1
|
Dong QJ, Xu XY, Fan CX, Xiao JP. Transcriptome and metabolome analyses reveal chlorogenic acid accumulation in pigmented potatoes at different altitudes. Genomics 2024; 116:110883. [PMID: 38857813 DOI: 10.1016/j.ygeno.2024.110883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/12/2024]
Abstract
Pigmented potato tubers are abundant in chlorogenic acids (CGAs), a metabolite with pharmacological activity. This article comprehensively analyzed the transcriptome and metabolome of pigmented potato Huaxingyangyu and Jianchuanhong at four altitudes of 1800 m, 2300 m, 2800 m, and 3300 m. A total of 20 CGAs and intermediate CGA compounds were identified, including 3-o-caffeoylquinic acid, 4-o-caffeoylquinic acid, and 5-o-caffeoylquinic acid. CGA contents in Huaxinyangyu and Jianchuanhong reached its maximum at an altitude of 2800 m and slightly decreased at 3300 m. 48 candidate genes related to the biosynthesis pathway of CGAs were screened through transcriptome analysis. Weighted gene co-expression network analysis (WGCNA) identified that the structural genes of phenylalanine deaminase (PAL), coumarate-3 hydroxylase (C3H), cinnamic acid 4-hydroxylase (C4H) and the transcription factors of MYB and bHLH co-regulate CGA biosynthesis. The results of this study provide valuable information to reveal the changes in CGA components in pigmented potato at different altitudes.
Collapse
Affiliation(s)
- Qiu-Ju Dong
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Xiao-Yu Xu
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Cai-Xia Fan
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China
| | - Ji-Ping Xiao
- College of Agronomy and Biotechnology, Yunnan Agricultural University, No.95 Jinhei Road, Panlong District, Kunming City, Yunnan 650201, China.
| |
Collapse
|
2
|
Luo Q, Chen P, Zong J, Gao J, Qin R, Wu C, Lv Q, Xu Y, Zhao T, Fu Y. Integrated transcriptomic and CGAs analysis revealed IbGLK1 is a key transcription factor for chlorogenic acid accumulation in sweetpotato (Ipomoea batatas [L.] Lam.) blades. Int J Biol Macromol 2024; 266:131045. [PMID: 38547942 DOI: 10.1016/j.ijbiomac.2024.131045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 03/01/2024] [Accepted: 03/19/2024] [Indexed: 04/02/2024]
Abstract
Sweetpotato blades are rich in the functional secondary metabolite chlorogenic acid (CGA), which deepen potential for effective utilization of the blade in industry. In this study, we evaluated the type and content of CGA in the blades of 16 sweetpotato genotypes and analyzed the correlation between CGA content and antioxidant capacity. Then we isolated and characterized IbGLK1, a GARP-type transcription factor, by comparative transcriptome analysis. A subcellular localization assay indicated that IbGLK1 is located in the nucleus. Overexpression and silencing of IbGLK1 in sweetpotato blade resulted in a 0.90-fold increase and 1.84-fold decrease, respectively, in CGA content compared to the control. Yeast one-hybrid and dual-luciferase assays showed that IbGLK1 binds and activates the promoters of IbHCT, IbHQT, IbC4H, and IbUGCT, resulting in the promotion of CGA biosynthesis. In conclusion, our study provides insights into a high-quality gene for the regulation of CGA metabolism and germplasm resources for breeding sweetpotato.
Collapse
Affiliation(s)
- Qingqing Luo
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Peitao Chen
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jikai Zong
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Jilong Gao
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Ruihua Qin
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Chunli Wu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Qina Lv
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Yuanjiang Xu
- Chongqing Research Institute of Traditional Chinese Medicine, Chongqing 400065, PR China
| | - Tengfei Zhao
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China
| | - Yufan Fu
- Engineering and Technology Research Center for Sweetpotato of Chongqing, School of Life Science, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
3
|
Ahmed S, Khan MSS, Xue S, Islam F, Ikram AU, Abdullah M, Liu S, Tappiban P, Chen J. A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato. HORTICULTURE RESEARCH 2024; 11:uhae014. [PMID: 38464477 PMCID: PMC10923648 DOI: 10.1093/hr/uhae014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/09/2024] [Indexed: 03/12/2024]
Abstract
Biotic and abiotic stresses negatively affect the yield and overall plant developmental process, thus causing substantial losses in global sweet potato production. To cope with stresses, sweet potato has evolved numerous strategies to tackle ever-changing surroundings and biological and environmental conditions. The invention of modern sequencing technology and the latest data processing and analysis instruments has paved the way to integrate biological information from different approaches and helps to understand plant system biology more precisely. The advancement in omics technologies has accumulated and provided a great source of information at all levels (genome, transcript, protein, and metabolite) under stressful conditions. These latest molecular tools facilitate us to understand better the plant's responses to stress signaling and help to process/integrate the biological information encoded within the biological system of plants. This review briefly addresses utilizing the latest omics strategies for deciphering the adaptive mechanisms for sweet potatoes' biotic and abiotic stress tolerance via functional genomics, transcriptomics, proteomics, and metabolomics. This information also provides a powerful reference to understand the complex, well-coordinated stress signaling genetic regulatory networks and better comprehend the plant phenotypic responses at the cellular/molecular level under various environmental stimuli, thus accelerating the design of stress-resilient sweet potato via the latest genetic engineering approaches.
Collapse
Affiliation(s)
- Sulaiman Ahmed
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | | | - Songlei Xue
- Jiangsu Coastal Area Institute of Agricultural Sciences, Yancheng 224000, China
| | - Faisal Islam
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Aziz Ul Ikram
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Abdullah
- Department of Plant Science, School of Agriculture and Biology, Shanghai Jiao Tong University, Minghang, 200240, Shanghai, China
| | - Shan Liu
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| | - Piengtawan Tappiban
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, 73170, Thailand
| | - Jian Chen
- International Genome Center, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|