1
|
Shelton GD, Mickelson JR, Friedenberg SG, Cullen JN, Mehra JM, Guo LT, Minor KM. Multi-Allelic Mitochondrial DNA Deletions in an Adult Dog with Chronic Weakness, Exercise Intolerance and Lactic Acidemia. Animals (Basel) 2024; 14:1946. [PMID: 38998058 PMCID: PMC11240360 DOI: 10.3390/ani14131946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 07/14/2024] Open
Abstract
(1) Background: An adult dog was presented to a board-certified veterinary neurologist for evaluation of chronic weakness, exercise intolerance and lactic acidemia. (2) Methods: A mitochondrial myopathy was diagnosed based on the histological and histochemical phenotype of numerous COX-negative muscle fibers. Whole-genome sequencing established the presence of multiple extended deletions in the mitochondrial DNA (mtDNA), with the highest prevalence between the 1-11 kb positions of the approximately 16 kb mitochondrial chromosome. Such findings are typically suggestive of an underlying nuclear genome variant affecting mitochondrial replication, repair, or metabolism. (3) Results: Numerous variants in the nuclear genome unique to the case were identified in the whole-genome sequence data, and one, the insertion of a DYNLT1 retrogene, whose parent gene is a regulator of the mitochondrial voltage-dependent anion channel (VDAC), was considered a plausible causal variant. (4) Conclusions: Here, we add mitochondrial deletion disorders to the spectrum of myopathies affecting adult dogs.
Collapse
Affiliation(s)
- G Diane Shelton
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | - James R Mickelson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Steven G Friedenberg
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jonah N Cullen
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| | - Jaya M Mehra
- VCA Animal Care Center of Sonoma County, Rohnert Park, CA 94928, USA
| | - Ling T Guo
- Department of Pathology, School of Medicine, University of California San Diego, La Jolla, CA 92093-0709, USA
| | - Katie M Minor
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
2
|
Exercise Testing, Physical Training and Fatigue in Patients with Mitochondrial Myopathy Related to mtDNA Mutations. J Clin Med 2021; 10:jcm10081796. [PMID: 33924201 PMCID: PMC8074604 DOI: 10.3390/jcm10081796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 01/05/2023] Open
Abstract
Mutations in mitochondrial DNA (mtDNA) cause disruption of the oxidative phosphorylation chain and impair energy production in cells throughout the human body. Primary mitochondrial disorders due to mtDNA mutations can present with symptoms from adult-onset mono-organ affection to death in infancy due to multi-organ involvement. The heterogeneous phenotypes that patients with a mutation of mtDNA can present with are thought, at least to some extent, to be a result of differences in mtDNA mutation load among patients and even among tissues in the individual. The most common symptom in patients with mitochondrial myopathy (MM) is exercise intolerance. Since mitochondrial function can be assessed directly in skeletal muscle, exercise studies can be used to elucidate the physiological consequences of defective mitochondria due to mtDNA mutations. Moreover, exercise tests have been developed for diagnostic purposes for mitochondrial myopathy. In this review, we present the rationale for exercise testing of patients with MM due to mutations in mtDNA, evaluate the diagnostic yield of exercise tests for MM and touch upon how exercise tests can be used as tools for follow-up to assess disease course or effects of treatment interventions.
Collapse
|
3
|
Noury JB, Zagnoli F, Petit F, Le Maréchal C, Marcorelles P, Rannou F. The ratio of maximal handgrip force and maximal cycloergometry power as a diagnostic tool to screen for metabolic myopathies. Sci Rep 2020; 10:8865. [PMID: 32483371 PMCID: PMC7264313 DOI: 10.1038/s41598-020-65797-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 04/28/2020] [Indexed: 11/09/2022] Open
Abstract
Metabolic myopathies comprise a diverse group of inborn errors of intermediary metabolism affecting skeletal muscle, and often present clinically as an inability to perform normal exercise. Our aim was to use the maximal mechanical performances achieved during two functional tests, isometric handgrip test and cycloergometer, to identify metabolic myopathies among patients consulting for exercise-induced myalgia. Eighty-three patients with exercise-induced myalgia and intolerance were evaluated, with twenty-three of them having a metabolic myopathy (McArdle, n = 9; complete myoadenylate deaminase deficiency, n = 10; respiratory chain deficiency, n = 4) and sixty patients with non-metabolic myalgia. In all patients, maximal power (MP) was determined during a progressive exercise test on a cycloergometer and maximal voluntary contraction force (MVC) was assessed using a handgrip dynamometer. The ratio between percent-predicted values for MVC and MP was calculated for each subject (MVC%pred:MP%pred ratio). In patients with metabolic myopathy, the MVC%pred:MP%pred ratio was significantly higher compared to non-metabolic myalgia (1.54 ± 0.62 vs. 0.92 ± 0.25; p < 0.0001). ROC analysis of MVC%pred:MP%pred ratio showed AUC of 0.843 (0.758–0.927, 95% CI) for differentiating metabolic myopathies against non-metabolic myalgia. The optimum cutoff was taken as 1.30 (se = 69.6%, sp = 96.7%), with a corresponding diagnostic odd ratio of 66.3 (12.5–350.7, 95% CI). For a pretest probability of 15% in our tertiary reference center, the posttest probability for metabolic myopathy is 78.6% when MVC%pred:MP%pred ratio is above 1.3. In conclusion, the MVC%pred:MP%pred ratio is appropriate as a screening test to distinguish metabolic myopathies from non-metabolic myalgia.
Collapse
Affiliation(s)
- Jean-Baptiste Noury
- Neurology Department, Neuromuscular Center, CHRU Cavale Blanche, Brest, F-29609, France
| | - Fabien Zagnoli
- Neurology Department, Neuromuscular Center, CHRU Cavale Blanche, Brest, F-29609, France
| | - François Petit
- Molecular Genetics Department, APHP - GH Antoine Béclère, Paris, F-92140, France
| | | | - Pascale Marcorelles
- Pathology Department-EA 4685 LNB, Neuromuscular Center, CHRU Morvan, Brest, F-29609, France
| | - Fabrice Rannou
- Department of Sport Medicine and Functional Explorations-CRNH Auvergne, Clermont-Ferrand University Hospital, G. Montpied Hospital, Clermont-Ferrand, F-63000, France.
| |
Collapse
|
4
|
Chandrasekaran B, Fernandes S, Davis F. Science of sleep and sports performance – a scoping review. Sci Sports 2020. [DOI: 10.1016/j.scispo.2019.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Noury JB, Zagnoli F, Carré JL, Drouillard I, Petit F, Le Maréchal C, Marcorelles P, Rannou F. Exercise testing-based algorithms to diagnose McArdle disease and MAD defects. Acta Neurol Scand 2018; 138:301-307. [PMID: 29749052 DOI: 10.1111/ane.12957] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/18/2018] [Indexed: 11/26/2022]
Abstract
OBJECTIVE As exercise intolerance and exercise-induced myalgia are commonly encountered in metabolic myopathies, functional screening tests are commonly used during the diagnostic work-up. Our objective was to evaluate the accuracy of isometric handgrip test (IHT) and progressive cycle ergometer test (PCET) to identify McArdle disease and myoadenylate deaminase (MAD) deficiency and to propose diagnostic algorithms using exercise-induced lactate and ammonia variations. METHODS A prospective sample of 46 patients underwent an IHT and a PCET as part of their exercise-induced myalgia and intolerance evaluation. The two diagnostics tests were compared against the results of muscle biopsy and/or the presence of mutations in PYGM. A total of 6 patients had McArdle disease, 5 a complete MAD deficiency (MAD absent), 12 a partial MAD deficiency, and 23 patients had normal muscle biopsy and acylcarnitine profile (disease control). RESULTS The two functional tests could diagnose all McArdle patients with statistical significance, combining a low lactate variation (IHT: <1 mmol/L, AUC = 0.963, P < .0001; PCET: <1 mmol/L, AUC = 0.990, P < .0001) and a large ammonia variation (IHT: >100 μmol/L, AUC = 0.944, P = .0005; PCET: >20 μmol/L, AUC = 1). PCET was superior to IHT for MAD absent diagnosis, combining very low ammonia variation (<10 μmol/L, AUC = 0.910, P < .0001) and moderate lactate variation (>1 mmol/L). CONCLUSIONS PCET-based decision tree was more accurate than IHT, with respective generalized squared correlations of 0.796 vs 0.668. IHT and PCET are both interesting diagnostic tools to identify McArdle disease, whereas cycle ergometer exercise is more efficient to diagnose complete MAD deficiency.
Collapse
Affiliation(s)
- J.-B. Noury
- Neurology Department; CHRU Cavale Blanche; Brest France
| | - F. Zagnoli
- Neurology Department; CHRU Cavale Blanche; Brest France
| | - J.-L. Carré
- Biochemistry Department-EA 4685; CHRU Cavale Blanche; Brest France
| | - I. Drouillard
- Biochemistry Department; Clermont-Tonnerre Armed Forces Hospital; Brest France
| | - F. Petit
- Molecular Genetics Department; APHP - GH Antoine Béclère; Clamart France
| | - C. Le Maréchal
- Institut National de la Santé et de la Recherche Médicale- UMR 1078; Brest France
| | - P. Marcorelles
- Pathology Department-EA 4685 LNB; CHRU Morvan; Brest France
| | - F. Rannou
- Physiology Department- EA 4324; CHRU Cavale Blanche; Brest France
| |
Collapse
|
6
|
Abstract
Mitochondrial myopathies are progressive muscle conditions caused primarily by the impairment of oxidative phosphorylation (OXPHOS) in the mitochondria. This causes a deficit in energy production in the form of adenosine triphosphate (ATP), particularly in skeletal muscle. The diagnosis of mitochondrial myopathy is reliant on the combination of numerous techniques including traditional histochemical, immunohistochemical, and biochemical testing combined with the fast-emerging molecular genetic techniques, namely next-generation sequencing (NGS). This has allowed for the diagnosis to become more effective in terms of determining causative or novel genes. However, there are currently no effective or disease-modifying treatments available for the vast majority of patients with mitochondrial myopathies. Existing therapeutic options focus on the symptomatic management of disease manifestations. An increasing number of clinical trials have investigated the therapeutic effects of various vitamins, cofactors, and small molecules, though these trials have failed to show definitive outcome measures for clinical practice thus far. In addition, new molecular strategies, specifically mtZFNs and mtTALENs, that cause beneficial heteroplasmic shifts in cell lines harboring varying pathogenic mtDNA mutations offer hope for the future. Moreover, recent developments in the reproductive options for patients with mitochondrial myopathies mean that for some families, the possibility of preventing transmission of the mutation to the next generation is now possible.
Collapse
Affiliation(s)
- Syeda T Ahmed
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Lyndsey Craven
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Oliver M Russell
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK
| | - Amy E Vincent
- Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, UK.
- MRC Centre for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
7
|
Ylikallio E, Auranen M, Mahjneh I, Lamminen A, Kousi M, Träskelin AL, Muurinen T, Löfberg M, Salmi T, Paetau A, Lehesjoki AE, Piirilä P, Kiuru-Enari S. Decreased Aerobic Capacity in ANO5-Muscular Dystrophy. J Neuromuscul Dis 2016; 3:475-485. [DOI: 10.3233/jnd-160186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Ibrahim Mahjneh
- Division of Neurology, Pietarsaari District Hospital, Pietarsaari, Finland
- Department of Neurology, MRC Oulu, Oulu University Hospital and University of Oulu, Finland
| | - Antti Lamminen
- Department of Radiology, HUS Medical Imaging Center, Helsinki, Finland
| | - Maria Kousi
- Folkhälsan Institute of Genetics, Helsinki, Finland
| | | | - Tiina Muurinen
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Mervi Löfberg
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| | - Tapani Salmi
- Department of Clinical Neurophysiology, Medical Imaging Center, Helsinki University Hospital, Helsinki, Finland
| | - Anders Paetau
- Department of Pathology, HUSLAB and University of Helsinki, Helsinki, Finland
| | - Anna-Elina Lehesjoki
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Folkhälsan Institute of Genetics, Helsinki, Finland
- Neuroscience Center, University of Helsinki, Finland
| | - Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sari Kiuru-Enari
- Clinical Neurosciences, Neurology, University of Helsinki and Helsinki University Hospital, Finland
| |
Collapse
|
8
|
Piirilä P, Similä ME, Palmio J, Wuorimaa T, Ylikallio E, Sandell S, Haapalahti P, Uotila L, Tyynismaa H, Udd B, Auranen M. Unique Exercise Lactate Profile in Muscle Phosphofructokinase Deficiency (Tarui Disease); Difference Compared with McArdle Disease. Front Neurol 2016; 7:82. [PMID: 27303362 PMCID: PMC4885106 DOI: 10.3389/fneur.2016.00082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/11/2016] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Glycogen storage disease V (GSDV, McArdle disease) and GSDVII (Tarui disease) are the most common of the rare disorders of glycogen metabolism. Both are associated with low lactate levels on exercise. Our aim was to find out whether lactate response associated with exercise testing could distinguish between these disorders. METHODS Two siblings with Tarui disease, two patients with McArdle disease and eight healthy controls were tested on spiroergometric exercise tests with follow-up of venous lactate and ammonia. RESULTS A late increase of lactate about three times the basal level was seen 10-30 min after exercise in patients with Tarui disease being higher than in McArdle disease and lower than in the controls. Ammonia was increased in Tarui disease. DISCUSSION Our results suggest that follow-up of lactate associated with exercise testing can be utilized in diagnostics to distinguish between different GSD diseases.
Collapse
Affiliation(s)
- Päivi Piirilä
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Minna E. Similä
- Department of Clinical Nutrition Therapy, Helsinki University Central Hospital, Helsinki, Finland
| | - Johanna Palmio
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Tomi Wuorimaa
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Emil Ylikallio
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
| | - Satu Sandell
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
- Department of Neurology, Seinäjoki Central Hospital, Seinäjoki, Finland
- Department of Neurology, Tampere University Hospital, Tampere University, Tampere, Finland
| | - Petri Haapalahti
- Unit of Clinical Physiology, HUS Medical Imaging Center, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Lasse Uotila
- Laboratory of Clinical Chemistry, HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Henna Tyynismaa
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Department of Medical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Bjarne Udd
- Neuromuscular Research Center, Tampere University Hospital, University of Tampere, Tampere, Finland
| | - Mari Auranen
- Research Programs Unit, Molecular Neurology, Biomedicum Helsinki, University of Helsinki, Helsinki, Finland
- Clinical Neurosciences, Neurology, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| |
Collapse
|
9
|
Rannou F, Uguen A, Scotet V, Le Maréchal C, Rigal O, Marcorelles P, Gobin E, Carré JL, Zagnoli F, Giroux-Metges MA. Diagnostic Algorithm for Glycogenoses and Myoadenylate Deaminase Deficiency Based on Exercise Testing Parameters: A Prospective Study. PLoS One 2015. [PMID: 26207760 PMCID: PMC4514803 DOI: 10.1371/journal.pone.0132972] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Aim Our aim was to evaluate the accuracy of aerobic exercise testing to diagnose metabolic myopathies. Methods From December 2008 to September 2012, all the consecutive patients that underwent both metabolic exercise testing and a muscle biopsy were prospectively enrolled. Subjects performed an incremental and maximal exercise testing on a cycle ergometer. Lactate, pyruvate, and ammonia concentrations were determined from venous blood samples drawn at rest, during exercise (50% predicted maximal power, peak exercise), and recovery (2, 5, 10, and 15 min). Biopsies from vastus lateralis or deltoid muscles were analysed using standard techniques (reference test). Myoadenylate deaminase (MAD) activity was determined using p-nitro blue tetrazolium staining in muscle cryostat sections. Glycogen storage was assessed using periodic acid-Schiff staining. The diagnostic accuracy of plasma metabolite levels to identify absent and decreased MAD activity was assessed using Receiver Operating Characteristic (ROC) curve analysis. Results The study involved 51 patients. Omitting patients with glycogenoses (n = 3), MAD staining was absent in 5, decreased in 6, and normal in 37 subjects. Lactate/pyruvate at the 10th minute of recovery provided the greatest area under the ROC curves (AUC, 0.893 ± 0.067) to differentiate Abnormal from Normal MAD activity. The lactate/rest ratio at the 10th minute of recovery from exercise displayed the best AUC (1.0) for discriminating between Decreased and Absent MAD activities. The resulting decision tree achieved a diagnostic accuracy of 86.3%. Conclusion The present algorithm provides a non-invasive test to accurately predict absent and decreased MAD activity, facilitating the selection of patients for muscle biopsy and target appropriate histochemical analysis.
Collapse
Affiliation(s)
- Fabrice Rannou
- Physiology Department-EA 1274, CHRU Cavale Blanche, Brest, France
- * E-mail:
| | - Arnaud Uguen
- Pathology Department, CHRU Morvan, Brest, France
| | - Virginie Scotet
- Institut National de la Santé et de la Recherche Médicale, UMR 1078, Brest, France
| | - Cédric Le Maréchal
- Institut National de la Santé et de la Recherche Médicale, UMR 1078, Brest, France
| | - Odile Rigal
- Biochemistry Department, Robert Debré Hospital-APHP, Paris, France
| | | | - Eric Gobin
- Pathology Department, CHRU Morvan, Brest, France
| | - Jean-Luc Carré
- Biochemistry Department, CHRU Cavale Blanche, Brest, France
| | - Fabien Zagnoli
- Neurology Department-EA 4685 LNB, Clermont-Tonnerre Armed Forces Hospital, Brest, France
| | | |
Collapse
|
10
|
Rodan LH, Wells GD, Banks L, Thompson S, Schneiderman JE, Tein I. L-Arginine Affects Aerobic Capacity and Muscle Metabolism in MELAS (Mitochondrial Encephalomyopathy, Lactic Acidosis and Stroke-Like Episodes) Syndrome. PLoS One 2015; 10:e0127066. [PMID: 25993630 PMCID: PMC4439047 DOI: 10.1371/journal.pone.0127066] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Accepted: 04/10/2015] [Indexed: 11/23/2022] Open
Abstract
Objective To study the effects of L-arginine (L-Arg) on total body aerobic capacity and muscle metabolism as assessed by 31Phosphorus Magnetic Resonance Spectroscopy (31P-MRS) in patients with MELAS (Mitochondrial Encephalomyopathy with Lactic Acidosis and Stroke-like episodes) syndrome. Methods We performed a case control study in 3 MELAS siblings (m.3243A>G tRNAleu(UUR) in MTTL1 gene) with different % blood mutant mtDNA to evaluate total body maximal aerobic capacity (VO2peak) using graded cycle ergometry and muscle metabolism using 31P-MRS. We then ran a clinical trial pilot study in MELAS sibs to assess response of these parameters to single dose and a 6-week steady-state trial of oral L-Arginine. Results At baseline (no L-Arg), MELAS had lower serum Arg (p = 0.001). On 31P-MRS muscle at rest, MELAS subjects had increased phosphocreatine (PCr) (p = 0.05), decreased ATP (p = 0.018), and decreased intracellular Mg2+ (p = 0.0002) when compared to matched controls. With L-arginine therapy, the following trends were noted in MELAS siblings on cycle ergometry: (1) increase in mean % maximum work at anaerobic threshold (AT) (2) increase in % maximum heart rate at AT (3) small increase in VO2peak. On 31P-MRS the following mean trends were noted: (1) A blunted decrease in pH after exercise (less acidosis) (2) increase in Pi/PCr ratio (ADP) suggesting increased work capacity (3) a faster half time of PCr recovery (marker of mitochondrial activity) following 5 minutes of moderate intensity exercise (4) increase in torque. Significance These results suggest an improvement in aerobic capacity and muscle metabolism in MELAS subjects in response to supplementation with L-Arg. Intramyocellular hypomagnesemia is a novel finding that warrants further study. Classification of Evidence Class III evidence that L-arginine improves aerobic capacity and muscle metabolism in MELAS subjects. Trial Registration ClinicalTrials.gov NCT01603446.
Collapse
Affiliation(s)
- Lance H. Rodan
- Division of Neurology, Dept. of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ont., Canada, M5G 1X8
| | - Greg D. Wells
- Physiology and Experimental Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, Ont., Canada, M5G 1X8
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ont., Canada, M5G 1X8
| | - Laura Banks
- Physiology and Experimental Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, Ont., Canada, M5G 1X8
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ont., Canada, M5G 1X8
| | - Sara Thompson
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ont., Canada, M5G 1X8
| | - Jane E. Schneiderman
- Physiology and Experimental Medicine Program, Hospital for Sick Children, University of Toronto, Toronto, Ont., Canada, M5G 1X8
- Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ont., Canada, M5G 1X8
| | - Ingrid Tein
- Division of Neurology, Dept. of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, Ont., Canada, M5G 1X8
- Dept. of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ont., Canada, M5G 1X8
- * E-mail:
| |
Collapse
|
11
|
Valentini G, Maggi M, Pey AL. Protein Stability, Folding and Misfolding in Human PGK1 Deficiency. Biomolecules 2013; 3:1030-52. [PMID: 24970202 PMCID: PMC4030965 DOI: 10.3390/biom3041030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 12/06/2013] [Accepted: 12/13/2013] [Indexed: 01/08/2023] Open
Abstract
Conformational diseases are often caused by mutations, altering protein folding and stability in vivo. We review here our recent work on the effects of mutations on the human phosphoglycerate kinase 1 (hPGK1), with a particular focus on thermodynamics and kinetics of protein folding and misfolding. Expression analyses and in vitro biophysical studies indicate that disease-causing mutations enhance protein aggregation propensity. We found a strong correlation among protein aggregation propensity, thermodynamic stability, cooperativity and dynamics. Comparison of folding and unfolding properties with previous reports in PGKs from other species suggests that hPGK1 is very sensitive to mutations leading to enhance protein aggregation through changes in protein folding cooperativity and the structure of the relevant denaturation transition state for aggregation. Overall, we provide a mechanistic framework for protein misfolding of hPGK1, which is insightful to develop new therapeutic strategies aimed to target native state stability and foldability in hPGK1 deficient patients.
Collapse
Affiliation(s)
- Giovanna Valentini
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Viale Taramelli, 3B, Pavia 27100, Italy.
| | - Maristella Maggi
- Dipartimento di Biologia e Biotecnologie "L. Spallanzani", Università degli Studi di Pavia, Viale Taramelli, 3B, Pavia 27100, Italy.
| | - Angel L Pey
- Department of Physical Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva s/n, Granada 18071, Spain.
| |
Collapse
|
12
|
Abstract
Diseases of muscle may be congenital or acquired. They cause muscle weakness without sensory loss. The onset, distribution, and clinical course help to differentiate the type of muscle disorder. The diagnostic workup may include laboratory examination, electrodiagnostic studies, and muscle biopsy. A definitive diagnosis leads to better decision making with regard to treatment, genetic education, prognosis, functional expectations, and the impact of exercise on muscle function.
Collapse
Affiliation(s)
- Anthony Chiodo
- Physical Medicine and Rehabilitation, University of Michigan Hospital, 325 E Eisenhower Parkway, Ann Arbor, MI 48118, USA.
| |
Collapse
|
13
|
Mouadil A, Debout C, Read MH, Morello R, Allouche S, Chapon F. Blood metabolite data in response to maximal exercise in healthy subjects. Clin Physiol Funct Imaging 2012; 32:274-81. [PMID: 22681604 DOI: 10.1111/j.1475-097x.2012.01122.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 01/05/2012] [Indexed: 11/30/2022]
Abstract
Maximal exercise test with gas exchange measurement evaluates exercise capacities with maximal oxygen uptake (VO(2) max) measurement. Measurements of lactate (L), lactate/pyruvate ratio (L/P) and ammonium (A) during rest, exercise and recovery enhance interpretative power of maximal exercise by incorporating muscular metabolism exploration. Maximal exercise test with gas exchange measurement is standardized in cardiopulmonary evaluations but, no reference data of blood muscular metabolites are available to evaluate the muscular metabolism. We determined normal values of L, L/P and A during a standardized maximal exercise and recovery in 48 healthy sedentary volunteers and compared with results obtained in four patients with exercise intolerance and a mitochondrial disease. In healthy subjects, L, L/P and A rose during exercise. In 98% of them L, L/P or A decreased between the fifth and the fifteenth minutes of recovery. In mitochondrial patients, VO(2) max was normal or low, and L, L/P and A had the same evolution as normal subjects or showed no decrease during recovery. We gave normal L, L/P and A values, which establish references for a maximal exercise test with muscular metabolism exploration. This test is helpful for clinicians in functional evaluation, management and treatment of metabolic myopathy and would be a useful tool in diagnosis of metabolic myopathy.
Collapse
Affiliation(s)
- Amèle Mouadil
- Department of Physiology, CHU de Caen, Caen, France.
| | | | | | | | | | | |
Collapse
|
14
|
Chawla J. Stepwise approach to myopathy in systemic disease. Front Neurol 2011; 2:49. [PMID: 21886637 PMCID: PMC3153853 DOI: 10.3389/fneur.2011.00049] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 07/14/2011] [Indexed: 12/18/2022] Open
Abstract
Muscle diseases can constitute a large variety of both acquired and hereditary disorders. Myopathies in systemic disease results from several different disease processes including endocrine, inflammatory, paraneoplastic, infectious, drug- and toxin-induced, critical illness myopathy, metabolic, and myopathies with other systemic disorders. Patients with systemic myopathies often present acutely or sub acutely. On the other hand, familial myopathies or dystrophies generally present in a chronic fashion with exceptions of metabolic myopathies where symptoms on occasion can be precipitated acutely. Most of the inflammatory myopathies can have a chance association with malignant lesions; the incidence appears to be specifically increased only in patients with dermatomyositis. In dealing with myopathies associated with systemic illnesses, the focus will be on the acquired causes. Management is beyond the scope of this chapter. Prognosis is based upon the underlying cause and, most of the time, carries a good prognosis. In order to approach a patient with suspected myopathy from systemic disease, a stepwise approach is utilized.
Collapse
Affiliation(s)
- Jasvinder Chawla
- Chief of Neurology, Hines VA Hospital and Neurology Residency Program Director, Loyola University Medical Center Hines, IL, USA
| |
Collapse
|