1
|
Fatima Q, Shoaib A, Gull N, Khurshid S, Fatima U. Chitosan-mediated copper nanohybrid attenuates the virulence of a necrotrophic fungal pathogen Macrophomina phaseolina. Sci Rep 2024; 14:23193. [PMID: 39369110 PMCID: PMC11455915 DOI: 10.1038/s41598-024-74949-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024] Open
Abstract
This study reported the synthesis and characterization of chitosan-copper nanoparticles (Ch-CuNPs) using a 1% copper sulfate solution in 0.2% w/v chitosan. The Ch-CuNPs, displaying a stable brick-red hue, showed an absorption peak at 572 nm, indicative of monodisperse nanoparticle formation and surface plasmon resonance. X-ray diffraction confirmed the face-centered cubic structure with peaks at 36.78°, 43.38°, 50.56°, and 74.26°, and an average particle size of 87-89 nm. FTIR analysis showed interactions between chitosan and copper, particularly around 3370 -3226 cm⁻¹, 1633 cm⁻¹, and 680 cm⁻¹. In vitro assays revealed that Ch-CuNPs inhibited Macrophomina phaseolina growth by 18-71% at 0.03-0.09% concentrations, achieving complete inhibition at 0.12-0.15%, with PCA analysis confirming that growth peaked at lower concentrations and sharply declined at higher levels. Ch-CuNPs also altered fungal morphology and enzyme activity, with notable degradation at higher concentrations. The Cu uptake by the fungus peaked at 29.9% with 0.03% Ch-CuNPs and decreased at higher concentrations. FTIR analysis showed shifts and disappearance of peaks in fungal biomass treated with Ch-CuNPs, indicating molecular interactions and potential structural changes. This study underscores the potential of Ch-CuNPs as an effective antifungal agent and elucidates their interaction mechanisms.
Collapse
Affiliation(s)
- Qudsia Fatima
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan.
| | - Nafisa Gull
- Institute of Polymer & Textile Engineering, University of the Punjab, Lahore, Pakistan
| | - Shakra Khurshid
- Institute of Molecular Biology and Biotechnology, University of Lahore, Raiwand Road, Lahore, Pakistan
| | - Uswa Fatima
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
2
|
El Housni Z, Ezrari S, Radouane N, Tahiri A, Ouijja A, Errafii K, Hijri M. Evaluating Rhizobacterial Antagonists for Controlling Cercospora beticola and Promoting Growth in Beta vulgaris. Microorganisms 2024; 12:668. [PMID: 38674613 PMCID: PMC11052011 DOI: 10.3390/microorganisms12040668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 04/28/2024] Open
Abstract
Cercospora beticola Sacc. is an ascomycete pathogen that causes Cercospora leaf spot in sugar beets (Beta vulgaris L.) and other related crops. It can lead to significant yield losses if not effectively managed. This study aimed to assess rhizosphere bacteria from sugar beet soil as a biological control agent against C. beticola and evaluate their effect on B. vulgaris. Following a dual-culture screening, 18 bacteria exhibiting over 50% inhibition were selected, with 6 of them demonstrating more than 80% control. The bacteria were identified by sequencing the 16S rRNA gene, revealing 12 potential species belonging to 6 genera, including Bacillus, which was represented by 4 species. Additionally, the biochemical and molecular properties of the bacteria were characterized in depth, as well as plant growth promotion. PCR analysis of the genes responsible for producing antifungal metabolites revealed that 83%, 78%, 89%, and 56% of the selected bacteria possessed bacillomycin-, iturin-, fengycin-, and surfactin-encoding genes, respectively. Infrared spectroscopy analysis confirmed the presence of a lipopeptide structure in the bacterial supernatant filtrate. Subsequently, the bacteria were assessed for their effect on sugar beet plants in controlled conditions. The bacteria exhibited notable capabilities, promoting growth in both roots and shoots, resulting in significant increases in root length and weight and shoot length. A field experiment with four bacterial candidates demonstrated good performance against C. beticola compared to the difenoconazole fungicide. These bacteria played a significant role in disease control, achieving a maximum efficacy of 77.42%, slightly below the 88.51% efficacy attained with difenoconazole. Additional field trials are necessary to verify the protective and growth-promoting effects of these candidates, whether applied individually, combined in consortia, or integrated with chemical inputs in sugar beet crop production.
Collapse
Affiliation(s)
- Zakariae El Housni
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Said Ezrari
- Microbiology Unit, Laboratory of Bioresources, Biotechnology, Ethnopharmacology and Health, Faculty of Medicine and Pharmacy Oujda, University Mohammed Premier, P.O. Box 724 Hay Al Quods, Oujda 60000, Morocco;
| | - Nabil Radouane
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Abdessalem Tahiri
- Phytopathology Unit, Department of Plant Protection, Ecole Nationale d’Agriculture de Meknès, BPS 40, Meknès 50001, Morocco;
| | - Abderrahman Ouijja
- Laboratory of Biotechnology and Molecular Biology, Department of Biology, Faculty of Science, Moulay Ismail University, Zitoune, Meknès 50050, Morocco; (Z.E.H.); (A.O.)
| | - Khaoula Errafii
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
| | - Mohamed Hijri
- African Genome Center, University Mohammed VI Polytechnic (UM6P), Lot 660, Hay Moulay Rachid, Ben Guerir 43150, Morocco; (N.R.); (K.E.)
- Institut de Recherche en Biologie Végétale (IRBV), Département de Sciences Biologiques, Université de Montréal, Montréal, QC H1X 2B2, Canada
| |
Collapse
|
3
|
Pathak D, Suman A, Sharma P, Aswini K, Govindasamy V, Gond S, Anshika R. Community-forming traits play role in effective colonization of plant-growth-promoting bacteria and improved plant growth. FRONTIERS IN PLANT SCIENCE 2024; 15:1332745. [PMID: 38533409 PMCID: PMC10963436 DOI: 10.3389/fpls.2024.1332745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 02/21/2024] [Indexed: 03/28/2024]
Abstract
Community-forming traits (CFts) play an important role in the effective colonization of plant-growth-promoting bacterial communities that influence host plants positively by modulating their adaptive functions. In this study, by considering plant-growth-promoting traits (PGPts) and community-forming traits (CFts), three communities were constructed, viz., SM1 (PGPts), SM2 (CFts), and SM3 (PGPts+CFts). Each category isolates were picked up on the basis of their catabolic diversity of different carbon sources. Results revealed a distinctive pattern in the colonization of the communities possessed with CF traits. It was observed that the community with CFts colonized inside the plant in groups or in large aggregations, whereas the community with only PGPts colonized as separate individual and small colonies inside the plant root and leaf. The effect of SM3 in the microcosm experiment was more significant than the uninoculated control by 22.12%, 27.19%, and 9.11% improvement in germination percentage, chlorophyll content, and plant biomass, respectively. The significant difference shown by the microbial community SM3 clearly demonstrates the integrated effect of CFts and PGPts on effective colonization vis-à-vis positive influence on the host plant. Further detailed characterization of the interaction will take this technology ahead in sustainable agriculture.
Collapse
Affiliation(s)
| | - Archna Suman
- Division of Microbiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | | | | | | | | | | |
Collapse
|
4
|
Yaqoob HS, Shoaib A, Anwar A, Perveen S, Javed S, Mehnaz S. Seed biopriming with Ochrobactrum ciceri mediated defense responses in Zea mays (L.) against Fusarium rot. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:49-66. [PMID: 38435857 PMCID: PMC10902241 DOI: 10.1007/s12298-023-01408-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 03/05/2024]
Abstract
Seed bio-priming is a simple and friendly technique to improve stress resilience against fungal diseases in plants. An integrated approach of maize seeds biopriming with Ochrobactrum ciceri was applied in Zn-amended soil to observe the response against Fusarium rot disease of Zea mays (L.) caused by Fusarium verticillioides. Initially, the pathogen isolated from the infected corn was identified as F. verticillioides based on morphology and sequences of the internally transcribed spacer region of the ribosomal RNA gene. Re-inoculation of maize seed with the isolated pathogen confirmed the pathogenicity of the fungus on the maize seeds. In vitro, the inhibitory potential of O. ciceri assessed on Zn-amended/un-amended growth medium revealed that antifungal potential of O. ciceri significantly improved in the Zn-amended medium, leading to 88% inhibition in fungal growth. Further assays with different concentrations (25, 50, and 75%) of cell pellet and the cultural filtrate of O. ciceri (with/without the Zn-amendment) showed a dose-dependent inhibitory effect on mycelial growth of the pathogen that also led to discoloration, fragmentation, and complete disintegration of the fungus hyphae and spores at 75% dose. In planta, biopriming of maize seeds with O. ciceri significantly managed disease, improved the growth and biochemical attributes (up to two-fold), and accelerated accumulation of lignin, polyphenols, and starch, especially in the presence of basal Zn. The results indicated that bioprimed seeds along with Zn as the most promising treatment for managing disease and improving plant growth traits through the enhanced accumulation of lignin, polyphenols, and starch, respectively.
Collapse
Affiliation(s)
- Hafiza Sibgha Yaqoob
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Aneela Anwar
- Department of Chemistry, University of Engineering and Technology, Lahore, Pakistan
| | - Shagufta Perveen
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Sidra Javed
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Samina Mehnaz
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| |
Collapse
|
5
|
Akhtar S, Shoaib A, Javiad I, Qaisar U, Tasadduq R. Farmyard manure, a potential organic additive to reclaim copper and Macrophomina phaseolina stress responses in mash bean plants. Sci Rep 2023; 13:14383. [PMID: 37658111 PMCID: PMC10474152 DOI: 10.1038/s41598-023-41509-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
In the era of global warming, stress combinations instead of individual stress are realistic threats faced by plants that can alter or trigger a wide range of plant responses. In the current study, the cumulative effect of charcoal rot disease caused by notorious fungal pathogen viz., Macrophomina phaseolina was investigated under toxic levels of copper (Cu) in mash bean, and farmyard manure (FYM) was employed to manage stress. Therefore, Cu-spiked soil (50 and 100 mg/kg) was inoculated with the pathogen, and amended with 2% FYM, to assess the effect of intricate interactions on mash bean plants through pot experiments. Results demonstrated that the individual stress of the pathogen or Cu was more severe for morpho-growth, physio-biochemical, and expression profiles of stress-related genes and total protein in mash bean plants as compared to stress combinations. Under single Cu stress, a significant amount of Cu accumulated in plant tissues, particularly in roots than in upper ground tissues, while, under stress combination less Cu accumulated in the plants. Nonetheless, 2% FYM in soil encountered the negative effect of stress responses provoked by the pathogen, Cu, or both by improving health markers (photosynthetic pigments, reducing sugar, total phenolics) and oxidative stress markers (catalase, peroxidase, and polyphenol oxidase), together with regulating the expression of stress-related genes (catalase, ascorbate peroxidase, and cytokinin-resistant genes), and proteins, besides decreasing Cu uptake in the plants. FYM worked better at lower concentrations (50 mg/kg) of Cu than at higher ones (100 mg/kg), hence could be used as a suitable option for better growth, yield, and crop performance under charcoal rot disease stress in Cu-contaminated soils.
Collapse
Affiliation(s)
- Sundus Akhtar
- School of Botany, Minhaj University Lahore, Lahore, Pakistan
| | - Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Quaid-e-Azam Campus, Lahore, Pakistan.
| | - Iqra Javiad
- Central Park Medical College, Lahore, Pakistan
| | - Uzma Qaisar
- School of Biological Sciences, University of the Punjab, Lahore, Pakistan
| | - Raazia Tasadduq
- Department of Biochemistry, Kinnaird College, Lahore, Pakistan
| |
Collapse
|
6
|
Shoaib A, Khan KA, Awan ZA, Jan BL, Kaushik P. Integrated management of charcoal rot disease in susceptible genotypes of mungbean with soil application of micronutrient zinc and green manure (prickly sesban). Front Microbiol 2022; 13:899224. [PMID: 35958154 PMCID: PMC9358777 DOI: 10.3389/fmicb.2022.899224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Charcoal rot disease is incited by the soil-borne fungus Macrophomina phaseolina (Tassi). Goid is a challenging disease due to long-term persistence of fungus sclerotia in the soil. This study assessed the potential of zinc (Zn: 1.25, 2.44, and 5 mg/kg) and green manure (GM: 1 and 2%) in solitary and bilateral combinations to alleviate infection stress incited by M. phaseolina on disease, growth, physiology, and yield attributes in mungbean. A completely randomized design experiment was conducted in potted soil, artificially inoculated with the pathogen, and sown with surface-sterilized seeds of mungbean genotypes (susceptible: MNUYT-107 and highly susceptible: MNUYT-105). Concealment of plant resistance by M. phaseolina in both genotypes resulted in 53-55% disease incidence and 40-50% plant mortality, which contributed in causing a significant reduction of 30-90% in attributes of growth, biomass, yield, photosynthetic pigment, and total protein content with an imbalance of production of antioxidant enzymes (polyphenol oxidase, superoxide dismutase, catalase, and peroxidase). Soil application with Zn-based fertilizer (ZnSO4: 33%) in combination with GM significantly managed up to 80% of the charcoal rot disease, hence improving growth (50-100%) and physiochemical (30-100%) attributes and sustainably enhancing grain average yield (300-600%), biological yield (100-200%), and harvest index (100-200%) in mungbean plants. The heat map and principal component analyses based on 19 measured attributes with 16 treatments separated Zn (2.44 or 5 mg/kg) combined with 2% GM as the best treatments for alleviating charcoal rot disease stress by improving growth, yield, and biological attributes to an extent to profitable farming in terms of harvest index (HI) and benefit-cost ratio (BCR).
Collapse
Affiliation(s)
- Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Kashif Ali Khan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Zoia Arshad Awan
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Basit Latief Jan
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Prashant Kaushik
- Instituto de Conservación y Mejora de la Agrodiversidad Valenciana, Universitat Politècnica de València, Valencia, Spain
| |
Collapse
|
7
|
Shoaib A, Akhtar M, Javaid A, Ali H, Nisar Z, Javed S. Antifungal potential of zinc against leaf spot disease in chili pepper caused by Alternaria alternata. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:1361-1376. [PMID: 34177151 PMCID: PMC8212324 DOI: 10.1007/s12298-021-01004-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/03/2021] [Accepted: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The fungal pathogen, Alternaria alternata is responsible for causing leaf spot disease in many plants, including chili pepper. Zinc (Zn) an essential micronutrient for plant growth, also increases resistance in plants against diseases, and also acts as an antifungal agent. Here, in vitro effects of ZnSO4 on the propagation of A. alternata were investigated, and also in vivo, the effect of foliar application of ZnSO4 was investigated in chili pepper plants under disease stress. In vitro, ZnSO4 inhibited fungal growth in a dose-dependent manner, with complete inhibition being observed at the concentration of 8.50 mM. Hyphae and conidial damage were observed along with abnormal activity of antioxidant enzymes, Fourier-transform infrared spectroscopy confirmed the major changes in the protein structure of the fungal biomass after Zn accumulation. In vivo, pathogen infection caused the highest leaf spot disease incidence, and cumulative disease index, which resulted in a significant reduction in the plant's growth (length and biomass), and physiochemical traits (photosynthetic pigment, activity of catalase, peroxidase, polyphenol oxidase, and phenylalanine ammonia lyase). The heat map and principal component analysis based on disease, growth and, physico-chemical variables generated useful information regarding the best treatment useful for disease management. Foliar Zn (0.036 mM) acted as a resistance inducer in chili pepper plants that improved activities of antioxidants (CAT and POX), and defense compounds (PPO and PAL), while managing 77% of disease. The study indicated foliar ZnSO4 as an effective and sustainable agriculture practice to manage Alternaria leaf spot disease in chili pepper plants.
Collapse
Affiliation(s)
- Amna Shoaib
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Mishaal Akhtar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Arshad Javaid
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Haider Ali
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Zahra Nisar
- Department of Plant Pathology, Faculty of Agricultural Sciences, University of the Punjab, Lahore, Pakistan
| | - Shabnam Javed
- Department of Organic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| |
Collapse
|