional analysis. BMC Genomics 2019; 20:90. [PMID: 30691391 PMCID: PMC6348626 DOI: 10.1186/s12864-019-5442-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/09/2019] [Indexed: 11/15/2022] Open
Abstract
Background As important female reproductive tissues, the rice (Oryza sativa L.) ovule and female gametophyte is significant in terms of their fertility. Long noncoding RNAs (lncRNAs) play important and wide-ranging roles in the growth and development of plants and have become a major research focus in recent years. Therefore, we explored the characterization and expression change of lncRNAs during ovule development and female gametophytic abortion. Results In our study, whole-transcriptome strand-specific RNA sequencing (ssRNA-seq) was performed in the ovules of a high-frequency female-sterile rice line (fsv1) and a wild-type rice line (Gui99) at the megaspore mother cell meiosis stage (stage 1), functional megaspore mitosis stage (stage 2) and female gametophyte mature stage (stage 3). By comparing two rice lines, we identified 152, 233, and 197 differentially expressed lncRNAs at the three ovule developmental stages. Functional analysis of the coherent target genes of these differentially expressed lncRNAs indicated that many lncRNAs participate in multiple pathways such as hormone and cellular metabolism and signal transduction. Moreover, there were many differentially expressed lncRNAs acting as the precursors of some miRNAs that are involved in the development of ovules and female gametophytes. In addition, we have found that lncRNAs can act as decoys, competing with mRNAs for binding to miRNAs to maintain the normal expression of genes related to ovule and female gametophyte development. Conclusion These results provide important clues for elucidating the female gametophyte abortion mechanism in rice. This study also expands our understanding about the biological functions of lncRNAs and the annotation of the rice genome. Electronic supplementary material The online version of this article (10.1186/s12864-019-5442-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Helian Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Ruihua Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bigang Mao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China
| | - Bingran Zhao
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, 410125, China.
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|