1
|
Alhamdi HW, Mokhtar FA, Ridouane FL, Shati AA, Elbehairi SEI, Fahmy LI, Alfaifi MY, Sedky NK, Fahmy HA. Computational metal-flavonoids complexes presentation of greenly synthesized silver nanoparticles combined flavonoids from Lens culinaris L. as anticancer agents using BcL-2 and IspC proteins. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:529-550. [PMID: 39462870 DOI: 10.1080/21691401.2024.2420414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/29/2024] [Accepted: 10/01/2024] [Indexed: 10/29/2024]
Abstract
Lens culinaris L., has been widely recognized for its medical applications. LC-ESI-TOF-MS identified 22 secondary metabolites including phenolics, flavonoids, and anthocyanidin glycosides among its total extract (LCTE). The study aimed to apply LCTE as a biogenic material for reducing and capping the silver nanoparticles (LC-AgNPs). The ynthesized LC-AgNPs were characterized using different techniques. The UV absorption was observed at λmax 379 nm. LC-AgNPs were spherical, with 19.22 nm average size. The face cubic centre nature was demonstrated by HR-TEM and XRD. The LC-AgNPs were then evaluated for their anticancer and antimicrobial potentials. LC-AgNPs showed an extremely potent cytotoxic activity against MCF-7, HCT-116 and HepG2 cell lines (IC50= 0.37, 0.35 and 0.1 µg/mL, respectively). LC-AgNPs induced significant apoptotic effects in the three examined cancer cell lines. LC-AgNPs resulted in sequestration of cells in G1 phase of the cell cycle in both MCF-7 and HCT-116 cells, meanwhile it trapped cells at the G2 phase in HepG2 cells. Moreover, the antimicrobial activity of LC-AgNPs was highly confirmed against Klebsiella pneumoniae and Acinetobacter baumannii. Molecular docking study designated Kaempferol-3-O-robinoside-7-O-rhamnoside and Quercetin-3-D-xyloside as the topmost LCTE active constituents that caused inhibition of both Bcl-2 and IspC cancer targets in combination with the produced silver nanoparticles.
Collapse
Affiliation(s)
- Heba W Alhamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Fatma Alzahraa Mokhtar
- Fujairah Research Centre, Sakamkam Road, Fujairah, United Arab Emirates
- Department of Pharmacognosy, Faculty of Pharmacy El Saleheya El Gadida University, El Saleheya El Gadida, Sharkia, Egypt
| | | | - Ali A Shati
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, Saudi Arabia
| | - Serag Eldin I Elbehairi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, Saudi Arabia
| | - Lamiaa I Fahmy
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Mohammad Y Alfaifi
- Biology Department, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Tissue Culture and Cancer Biology Research Laboratory, King Khalid University, Abha, Saudi Arabia
| | - Nada K Sedky
- Department of Biochemistry, School of Life and Medical Sciences, University of Hertfordshire hosted by Global Academic Foundation, Cairo, Egypt
| | - Heba A Fahmy
- Pharmacognosy Department, Faculty of Pharmacy, Modern University for Technology & Information, Cairo, Egypt
| |
Collapse
|
2
|
Singh AK, Kumar P, Rajput VD, Mishra SK, Tiwari KN, Singh AK, Minkina T, Pandey AK. Phytochemicals, Antioxidant, Anti-inflammatory Studies, and Identification of Bioactive Compounds Using GC-MS of Ethanolic Novel Polyherbal Extract. Appl Biochem Biotechnol 2023:10.1007/s12010-023-04363-7. [PMID: 36701094 DOI: 10.1007/s12010-023-04363-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2023] [Indexed: 01/27/2023]
Abstract
Hyperglycemia is the hallmark of diabetes, which is a collection of related metabolic disorders. Over time, diabetes can cause a variety of problems, including cardiovascular disease, nephropathy, neuropathy, and retinopathy. Ethanolic novel polyherbal extract (PHE) was prepared by mixing equal amounts of the following ingredients: Terminalia chebula Retz. (TC), Terminalia bellerica Roxb. (TB), Berberis aristata DC. (BA), Nyctanthes arbostratis L. (NA), Premna integrifolia L. (PI), and Andrographis paniculata Nees. (AP). Analysis of PHE results revealed phytochemicals like glycosides, flavonoids, alkaloids, tannins, phytosterols, and saponins. The aim of the study was to prepare an ethanolic extract of PHE using the cold maceration technique, and identify bioactive molecules from gas chromatography-mass spectrometry (GC-MS) analysis, and evaluate biological responses by using in vitro studies like antioxidant and anti-inflammatory activity. PHE was found to contain a total of 35 phytochemicals in GC-MS of which 22 bioactive compounds were obtained in good proportion. There are a few new ones, including 2-buten-1-ol, 2-ethyl-4-(2, 2, 3-trimethyl-3-cyclopenten-1-yl (17.22%), 1, 2, 5, 6-tetrahydrobenzonitrile (4.26%), 4-piperidinamine, 2, 2, 6, 6-tetramethyl-(0.07%), undecanoic acid, 5-chloro-, chloromethyl ester (0.41%), are identified. Antioxidant activity was estimated using EC50 values of 392.143 µg/ml, which were comparable to the standard value of EC50 310.513 µg/ml obtained using DPPH. Antioxidant activity was estimated with EC50 392.143 µg/ml, comparable to standard EC50 310.513 µg/ml using DPPH. In vitro anti-inflammatory potential was found with IC50 of 91.449 µg/ml, comparable to standard IC50 89.451 µg/ml for membrane stabilization and IC50 of 36.940 µg/ml, comparable to standard IC50 35.723 µg/ml for protein denaturation assays. As a result, the findings of this study show an enrichment of bioactive phytochemicals that can be used to investigate biological activity. To better understand how diabetes receptors work, in silico studies like docking could be carried out.
Collapse
Affiliation(s)
- Amit Kumar Singh
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Pradeep Kumar
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Sunil Kumar Mishra
- Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India.
| | - Kavindra Nath Tiwari
- Department of Botany, MMV, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Anand Kumar Singh
- Department of Chemistry, PG College, Mariahu, VBS Purvanchal University, Jaunpur, Uttar Pradesh, 222161, India
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov On Don, Russia
| | - Ajay Kumar Pandey
- Department of Kaychikitsa, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Ali A, Kiloni SM, Cáceres-Vélez PR, Jusuf PR, Cottrell JJ, Dunshea FR. Phytochemicals, Antioxidant Activities, and Toxicological Screening of Native Australian Fruits Using Zebrafish Embryonic Model. Foods 2022; 11:foods11244038. [PMID: 36553779 PMCID: PMC9777714 DOI: 10.3390/foods11244038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/27/2022] [Accepted: 12/13/2022] [Indexed: 12/15/2022] Open
Abstract
Phytochemicals play a pivotal role in human health and drug discovery. The safety evaluation of plant extracts is a prerequisite to ensure that all phytochemicals are safe before translational development and human exposure. As phytochemicals are natural, they are generally considered safe, although this is not always true. The objective of this study was to investigate and compare the phytochemical composition, antioxidant potential, and safety evaluation of native Australian Muntries (Kunzea pomifera), Kakadu plum (Terminalia ferdinandiana), Davidson plum (Davidsonia) and Quandong peach (Santalum acuminatum) through the in vivo vertebrate zebrafish embryonic model. The highest total phenolic content (TPC; 793.89 ± 22.27 μg GAE/mg) was quantified in Kakadu plum, while the lowest TPC (614.44 ± 31.80 μg GAE/mg) was quantified in Muntries. Developmental alterations, mortality, and morbidity were assessed for toxicological screening of these selected native Australian fruit extracts. In this study, muntries were quantified as having the least LC50 value (169 mg/L) compared to Davidson plum (376 mg/L), Kakadu plum (>480 mg/L), and Quandong peach (>480 mg/L), which indicates that muntries extract was more toxic than other fruit extracts. Importantly, we found that adverse effects were not correlated to the total phenolic content and antioxidant potential of these native Australian fruits and cannot simply be predicted from the in vitro analysis. Conclusively, these selected native Australian fruit extracts are categorized as safe. This study could explore the use of these native Australian fruits in cosmetics, pharmaceuticals, and drug discovery.
Collapse
Affiliation(s)
- Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Sarah M. Kiloni
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | | | - Patricia R. Jusuf
- School of Biosciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Jeremy J. Cottrell
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Parkville, VIC 3010, Australia
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
- Correspondence:
| |
Collapse
|
4
|
Cáceres-Vélez PR, Ali A, Fournier-Level A, Dunshea FR, Jusuf PR. Phytochemical and Safety Evaluations of Finger Lime, Mountain Pepper, and Tamarind in Zebrafish Embryos. Antioxidants (Basel) 2022; 11:antiox11071280. [PMID: 35883771 PMCID: PMC9311898 DOI: 10.3390/antiox11071280] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/23/2022] [Accepted: 06/26/2022] [Indexed: 12/11/2022] Open
Abstract
Plants play a pivotal role in drug discovery, constituting 50% of modern pharmacopeia. Many human diseases, including age-related degenerative diseases, converge onto common cellular oxidative stress pathways. This provides an opportunity to develop broad treatments to treat a wide range of diseases in the ageing population. Here, we characterize and assess the toxicological effects of finger lime (Citrus australasica), mountain pepper (Tasmannia lanceolata), and small-leaved tamarind (Diploglottis australis) extracts. The characterization demonstrates that these Australian native plants have antioxidant potential and, importantly, they have high concentrations of distinct combinations of different antioxidant classes. Using zebrafish larvae as a high-throughput pre-clinical in vivo toxicology screening model, our experiment effectively discriminates which of these extracts (and at what exposure levels) are suitable for development towards future therapies. The LC50-96h for finger lime and tamarind were >480 mg/L, and 1.70 mg/L for mountain pepper. Critically, this work shows that adverse effects are not correlated to the properties of these antioxidants, thus highlighting the need for combining characterization and in vivo screening to identify the most promising plant extracts for further development. Thus, we present a high-throughput pre-clinical screening that robustly tests natural plant products to utilize the diversity of antioxidant compounds for drug development.
Collapse
Affiliation(s)
- Paolin Rocio Cáceres-Vélez
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (P.R.C.-V.); (P.R.J.)
| | - Akhtar Ali
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC 3010, Australia; (A.A.); (F.R.D.)
| | | | - Frank R. Dunshea
- School of Agriculture and Food, The University of Melbourne, Melbourne, VIC 3010, Australia; (A.A.); (F.R.D.)
- Faculty of Biological Sciences, The University of Leeds, Leeds LS2 9JT, UK
| | - Patricia Regina Jusuf
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia;
- Correspondence: (P.R.C.-V.); (P.R.J.)
| |
Collapse
|