1
|
Leal ANR, Brandão WQ, de Aguiar MF, Kór DG, França ELT, de Melo CP, de Almeida YMB. Utilizing green zinc oxide nanoparticles as a sensing platform for ascorbic acid. Talanta 2024; 280:126769. [PMID: 39217707 DOI: 10.1016/j.talanta.2024.126769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
We prepared zinc oxide nanoparticles (ZnO NPs) via a green synthesis and used them for the fluorescence sensing of ascorbic acid (AA). For obtaining these nanoparticles, we used an extract from Batavia lettuce as a reducing agent for zinc acetate in a simple, fast, and environmentally friendly synthesis. The ZnO NPs were characterized by X-ray diffractometry (XRD), ultraviolet-visible spectroscopy (UV-vis), Fourier Transform Infrared spectroscopy (FTIR), scanning electron microscopy (SEM), dynamic light scattering (DLS), thermogravimetric analysis (TGA), photoluminescence, point of zero-charge (pHpzc), and chromaticity studies. We verified that the ZnO NPs had an average diameter of 6 nm, with a wurtzite crystalline structure, and when excited at 320 nm emitted radiation in the blue region. The methodology for AA detection is based on the observed increase in fluorescence of the molecule complex formed on the ZnO NPs surface after 20 min of interaction. The results indicated that the proposed technique of analysis is fast, simple, and highly sensitive, with a detection limit for AA of 5.15 μM. Furthermore, the nanoparticles presented excellent photostability for at least 30 days, and low sensitivity to other biological organic molecules. The green ZnO NPs also exhibited an efficient response to the presence of AA in actual complex samples, suggesting that the platform here proposed can find use in clinical analysis protocols.
Collapse
Affiliation(s)
- Andressa N R Leal
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Winnie Q Brandão
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Maurício F de Aguiar
- Departamento de Engenharia Mecânica, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Dionísio G Kór
- Programa de Pós-Graduação em Produção Vegetal, Universidade do Estado de Santa Catarina, 88520-00, Lages, SC, Brazil
| | - Emanoel L T França
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| | - Celso P de Melo
- Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Departamento de Física, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil.
| | - Yeda M B de Almeida
- Departamento de Engenharia Química, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil; Programa de Pós-Graduação em Ciência de Materiais, Universidade Federal de Pernambuco, 50670-901, Recife, PE, Brazil
| |
Collapse
|
2
|
Cheng Q, Zou X, Wang Y, Yang Z, Qiu X, Wang S, Yang Y, Yang D, Kim HS, Jia X, Li L, Kwak SS, Wang W. Overexpression of dehydroascorbate reductase gene IbDHAR1 improves the tolerance to abiotic stress in sweet potato. Transgenic Res 2024:10.1007/s11248-024-00408-7. [PMID: 39249190 DOI: 10.1007/s11248-024-00408-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 08/28/2024] [Indexed: 09/10/2024]
Abstract
Dehydroascorbate reductase (DHAR), an indispensable enzyme in the production of ascorbic acid (AsA) in plants, is vital for plant tolerance to various stresses. However, there is limited research on the stress tolerance functions of DHAR genes in sweet potato (Ipomoea batatas [L.] Lam). In this study, the full-length IbDHAR1 gene was cloned from the leaves of sweet potato cultivar Xu 18. The IbDHAR1 protein is speculated to be located in both the cytoplasm and the nucleus. As revealed by qRT-PCR, the relative expression level of IbDHAR1 in the proximal storage roots was much greater than in the other tissues, and could be upregulated by high-temperature, salinity, drought, and abscisic acid (ABA) stress. The results of pot experiments indicated that under high salinity and drought stress conditions, transgenic Arabidopsis and sweet potato plants exhibited decreases in H2O2 and MDA levels. Conversely, the levels of antioxidant enzymes APX, SOD, POD, and ACT, and the content of DHAR increased. Additionally, the ratio of AsA/DHA was greater in transgenic lines than in the wild type. The results showed that overexpression of IbDHAR1 intensified the ascorbic acid-glutathione cycle (AsA-GSH) and promoted the activity of the related antioxidant enzyme systems to improve plant stress tolerance and productivity.
Collapse
Affiliation(s)
- Qirui Cheng
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xuan Zou
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yuan Wang
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Zhe Yang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Xiangpo Qiu
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Sijie Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Yanxin Yang
- College of Basic Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Dongjing Yang
- Key Laboratory of Biology and Genetic Improvement of Sweetpotato, Ministry of Agriculture and Rural Affairs, Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, 221131, Jiangsu, China
| | - Ho Soo Kim
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea
| | - Xiaoyun Jia
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China
| | - Lingzhi Li
- College of Horticulture, Shanxi Agricultural University, Taigu, 030801, China
| | - Sang-Soo Kwak
- Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 125 Gwahak-ro, Daejeon, 34141, South Korea.
| | - Wenbin Wang
- College of Life Sciences, Shanxi Agricultural University, Taigu, 030801, China.
| |
Collapse
|
3
|
Wang C, Wang T, Wang X, Wang H, Dun X. Genetic Analysis of Vitamin C Content in Rapeseed Seedlings by the Major Gene Plus Polygene Mixed Effect Model. Curr Issues Mol Biol 2024; 46:9565-9575. [PMID: 39329920 PMCID: PMC11429590 DOI: 10.3390/cimb46090568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Rapeseed (Brassica napus L.) seedlings are rich in vitamin C (Vc), which is beneficial for humans. Understanding the genetic variance in Vc content has practical significance for the breeding of "oil-vegetable dual-purpose" rapeseed. In this study, the joint segregation analysis of a mixed genetic model of the major gene plus polygene was conducted on the Vc content in rapeseed seedlings. Six generations, including two parents, P1 (high Vc content) and P2 (low Vc content), F1, and the populations of F2, BC1P1, and BC1P2 from two crosses were investigated. Genetic analysis revealed that the genetic model MX2-A-AD was the most fitting genetic model, which indicates that Vc content is controlled by two additive major genes plus additive and dominance polygenes. In addition, the whole heritability in F2 and BC1P1 was higher than that in BC1P2. The largest coefficient of variation for Vc content appeared in the F2 generation. Therefore, for Vc content, the method of single cross recross or single backcross are suggested to transfer major genes, and the selection in F2 would be more efficient than that in other generations. Our findings provide a theoretical basis for the quantitative trait locus (QTL) mapping and breeding of Vc content in rapeseed seedlings.
Collapse
Affiliation(s)
- Chao Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Tao Wang
- Guizhou Rapeseed Institute, Guizhou Academy of Agricultural Science, Guiyang 550007, China
| | - Xinfa Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Hanzhong Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| | - Xiaoling Dun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Wuhan 430062, China
| |
Collapse
|
4
|
Pakravan-Charvadeh MR. Geographical patterns of implementing a government subsidy program: implications for health outcomes and nutrient intake in Iran. Front Public Health 2024; 12:1354099. [PMID: 38883201 PMCID: PMC11176555 DOI: 10.3389/fpubh.2024.1354099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024] Open
Abstract
Introduction The lack of access to a diverse and nutritious diet has significant health consequences worldwide. Governments have employed various policy mechanisms to ensure access, but their success varies. Method In this study, the impact of changes in food assistance policy on food prices and nutrient security in different provinces of Iran, a sanctioned country, was investigated using statistical and econometric models. Results Both the old and new policies were broad in scope, providing subsidized food or cash payments to the entire population. However, the implementation of these policies led to an increase in the market price of food items, resulting in a decline in the intake of essential nutrients. Particularly, the policy that shifted food assistance from commodity subsidies to direct cash payments reduced the price sensitivity of consumers. Consequently, the intake of key nutrients such as Vitamin C and Vitamin A, which are often constrained by their high prices, decreased. To improve the diets of marginalized populations, it is more effective to target subsidies towards specific nutrient groups and disadvantaged populations, with a particular focus on food groups that provide essential nutrients like Vitamin A and Vitamin C in rural areas of Iran. Discussion More targeted food assistance policies, tailored to the specific context of each province and income level, are more likely to yield positive nutritional outcomes with minimal impact on food prices.
Collapse
|
5
|
Naik B, Kumar V, Rizwanuddin S, Mishra S, Kumar V, Saris PEJ, Khanduri N, Kumar A, Pandey P, Gupta AK, Khan JM, Rustagi S. Biofortification as a solution for addressing nutrient deficiencies and malnutrition. Heliyon 2024; 10:e30595. [PMID: 38726166 PMCID: PMC11079288 DOI: 10.1016/j.heliyon.2024.e30595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
Malnutrition, defined as both undernutrition and overnutrition, is a major global health concern affecting millions of people. One possible way to address nutrient deficiency and combat malnutrition is through biofortification. A comprehensive review of the literature was conducted to explore the current state of biofortification research, including techniques, applications, effectiveness and challenges. Biofortification is a promising strategy for enhancing the nutritional condition of at-risk populations. Biofortified varieties of basic crops, including rice, wheat, maize and beans, with elevated amounts of vital micronutrients, such as iron, zinc, vitamin A and vitamin C, have been successfully developed using conventional and advanced technologies. Additionally, the ability to specifically modify crop genomes to improve their nutritional profiles has been made possible by recent developments in genetic engineering, such as CRISPR-Cas9 technology. The health conditions of people have been shown to improve and nutrient deficiencies were reduced when biofortified crops were grown. Particularly in environments with limited resources, biofortification showed considerable promise as a long-term and economical solution to nutrient shortages and malnutrition. To fully exploit the potential of biofortified crops to enhance public health and global nutrition, issues such as consumer acceptance, regulatory permitting and production and distribution scaling up need to be resolved. Collaboration among governments, researchers, non-governmental organizations and the private sector is essential to overcome these challenges and promote the widespread adoption of biofortification as a key part of global food security and nutrition strategies.
Collapse
Affiliation(s)
- Bindu Naik
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
- School of Agriculture, Graphic Hill University, Clement Town, Dehradun, Uttarakhand, India
| | - Vijay Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Sheikh Rizwanuddin
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Sadhna Mishra
- Faculty of Agricultural Sciences, GLA University, Mathura, India
| | - Vivek Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Per Erik Joakim Saris
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00100, Helsinki, Finland
| | - Naresh Khanduri
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Akhilesh Kumar
- Himalayan School of Biosciences, Swami Rama Himalayan University, Swami Rama Nagar, Jolly Grant, Dehradun, 248016, Uttarakhand, India
| | - Piyush Pandey
- Soil and Environment Microbiology Laboratory, Department of Microbiology, Assam University, Silchur, 788011, Assam, India
| | - Arun Kumar Gupta
- Department of Food Science and Technology, Graphic Era (Deemed to Be) University, Bell Road, Clement Town, Dehradun, 248002, Uttarakhand, India
| | - Javed Masood Khan
- Department of Food Science and Nutrition, Faculty of Food and Agricultural Sciences, King Saud University, 2460, Riyadh, 11451, Saudi Arabia
| | - Sarvesh Rustagi
- Department of Food Technology, Uttaranchal University, Dehradun, 248007, Uttarakhand, India
| |
Collapse
|
6
|
Quiñones CO, Gesto-Borroto R, Wilson RV, Hernández-Madrigal SV, Lorence A. Alternative pathways leading to ascorbate biosynthesis in plants: lessons from the last 25 years. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2644-2663. [PMID: 38488689 DOI: 10.1093/jxb/erae120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/14/2024] [Indexed: 05/04/2024]
Abstract
l-Ascorbic acid (AsA) is an antioxidant with important roles in plant stress physiology, growth, and development. AsA also plays an essential role in human health, preventing scurvy. Humans do not synthesize AsA, which needs to be supplied via a diet rich in fresh produce. Research efforts have provided progress in the elucidation of a complex metabolic network with at least four routes leading to AsA formation in plants. In this review, three alternative pathways, namely the d-galacturonate, the l-gulose, and the myo-inositol pathways, are presented with the supporting evidence of their operation in multiple plant species. We critically discuss feeding studies using precursors and their conversion to AsA in plant organs, and research where the expression of key genes encoding enzymes involved in the alternative pathways showed >100% AsA content increase in the transgenics and in many cases accompanied by enhanced tolerance to multiple stresses. We propose that the alternative pathways are vital in AsA production in response to stressful conditions and to compensate in cases where the flux through the d-mannose/l-galactose pathway is reduced. The genes and enzymes that have been characterized so far in these alternative pathways represent important tools that are being used to develop more climate-tolerant crops.
Collapse
Affiliation(s)
- Cherryl O Quiñones
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Reinier Gesto-Borroto
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Rachael V Wilson
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Sara V Hernández-Madrigal
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
| | - Argelia Lorence
- Arkansas Biosciences Institute, Arkansas State University, PO Box 639, State University, AR 72467, USA
- Department of Chemistry and Physics, Arkansas State University, PO Box 419, State University, AR 72467, USA
| |
Collapse
|
7
|
Eldakkak E, El-Shourbagy M. Effect of polyamine precursors and antioxidants on growth and metabolism of salt-stressed barley. F1000Res 2024; 12:262. [PMID: 39479231 PMCID: PMC11522708 DOI: 10.12688/f1000research.130979.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 11/02/2024] Open
Abstract
Background Salt stress, a significant environmental problem was studied in barley cultivars Giza 124 and Giza 119 at various stages (seedling, pre-flowering, and yield). This study aimed to investigate the impact of salt stress on these cultivars, examine the effects of polyamine precursors (arginine, methionine, and ornithine) on their response to salt stress, and assess the efficacy of antioxidants (glutathione and ascorbic acid) in alleviating the harmful effects of salt stress on barley plants. Methods Barley grains were germinated and subjected to salinity stress, with subsequent treatment using glutathione, ascorbic acid, or an amino acid mixture. Growth criteria, photosynthetic pigments, metabolites, antioxidant enzymes, mineral content, and polyamines were analyzed. Results The impact of 100Mm NaCl, with or without glutathione, ascorbic acid, or amino acid mixtures, on various physiological parameters in G124 and G119 were investigated. The levels of chlorophyll a, chlorophyll b, and carotenoids significantly varied under different treatments. For instance, chlorophyll a in G 124 exhibited a 23% reduction under salt stress compared to the control, while the addition of glutathione mitigated this effect, resulting in a 17% increase compared to the NaCl treatment. Similar trends were observed for chlorophyll b and carotenoids. At the yield stage, both cultivars demonstrated a significant decrease in the the weight of grains per plant under salinity, which was alleviated by the addition of ascorbic acid, glutathione, or amino acid mixtures. Conclusion The application of glutathione, ascorbic acid, or an amino acid mixture mitigated the adverse effects of salt stress on various parameters. The results highlight the potentail of these compounds in enhancing plant tolerance to salinity stress and offer insights into the physiological response of barley cultivars under adverse conditions.
Collapse
Affiliation(s)
- Eman Eldakkak
- Botany Department, Faculty of Science, Tanta University, Tanta, Gharbia Governorate, Egypt
| | - Mohamed El-Shourbagy
- Botany Department, Faculty of Science, Tanta University, Tanta, Gharbia Governorate, Egypt
| |
Collapse
|
8
|
Wang Y, Diao S, Li H, Ye L, Suo Y, Zheng Y, Sun P, Han W, Fu J. Comparative Metabolomic and Transcriptomic Analyses Reveal Distinct Ascorbic Acid (AsA) Accumulation Patterns between PCA and PCNA Persimmon Developing Fruit. Int J Mol Sci 2023; 24:15362. [PMID: 37895041 PMCID: PMC10607040 DOI: 10.3390/ijms242015362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/07/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
Persimmon fruit has a high nutritional value and significantly varies between pollination-constant astringent (PCA) and pollination-constant non-astringent (PCNA) persimmons. The astringency type affects sugar, flavonoids, and tannin accumulation and is well known in persimmon fruit. However, the impact of the fruit astringency type on ascorbic acid (AsA) accumulation is limited. In this study, typical PCA varieties ('Huojing' and 'Zhongshi5') and PCNA varieties ('Yohou' and 'Jiro') of persimmon fruit were sampled at four developing stages (S1-S4) to provide valuable information on AsA content variation in PCA and PCNA persimmon. Persimmon fruit is rich in ascorbic acid; the AsA content of the four varieties 'Zhongshi5', 'Huojing', 'Jiro', and 'Youhou' mature fruit reached 104.49, 48.69, 69.69, and 47.48 mg/100 g. Fruit of the same astringency type persimmon showed a similar AsA accumulation pattern. AsA content was significantly higher in PCA than PCNA fruit at S1-S3. The initial KEGG analysis of metabolites showed that galactose metabolism is the major biosynthetic pathway of AsA in persimmon fruit. There were significant differences in galactose pathway-related metabolite content in developing PCA and PCNA fruit, such as Lactose, D-Tagatose, and D-Sorbitol content in PCA being higher than that of PCNA. Combined gene expression and WGCNA analyses showed that the expression of the GME (evm.TU.contig4144.37) gene was higher in PCA-type than in PCNA-type fruit in S1-S3 and exhibited the highest correlation with AsA content (r = 690 **, p < 0.01). Four hub genes, including the DNA methylation gene, methyltransferase gene, F-box, and Actin-like Protein, were identified as potential regulators of the GME gene. These results provide basic information on how astringency types affect AsA accumulation and will provide valuable information for further investigation on AsA content variation in persimmon fruit.
Collapse
Affiliation(s)
- Yiru Wang
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Songfeng Diao
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Huawei Li
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Lingshuai Ye
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
- Research Institute of Fast-Growing Trees, Chinese Academy of Forestry, Zhanjiang 524022, China
| | - Yujing Suo
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Yanhao Zheng
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Peng Sun
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Weijuan Han
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| | - Jianmin Fu
- Research Institute of Non-Timber Forestry, Chinese Academy of Forestry, Zhengzhou 450003, China; (Y.W.); (S.D.); (H.L.); (L.Y.); (Y.S.); (Y.Z.); (P.S.)
| |
Collapse
|
9
|
Celi GEA, Gratão PL, Lanza MGDB, Reis ARD. Physiological and biochemical roles of ascorbic acid on mitigation of abiotic stresses in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 202:107970. [PMID: 37625254 DOI: 10.1016/j.plaphy.2023.107970] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023]
Abstract
Under conditions of abiotic stress several physiological and biochemical processes in plants can be modified. The production of reactive oxygen species (ROS) is toxic at high concentrations and promotes RNA, DNA and plant cell membrane degradation. Plants have enzymatic and non-enzymatic adaptation mechanisms to act against ROS detoxification. Ascorbic acid (AsA) is the non-enzymatic compound essential for several biological functions, which acts in the elimination and balance of ROS production and with the potential to promote several physiological functions in plants, such as the photosynthetic process. For plant development, AsA plays an important role in cell division, osmotic adjustment, hormone biosynthesis, and as an enzymatic cofactor. In this review, the redox reactions, biosynthetic pathways, and the physiological and biochemical functions of AsA against abiotic stress in plants are discussed. The concentration of AsA in plants can vary between species and depend on the biosynthetic pathways d-mannose/l-galactose, d-galacturonate, euglenids, and d-glucuronate. Although the endogenous levels of AsA in plants are used in large amounts in cell metabolism, the exogenous application of AsA further increases these endogenous levels to promote the antioxidant system and ameliorate the effects produced by abiotic stress. Foliar application of AsA promotes antioxidant metabolism in plants subjected to climate change conditions, also allowing the production of foods with higher nutritional quality and food safety, given the fact that AsA is biologically essential in the human diet.
Collapse
Affiliation(s)
- Gabriela Eugenia Ajila Celi
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Postal Code 14884-900, Jaboticabal, SP, Brazil
| | - Priscila Lupino Gratão
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Postal Code 14884-900, Jaboticabal, SP, Brazil
| | - Maria Gabriela Dantas Bereta Lanza
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Via de Acesso Prof. Paulo Donato Castellane s/n, Postal Code 14884-900, Jaboticabal, SP, Brazil
| | - André Rodrigues Dos Reis
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP), Rua Domingos da Costa Lopes 780, Postal Code 17602-496, Tupã, SP, Brazil.
| |
Collapse
|
10
|
Nazir A, Wahid A. Foliar spray of stress protective chemicals alleviates cobalt toxicity by improving root antioxidant defense in maize (Zea mays). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:81288-81302. [PMID: 37314561 DOI: 10.1007/s11356-023-28132-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Cobalt (Co2+) is a beneficial microelement for plants but toxic to metabolism in higher amounts. This study determined the influence of sublethal Co2+ level (0.5 mM) on the growth of maize (Zea mays L.) hybrids; Hycorn 11 plus (Co2+ sensitive) and P-1429 (Co2+ tolerant) and its alleviation with foliar spray of pre-optimized levels of stress protective chemicals (SPCs), i.e., salicylic acid (SA, 0.5 mM), thiourea (TU, 1.0 mM), and ascorbic acid (AsA, 0.5 mM) applied at seedling, vegetative, and late vegetative stages. Plants were harvested at early vegetative, late vegetative, and silking stages. Co2+ stress caused a decrease in shoot and root length, dry weight, leaf area, and culm diameter, reduced the activities of enzymatic antioxidants and concentrations of AsA and soluble phenolics more in root than shoot, but P-1429 was more tolerant of Co2+ than Hycorn 11 plus. SPCs spray alleviated oxidative damage by enhancing the antioxidant activity, AsA and soluble phenolics, sulfate-S and nitrate-N contents, which were significantly increased in roots than in shoots; P-1429 displayed better response than Hycorn 11 plus. Principal component analysis and correlation matrix revealed the profound roles of SPCs spray in improving Co2+ resistance in root leading to robust growth of hybrids. AsA was highly promising in reducing Co2+ toxicity while vegetative and silking stages were more sensitive. Results revealed that after translocation to root, the foliar-applied SPCs had individualistic modes of action in mitigating Co2+ toxicity on roots. In crux, the metabolism and phloem transport of the SPCs from shoot to root are plausible mechanism for Co2+ tolerance in maize hybrids.
Collapse
Affiliation(s)
- Atia Nazir
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan
| | - Abdul Wahid
- Department of Botany, University of Agriculture, Faisalabad, 38040, Pakistan.
| |
Collapse
|
11
|
Roychowdhury R, Das SP, Gupta A, Parihar P, Chandrasekhar K, Sarker U, Kumar A, Ramrao DP, Sudhakar C. Multi-Omics Pipeline and Omics-Integration Approach to Decipher Plant's Abiotic Stress Tolerance Responses. Genes (Basel) 2023; 14:1281. [PMID: 37372461 PMCID: PMC10298225 DOI: 10.3390/genes14061281] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The present day's ongoing global warming and climate change adversely affect plants through imposing environmental (abiotic) stresses and disease pressure. The major abiotic factors such as drought, heat, cold, salinity, etc., hamper a plant's innate growth and development, resulting in reduced yield and quality, with the possibility of undesired traits. In the 21st century, the advent of high-throughput sequencing tools, state-of-the-art biotechnological techniques and bioinformatic analyzing pipelines led to the easy characterization of plant traits for abiotic stress response and tolerance mechanisms by applying the 'omics' toolbox. Panomics pipeline including genomics, transcriptomics, proteomics, metabolomics, epigenomics, proteogenomics, interactomics, ionomics, phenomics, etc., have become very handy nowadays. This is important to produce climate-smart future crops with a proper understanding of the molecular mechanisms of abiotic stress responses by the plant's genes, transcripts, proteins, epigenome, cellular metabolic circuits and resultant phenotype. Instead of mono-omics, two or more (hence 'multi-omics') integrated-omics approaches can decipher the plant's abiotic stress tolerance response very well. Multi-omics-characterized plants can be used as potent genetic resources to incorporate into the future breeding program. For the practical utility of crop improvement, multi-omics approaches for particular abiotic stress tolerance can be combined with genome-assisted breeding (GAB) by being pyramided with improved crop yield, food quality and associated agronomic traits and can open a new era of omics-assisted breeding. Thus, multi-omics pipelines together are able to decipher molecular processes, biomarkers, targets for genetic engineering, regulatory networks and precision agriculture solutions for a crop's variable abiotic stress tolerance to ensure food security under changing environmental circumstances.
Collapse
Affiliation(s)
- Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)—The Volcani Institute, Rishon Lezion 7505101, Israel
| | - Soumya Prakash Das
- School of Bioscience, Seacom Skills University, Bolpur 731236, West Bengal, India
| | - Amber Gupta
- Dr. Vikram Sarabhai Institute of Cell and Molecular Biology, Faculty of Science, Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat, India
| | - Parul Parihar
- Department of Biotechnology and Bioscience, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India
| | - Kottakota Chandrasekhar
- Department of Plant Biochemistry and Biotechnology, Sri Krishnadevaraya College of Agricultural Sciences (SKCAS), Affiliated to Acharya N.G. Ranga Agricultural University (ANGRAU), Guntur 522034, Andhra Pradesh, India
| | - Umakanta Sarker
- Department of Genetics and Plant Breeding, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh
| | - Ajay Kumar
- Department of Botany, Maharshi Vishwamitra (M.V.) College, Buxar 802102, Bihar, India
| | - Devade Pandurang Ramrao
- Department of Biotechnology, Mizoram University, Pachhunga University College Campus, Aizawl 796001, Mizoram, India
| | - Chinta Sudhakar
- Plant Molecular Biology Laboratory, Department of Botany, Sri Krishnadevaraya University, Anantapur 515003, Andhra Pradesh, India
| |
Collapse
|
12
|
Chaturvedi S, Thakur N, Khan S, Sardar MK, Jangra A, Tiwari S. Overexpression of banana GDP-L-galactose phosphorylase (GGP) modulates the biosynthesis of ascorbic acid in Arabidopsis thaliana. Int J Biol Macromol 2023; 237:124124. [PMID: 36966859 DOI: 10.1016/j.ijbiomac.2023.124124] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
l-Ascorbic acid (AsA) is a potent antioxidant and essential micronutrient for the growth and development of plants and animals. AsA is predominantly synthesized by the Smirnoff-Wheeler (SW) pathway in plants where the GDP-L-galactose phosphorylase (GGP) gene encodes the rate-limiting step. In the present study, AsA was estimated in twelve banana cultivars, where Nendran carried the highest (17.2 mg/100 g) amount of AsA in ripe fruit pulp. Five GGP genes were identified from the banana genome database, and they were located at chromosome 6 (4 MaGGPs) and chromosome 10 (1 MaGGP). Based on in-silico analysis, three potential MaGGP genes were isolated from the cultivar Nendran and subsequently overexpressed in Arabidopsis thaliana. Significant enhancement in AsA (1.52 to 2.20 fold) level was noted in the leaves of all three MaGGPs overexpressing lines as compared to non-transformed control plants. Among all, MaGGP2 emerged as a potential candidate for AsA biofortification in plants. Further, the complementation assay of Arabidopsis thaliana vtc-5-1 and vtc-5-2 mutants with MaGGP genes overcome the AsA deficiency that showed improved plant growth as compared to non-transformed control plants. This study lends strong affirmation towards development of AsA biofortified plants, particularly the staples that sustain the personages in developing countries.
Collapse
|
13
|
Hesari N, Szegő A, Mirmazloum I, Pónya Z, Kiss-Bába E, Kolozs H, Gyöngyik M, Vasas D, Papp I. High-Nitrate-Supply-Induced Transcriptional Upregulation of Ascorbic Acid Biosynthetic and Recycling Pathways in Cucumber. PLANTS (BASEL, SWITZERLAND) 2023; 12:1292. [PMID: 36986979 PMCID: PMC10051573 DOI: 10.3390/plants12061292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 06/19/2023]
Abstract
Nowadays open field and protected vegetable cultivation practices require and use genotypes which are precisely tailored to their intended growth environments. Variability of this kind provides a rich source of material to uncover molecular mechanisms supporting the necessarily divergent physiological traits. In this study, typical field-optimized and glasshouse-cultivated cucumber F1 hybrids were investigated, and displayed slower growth ('Joker') and faster growth ('Oitol') in seedlings. Antioxidant capacity was lower in 'Joker' and higher in 'Oitol', pointing to a potential redox regulation of growth. The growth response of seedlings to paraquat treatment indicated stronger oxidative stress tolerance in the fast-growing 'Oitol'. To test whether protection against nitrate-induced oxidative stress was also different, fertigation with increasing potassium nitrate content was applied. This treatment did not change growth but decreased the antioxidant capacities of both hybrids. Bioluminescence emission revealed stronger lipid peroxidation triggered by high nitrate fertigation in the leaves of 'Joker' seedlings. To explore the background of the more effective antioxidant protection of 'Oitol', levels of ascorbic acid (AsA), as well as transcriptional regulation of relevant genes of the Smirnoff-Wheeler biosynthetic pathway and ascorbate recycling, were investigated. Genes related to AsA biosynthesis were strongly upregulated at an elevated nitrate supply in 'Oitol' leaves only, but this was only reflected in a small increase in total AsA content. High nitrate provision also triggered expression of ascorbate-glutathion cycle genes with stronger or exclusive induction in 'Oitol'. AsA/dehydro-ascorbate ratios were higher in 'Oitol' for all treatments, with a more pronounced difference at high nitrate levels. Despite strong transcriptional upregulation of ascorbate peroxidase genes (APX) in 'Oitol', APX activity only increased significantly in 'Joker'. This suggests potential inhibition of APX enzyme activity specifically in 'Oitol' at a high nitrate supply. Our results uncover an unexpected variability in redox stress management in cucumbers, including nitrate inducibility of AsA biosynthetic and recycling pathways in certain genotypes. Possible connections between AsA biosynthesis, recycling and nitro-oxidative stress protection are discussed. Cucumber hybrids emerge as an excellent model system for studying the regulation of AsA metabolism and the roles of AsA in growth and stress tolerance.
Collapse
Affiliation(s)
- Neda Hesari
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Anita Szegő
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Iman Mirmazloum
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Zsolt Pónya
- Division of Applied Food Crop Production, Department of Agronomy, Institute of Agronomy, Hungarian University of Agricultural and Life Sciences, Guba Sándor Str. 40, 7400 Kaposvár, Hungary
- Agricultural and Food Research Centre, Széchenyi István University, Egyetem tér 1, 9026 Győr, Hungary
| | - Erzsébet Kiss-Bába
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Henriett Kolozs
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Márta Gyöngyik
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - Dominika Vasas
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| | - István Papp
- Department of Plant Physiology and Plant Ecology, Institute of Agronomy, Hungarian University of Agriculture and Life Sciences, Ménesi Str. 44, 1118 Budapest, Hungary
| |
Collapse
|
14
|
Zhou H, Yu L, Liu S, Zhu A, Yang Y, Chen C, Yang A, Liu L, Yu F. Transcriptome comparison analyses in UV-B induced AsA accumulation of Lactuca sativa L. BMC Genomics 2023; 24:61. [PMID: 36737693 PMCID: PMC9896689 DOI: 10.1186/s12864-023-09133-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 01/13/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Lettuce (Lactuca sativa L.) cultivated in facilities display low vitamin C (L-ascorbic acid (AsA)) contents which require augmentation. Although UV-B irradiation increases the accumulation of AsA in crops, processes underlying the biosynthesis as well as metabolism of AsA induced by UV-B in lettuce remain unclear. RESULTS UV-B treatment increased the AsA content in lettuce, compared with that in the untreated control. UV-B treatment significantly increased AsA accumulation in a dose-dependent manner up until a certain dose.. Based on optimization experiments, three UV-B dose treatments, no UV-B (C), medium dose 7.2 KJ·m- 2·d- 1 (U1), and high dose 12.96 KJ·m- 2·d- 1 (U2), were selected for transcriptome sequencing (RNA-Seq) in this study. The results showed that C and U1 clustered in one category while U2 clustered in another, suggesting that the effect exerted on AsA by UV-B was dose dependent. MIOX gene in the myo-inositol pathway and APX gene in the recycling pathway in U2 were significantly different from the other two treatments, which was consistent with AsA changes seen in the three treatments, indicating that AsA accumulation caused by UV-B may be associated with these two genes in lettuce. UVR8 and HY5 were not significantly different expressed under UV-B irradiation, however, the genes involved in plant growth hormones and defence hormones significantly decreased and increased in U2, respectively, suggesting that high UV-B dose may regulate photomorphogenesis and response to stress via hormone regulatory pathways, although such regulation was independent of the UVR8 pathway. CONCLUSIONS Our results demonstrated that studying the application of UV-B irradiation may enhance our understanding of the response of plant growth and AsA metabolism-related genes to UV-B stress, with particular reference to lettuce.
Collapse
Affiliation(s)
- Hua Zhou
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lei Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- College of Forestry, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Shujuan Liu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Anfan Zhu
- Jiangxi Agricultural Technology Extension Center, Nanchang, 330046, China
| | - Yanfang Yang
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of State Forestry Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Caihui Chen
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Aihong Yang
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Lipan Liu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Faxin Yu
- The Key Laboratory of Horticultural Plant Genetic and Improvement of Jiangxi Province, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China.
| |
Collapse
|
15
|
Advances in Novel Animal Vitamin C Biosynthesis Pathways and the Role of Prokaryote-Based Inferences to Understand Their Origin. Genes (Basel) 2022; 13:genes13101917. [PMID: 36292802 PMCID: PMC9602106 DOI: 10.3390/genes13101917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/04/2022] Open
Abstract
Vitamin C (VC) is an essential nutrient required for the optimal function and development of many organisms. VC has been studied for many decades, and still today, the characterization of its functions is a dynamic scientific field, mainly because of its commercial and therapeutic applications. In this review, we discuss, in a comparative way, the increasing evidence for alternative VC synthesis pathways in insects and nematodes, and the potential of myo-inositol as a possible substrate for this metabolic process in metazoans. Methodological approaches that may be useful for the future characterization of the VC synthesis pathways of Caenorhabditis elegans and Drosophila melanogaster are here discussed. We also summarize the current distribution of the eukaryote aldonolactone oxidoreductases gene lineages, while highlighting the added value of studies on prokaryote species that are likely able to synthesize VC for both the characterization of novel VC synthesis pathways and inferences on the complex evolutionary history of such pathways. Such work may help improve the industrial production of VC.
Collapse
|