1
|
Hamo-Giladi DB, Fokra A, Sabo E, Kabala A, Minkov I, Hamoud S, Hadad S, Abassi Z, Khamaysi I. Involvement of heparanase in the pathogenesis of acute pancreatitis: Implication of novel therapeutic approaches. J Cell Mol Med 2024; 28:e18512. [PMID: 39248454 PMCID: PMC11382361 DOI: 10.1111/jcmm.18512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 09/10/2024] Open
Abstract
Acute pancreatitis (AP) is a common gastrointestinal disease with high morbidity and mortality rate. Unfortunately, neither the etiology nor the pathophysiology of AP are fully understood and causal treatment options are not available. Recently we demonstrated that heparanase (Hpa) is adversely involved in the pathogenesis of AP and inhibition of this enzyme ameliorates the manifestation of the disease. Moreover, a pioneer study demonstrated that Aspirin has partial inhibitory effect on Hpa. Another compound, which possesses a mild pancreato-protective effect against AP, is Trehalose, a common disaccharide. We hypothesized that combination of Aspirin, Trehalose, PG545 (Pixatimod) and SST0001 (Roneparstat), specific inhibitors of Hpa, may exert pancreato-protective effect better than each drug alone. Thus, the current study examines the pancreato-protective effects of Aspirin, Trehalose, PG545 and SST0001 in experimental model of AP induced by cerulein in wild-type (WT) and Hpa over-expressing (Hpa-Tg) mice. Cerulein-induced AP in WT mice was associated with significant rises in the serum levels of lipase (X4) and amylase (X3) with enhancement of pancreatic edema index, inflammatory response, and autophagy. Responses to cerulein were all more profound in Hpa-Tg mice versus WT mice, evident by X7 and X5 folds increase in lipase and amylase levels, respectively. Treatment with Aspirin or Trehalose alone and even more so in combination with PG545 or SST0001 were highly effective, restoring the serum level of lipase back to the basal level. Importantly, a novel newly synthesized compound termed Aspirlose effectively ameliorated the pathogenesis of AP as a single agent. Collectively, the results strongly indicate that targeting Hpa by using anti-Hpa drug combinations constitute a novel therapy for this common orphan disease.
Collapse
Affiliation(s)
- Dalit B Hamo-Giladi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Ahmad Fokra
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Edmond Sabo
- Department of Pathology, Carmel Hospital, Haifa, Israel
| | - Aviva Kabala
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Irena Minkov
- Department of Pathology, Rambam Health Care Center, Haifa, Israel
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Center, Haifa, Israel
| | - Salim Hadad
- Department of Pharmacy, Rambam Health Care Center, Haifa, Israel
| | - Zaid Abassi
- Department of Physiology, The Ruth & Bruce Rappaport Faculty of Medicine, Haifa, Israel
- Department of Laboratory Medicine, Rambam Health Care Center, Haifa, Israel
| | - Iyad Khamaysi
- Department of Gastroenterology, Rambam Health Care Center, Haifa, Israel
| |
Collapse
|
2
|
Chen D, Wang LJ, Li HL, Feng F, Li JC, Liu L. Progress of heparanase in septic cardiomyopathy: A review. Medicine (Baltimore) 2024; 103:e38901. [PMID: 39151539 PMCID: PMC11332786 DOI: 10.1097/md.0000000000038901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 08/19/2024] Open
Abstract
Septic cardiomyopathy (SCM) is a severe complication caused by sepsis, resulting in a high mortality rate. The current understanding of the pathogenic mechanism of SCM primarily involves endocardial injury, microcirculation disturbance, mitochondrial dysfunction and fibrosis. Heparanase (HPA), an endo-β-D-glucuronidase, has been implicated in inflammation, immune response, coagulation promotion, microcirculation disturbance, mitochondrial dysfunction and fibrosis. Therefore, it was hypothesized that HPA may play an important role in the pathogenesis of SCM. The present study provides a summary of various pathophysiological changes and mechanisms behind the involvement of HPA in SCM. It also presents a novel perspective on the pathogenic mechanism, diagnosis and treatment of SCM.
Collapse
Affiliation(s)
- Di Chen
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Lin-Jun Wang
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Hong-Lei Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Fei Feng
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Jian-Chun Li
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, P. R. China
| | - Liping Liu
- The First Clinical Medical School of Lanzhou University, Lanzhou, Gansu, P. R. China
- Departments of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
3
|
Chen D, Li H, Huang S, Huang Z, Sun Y, Liu L. Heparanase inhibitor improves clinical study in patients with septic cardiomyopathy. Front Med (Lausanne) 2024; 11:1429109. [PMID: 39170046 PMCID: PMC11335619 DOI: 10.3389/fmed.2024.1429109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/22/2024] [Indexed: 08/23/2024] Open
Abstract
Objective Septic cardiomyopathy (SCM), a prevalent and critical condition in individuals suffering from sepsis and septic shock, remains elusive in terms of its intricate pathogenesis, thereby lacking definitive diagnostic standards. Current clinical management predominantly revolves around addressing the underlying disease and alleviating symptoms, yet mortality rates persist at elevated levels. This research endeavors to delve into the effects of low molecular weight heparin on Heparanase (HPA) levels in SCM patients, while assessing the clinical significance of HPA as a diagnostic marker in this patient population. Method A comprehensive cohort of 105 patients diagnosed with SCM was recruited from the Department of Critical Care Medicine at the First Hospital of Lanzhou University, spanning the period from September 2022 to October 2023, serving as the primary research subjects for this investigation. A prospective, randomized controlled trial was undertaken, wherein 53 SCM patients were randomly allocated to a control group receiving standard therapy, while 52 patients were randomly assigned to an intervention group receiving conventional treatment augmented with low molecular weight heparin (LMWH). On the 1st, 3rd, and 7th days post-treatment, the following parameters were measured and documented: HPA levels, syndecan-1 levels, IL-6, TNF-α, CD4+/CD8+ cell ratio, anti-Xa factor, antithrombin III (AT-III) levels, left ventricular ejection fraction (LVEF), fractional shortening (FS), E/e' ratio, stroke volume (SV), cardiac performance index (CPI), global end-diastolic volume index (GEDVI), N-terminal pro-brain natriuretic peptide (NT-proBNP), cardiac troponin I (CTnI), heart-type fatty acid-binding protein (H-FABP), lactate (Lac) levels, central venous oxygen saturation (ScvO2), Sequential Organ Failure Assessment (SOFA) score, Acute Physiology and Chronic Health Evaluation II (APACHE II) score, ICU length of stay, and 28-day mortality rate. Results In comparison to the control group, the LMWH group demonstrated significantly lower levels of HPA and syndecan-1 (p < 0.05), along with reduced levels of IL-6, TNF-α, E/e', NT-proBNP, CTnI, H-FABP, GEDVI, SOFA score, APACHE II score, ICU length of stay, and 28-day mortality (p < 0.05). Additionally, the LMWH group exhibited increased levels of anti-Xa factor, AT-III, CD4+/CD8+ cell, LVEF, FS, SV, and CPI (p < 0.05). ROC curve analysis indicated that HPA can be combined with NT-proBNP, CTnI and H-FABP to improve the diagnostic efficiency of SCM. Conclusion In SCM patient management, the integration of LMWH into conventional treatment significantly reduced HPA levels, mitigated syndecan-1 loss, attenuated inflammatory responses, enhanced immune function, improved microcirculation, cardiac systolic and diastolic functions, myocardial contractility, heart index, and end-diastolic volume. These interventions correlated with decreased clinical severity, ICU stays, and 28-day mortality rates in SCM patients. Clinical trial registration https://www.chictr.org.cn.
Collapse
Affiliation(s)
- Di Chen
- The First Clinical College of Lanzhou University, Lanzhou, Gansu, China
| | - Honglei Li
- The First Clinical College of Lanzhou University, Lanzhou, Gansu, China
| | - Shitao Huang
- The First Clinical College of Lanzhou University, Lanzhou, Gansu, China
| | - Zhongya Huang
- The First Clinical College of Lanzhou University, Lanzhou, Gansu, China
| | - Yibo Sun
- The First Clinical College of Lanzhou University, Lanzhou, Gansu, China
| | - Liping Liu
- The First Clinical College of Lanzhou University, Lanzhou, Gansu, China
- Department of Emergency Critical Care Medicine, The First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
4
|
Ghosh S, Mahajan AA, Dey A, Rajendran RL, Chowdhury A, Sen S, Paul S, Majhi S, Hong CM, Gangadaran P, Ahn BC, Krishnan A. Exosomes in Bone Cancer: Unveiling their Vital Role in Diagnosis, Prognosis, and Therapeutic Advancements. J Cancer 2024; 15:4128-4142. [PMID: 38947401 PMCID: PMC11212077 DOI: 10.7150/jca.95709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024] Open
Abstract
Bone cancer among adolescents and children exhibits varying survival outcomes based on disease state. While localized bone cancer cases have a survival rate exceeding 70%, metastatic, refractory, and recurrent forms are associated with significantly poorer prognoses. Initially believed to be mere vehicles for cellular waste disposal, exosomes are now recognized as extracellular vesicles facilitating intercellular communication. These vesicles influence cellular behaviors by transporting various biomolecules, such as proteins, DNA, RNA, and lipids, among cells. The role of exosomes in regulating the progression of bone cancer is increasingly evident, impacting critical processes like tumorigenesis, proliferation, metastasis, angiogenesis, immune evasion, and drug resistance. Current research underscores the substantial potential of exosomes in promoting the progression and development of bone cancer. This review delves into the complex process of exosome biogenesis, the variety of cell-derived exosome sources, and their applications in drug delivery and therapeutics. It also examines ongoing clinical trials focused on exosome cargo levels and discusses the challenges and future directions in exosome research. Unlike costly and invasive traditional diagnostic methods, exosomal biomarkers offer a non-invasive, cost-effective, and readily accessible routine screening through simple fluid collection that aims to inspire researchers to investigate the potential of exosomes for cancer theragnostic. Through comprehensive exploration of these areas, the review seeks to enhance understanding and foster innovative solutions to cancer biology in the near future.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600036, India
| | - Atharva Anand Mahajan
- Advanced Centre for Treatment, Research, and Education in Cancer, Tata Memorial Centre, Mumbai, Maharashtra 410210, India
| | - Anuvab Dey
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, North Guwahati, Assam 781039, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
| | - Ankita Chowdhury
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Sushmita Sen
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Subhobrata Paul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Sourav Majhi
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi 110016, India
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Republic of Korea
- Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, Republic of Korea
- BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein, 9300, South Africa
| |
Collapse
|
5
|
Vlodavsky I, Hilwi M, Kayal Y, Soboh S, Ilan N. Impact of heparanase-2 (Hpa2) on cancer and inflammation: Advances and paradigms. FASEB J 2024; 38:e23670. [PMID: 38747803 DOI: 10.1096/fj.202400286r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
HPSE2, the gene-encoding heparanase 2 (Hpa2), is mutated in urofacial syndrome (UFS), a rare autosomal recessive congenital disease attributed to peripheral neuropathy. Hpa2 lacks intrinsic heparan sulfate (HS)-degrading activity, the hallmark of heparanase (Hpa1), yet it exhibits a high affinity toward HS, thereby inhibiting Hpa1 enzymatic activity. Hpa2 regulates selected genes that promote normal differentiation, tissue homeostasis, and endoplasmic reticulum (ER) stress, resulting in antitumor, antiangiogenic, and anti-inflammatory effects. Importantly, stress conditions induce the expression of Hpa2, thus establishing a feedback loop, where Hpa2 enhances ER stress which, in turn, induces Hpa2 expression. In most cases, cancer patients who retain high levels of Hpa2 survive longer than patients bearing Hpa2-low tumors. Experimentally, overexpression of Hpa2 attenuates the growth of tumor xenografts, whereas Hpa2 gene silencing results in aggressive tumors. Studies applying conditional Hpa2 knockout (cHpa2-KO) mice revealed an essential involvement of Hpa2 contributed by the host in protecting against cancer and inflammation. This was best reflected by the distorted morphology of the Hpa2-null pancreas, including massive infiltration of immune cells, acinar to adipocyte trans-differentiation, and acinar to ductal metaplasia. Moreover, orthotopic inoculation of pancreatic ductal adenocarcinoma (PDAC) cells into the pancreas of Hpa2-null vs. wild-type mice yielded tumors that were by far more aggressive. Likewise, intravenous inoculation of cancer cells into cHpa2-KO mice resulted in a dramatically increased lung colonization reflecting the involvement of Hpa2 in restricting the formation of a premetastatic niche. Elucidating Hpa2 structure-activity-relationships is expected to support the development of Hpa2-based therapies against cancer and inflammation.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Maram Hilwi
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Yasmin Kayal
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Soaad Soboh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
6
|
Liu P, Wang Y, Tian K, Bai X, Wang Y, Wang Y. Artesunate inhibits macrophage-like phenotype switching of vascular smooth muscle cells and attenuates vascular inflammatory injury in atherosclerosis via NLRP3. Biomed Pharmacother 2024; 172:116255. [PMID: 38325261 DOI: 10.1016/j.biopha.2024.116255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/23/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024] Open
Abstract
Inflammation is one of the main pathogenic factors of atherosclerosis (AS), and the phenotypic transformation of macrophages in human vascular smooth muscle cells (HVSMCs) contributes to the inflammatory injury of blood vessels and the formation of atherosclerotic plaques. Artesunate reportedly exerts anti-inflammatory activity against AS. Herein, we aimed to explore the artesunate-mediated anti-inflammatory and HVSMC phenotypic switch effects against AS and elucidate potential underlying mechanisms. In vitro, artesunate decreased expression of NLRP3, caspase-1, and interleukin (IL)- 1β. Artesunate significantly inhibited low-density lipoprotein (LDL) expression in HVSMCs and macrophages. In vivo, artesunate reduced atherosclerotic plaque formation in high-fat diet (HFD)-fed ApoE-/- mice, as well as decreased NLRP3 and CD68 expression in atherosclerotic plaques. Artesunate decreased serum levels of triglycerides and increased high-density lipoprotein levels in HFD-med mice; however, serum levels of total cholesterol and LDL were unaltered. Treatment with artesunate substantially increased α-smooth muscle actin expression in aortic tissues while inhibiting expression levels of NLRP3, IL-1β, heparinase, matrix metalloproteinase 9, and Krüppel-like factor 4 (KLF4). Collectively, our findings suggest that artesunate-mediated effects may involve inhibition of the ERK1/2/NF-κB/IL-1β pathway in HVSMCs via the downregulation of NLRP3 expression. Thus, artesunate could serve as a novel strategy to treat AS by inhibiting AS plaque formation and suppressing macrophage-like phenotype switching of HVSMCs.
Collapse
Affiliation(s)
- Ping Liu
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yuqi Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Keke Tian
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Xinyu Bai
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China
| | - Yaowen Wang
- Department of Cardiology, the Second Affiliated Hospital of Chongqing Medical University, Chongqing Cardiac Arrhythmias Therapeutic Service Center, Chongqing 400010, China.
| | - Yan Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi 563000, China.
| |
Collapse
|
7
|
Li X, Xu SJ, Jin B, Lu HS, Zhao SK, Ding XF, Xu LL, Li HJ, Liu SC, Chen J, Chen G. Heparanase inhibitor OGT 2115 induces prostate cancer cell apoptosis via the downregulation of MCL‑1. Oncol Lett 2024; 27:83. [PMID: 38249815 PMCID: PMC10797316 DOI: 10.3892/ol.2024.14217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/31/2023] [Indexed: 01/23/2024] Open
Abstract
Heparanase (HPSE), an endo-β-D-glucuronidase, cleaves heparan sulfate and serves an important role in the tumor microenvironment and thus in tumorigenesis. HPSE is known to promote tumor cell evasion of apoptosis. However, the underlying mechanism of this requires further study. In the present study, the results demonstrated that myeloid cell leukemia-1 (MCL-1), an antiapoptotic protein, and HPSE were upregulated in prostate cancer tissues compared with adjacent normal tissues. In addition, the HPSE inhibitor, OGT 2115, inhibited PC-3 and DU-145 prostate cancer cell viability in a dose-dependent manner, with IC50 values of 20.2 and 97.2 µM, respectively. Furthermore, annexin V/PI double-staining assays demonstrated that OGT 2115 induced apoptosis in prostate cancer cells. OGT 2115 treatment markedly decreased MCL-1 protein expression levels, whereas RNA interference-mediated downregulation of MCL-1 and OGT 2115 drug treatment synergistically induced apoptosis in PC-3 and DU-145 cells. In vivo, OGT 2115 40 mg/kg (ig) significantly inhibited PC-3 cell xenograft growth in nude mice and increased the positive TUNEL staining rate of xenograft tissues. It was therefore hypothesized that MCL-1 was an important signaling molecule in OGT 2115-induced apoptosis. The results of the present study also demonstrated that the proteasome inhibitor, MG-132, markedly inhibited the downregulation of MCL-1 protein expression levels induced by OGT 2115. However, the protein synthesis inhibitor, cycloheximide, did not affect the role of OGT 2115 in regulating MCL-1. In summary, the results of the present study demonstrated that the proapoptotic activity of OGT 2115 was achieved by downregulating MCL-1.
Collapse
Affiliation(s)
- Xin Li
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Shuai-Jun Xu
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Bin Jin
- Graduate School of Medicine, Hebei North University, Zhangjiakou, Hebei 075000, P.R. China
| | - Hong-Sheng Lu
- Department of Pathology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Shan-Kun Zhao
- Department of Urology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Xiao-Fei Ding
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Ling-Long Xu
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| | - Hai-Jun Li
- Department of Neurology, Taizhou Second People's Hospital, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Shuang-Chun Liu
- Laboratory Department, Municipal Hospital Affiliated to Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Jie Chen
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
| | - Guang Chen
- Department of Pharmacology, Taizhou University, Taizhou, Zhejiang 318000, P.R. China
- Department of Hematology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang 318000, P.R. China
| |
Collapse
|
8
|
Bhoge PR, Raigawali R, Mardhekar S, Anand S, Kikkeri R. Synergestic interplay of uronic acid and sulfation composition of heparan sulfate on molecular recognition to activity. Carbohydr Res 2023; 532:108919. [PMID: 37557021 DOI: 10.1016/j.carres.2023.108919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 08/11/2023]
Abstract
Heparan sulfate (HS) is ubiquitous polysaccharide on the surface of all mammalian cells and extracellular matrices. The incredible structural complexity of HS arises from its sulfation patterns and disaccharide compositions, which orchestrate a wide range of biological activities. Researchers have developed elegant synthetic methods to obtain well-defined HS oligosaccharides to understand the structure-activity relationship. These studies revealed that specific sulfation codes and uronic acid variants could synergistically modulate HS-protein interactions (HSPI). Additionally, the conformational flexibility of l-Iduronic acid, a uronic acid unit has emerged as a critical factor in fine-tuning the microenvironment to modulate HSPI. This review delineates how uronic acid composition in HS modulates protein binding affinity, selectivity, and biological activity. Finally, the significance of sulfated homo-oligo uronic acid as heparin mimics in drug development is also discussed.
Collapse
Affiliation(s)
- Preeti Ravindra Bhoge
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Rakesh Raigawali
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Sandhya Mardhekar
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Saurabh Anand
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India
| | - Raghavendra Kikkeri
- Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pashan, Pune, 4110008, India.
| |
Collapse
|
9
|
Manouchehri JM, Marcho L, Cherian MA. The role of heparan sulfate in enhancing the chemotherapeutic response in triple-negative breast cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.08.556819. [PMID: 37745355 PMCID: PMC10515779 DOI: 10.1101/2023.09.08.556819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Among women worldwide, breast cancer has the highest incidence and is the leading cause of cancer-related death. Patients with the triple-negative breast cancer (TNBC) subtype have an inferior prognosis in comparison to other breast cancers because current therapies do not facilitate long-lasting responses. Thus, there is a demand for more innovative therapies that induce durable responses.In our previous research, we discovered that augmenting the concentration of extracellular ATP (eATP) greatly enhances the chemotherapeutic response of TNBC cell lines by activating purinergic receptors (P2RXs), leading to cell death through the induction of non-selective membrane permeability. However, eATP levels are limited by several classes of extracellular ATPases. One endogenous molecule of interest that can inhibit multiple classes of extracellular ATPases is heparan sulfate. Polysulfated polysaccharide heparan sulfate itself is degraded by heparanase, an enzyme that is known to be highly expressed in various cancers, including breast cancer. Heparan sulfate has previously been shown to regulate several cancer-related processes such as fibroblast growth factor signaling, neoangiogenesis by sequestering vascular endothelial growth factors in the extracellular matrix, hedgehog signaling and cell adhesion. In this project, we identified an additional mechanism for a tumor suppressor role of heparan sulfate: inhibition of extracellular ATPases, leading to augmented levels of eATP.Several heparanase inhibitors have been previously identified, including OGT 2115, suramin, PI-88, and PG 545. We hypothesized that heparanase inhibitors would augment eATP concentrations in TNBC by increasing heparan sulfate in the tumor microenvironment, resulting in enhanced cell death in response to chemotherapy. Methods We treated TNBC cell lines MDA-MB 231, Hs 578t, and MDA-MB 468 and non-tumorigenic immortal mammary epithelial MCF-10A cells with increasing concentrations of the chemotherapeutic agent paclitaxel in the presence of heparan sulfate and/or the heparanase inhibitor OGT 2115 while analyzing eATP release and cell viability. Moreover, to verify that the effects of OGT 2115 are mediated through eATP, we applied specific antagonists to the purinergic receptors P2RX4 and P2RX7. In addition, the protein expression of heparanase was compared in the cell lines by Western blot analysis. We also evaluated the consequences of this therapeutic strategy on the breast cancer-initiating cell population in the treated cells using flow cytometry and tumorsphere formation efficiency assays. Results Heparanase was found to be highly expressed in immortal mammary epithelial cells in comparison to TNBC cell lines. The heparanase inhibitor OGT 2115 augmented chemotherapy-induced TNBC cell death and eATP release. Conclusion These results demonstrate that inhibiting the degradation of heparan sulfate in the tumor microenvironment augments the susceptibility of TNBC cell lines to chemotherapy by increasing extracellular ATP concentrations. This strategy could potentially be applied to induce more enhanced and enduring responses in TNBC patients.
Collapse
|
10
|
Li JC, Wang LJ, Feng F, Chen TT, Shi WG, Liu LP. Role of heparanase in sepsis‑related acute kidney injury (Review). Exp Ther Med 2023; 26:379. [PMID: 37456170 PMCID: PMC10347300 DOI: 10.3892/etm.2023.12078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 06/08/2023] [Indexed: 07/18/2023] Open
Abstract
Sepsis-related acute kidney injury (S-AKI) is a common and significant complication of sepsis in critically ill patients, which can often only be treated with antibiotics and medications that reduce S-AKI symptoms. The precise mechanism underlying the onset of S-AKI is still unclear, thus hindering the development of new strategies for its treatment. Therefore, it is necessary to explore the pathogenesis of S-AKI to identify biomarkers and therapeutic targets for its early diagnosis and treatment. Heparanase (HPA), the only known enzyme that cleaves the side chain of heparan sulfate, has been widely studied in relation to tumor metabolism, procoagulant activity, angiogenesis, inflammation and sepsis. It has been reported that HPA plays an important role in the progression of S-AKI. The aim of the present review was to provide an overview of the function of HPA in S-AKI and to summarize its underlying molecular mechanisms, including mediating inflammatory response, immune response, autophagy and exosome biogenesis. It is anticipated that emerging discoveries about HPA in S-AKI will support HPA as a potential biomarker and therapeutic target to combat S-AKI.
Collapse
Affiliation(s)
- Jian-Chun Li
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lin-Jun Wang
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Fei Feng
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Ting-Ting Chen
- The First Clinical Medical College of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Wen-Gui Shi
- Cuiying Biomedical Research Center, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Li-Ping Liu
- Department of Emergency, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
11
|
Manganelli V, Misasi R, Riitano G, Capozzi A, Mattei V, Caglar TR, Ialongo D, Madia VN, Messore A, Costi R, Di Santo R, Sorice M, Garofalo T. Role of a Novel Heparanase Inhibitor on the Balance between Apoptosis and Autophagy in U87 Human Glioblastoma Cells. Cells 2023; 12:1891. [PMID: 37508554 PMCID: PMC10378526 DOI: 10.3390/cells12141891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/07/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Heparanase (HPSE) is an endo-β-glucuronidase that cleaves heparan sulfate side chains, leading to the disassembly of the extracellular matrix, facilitating cell invasion and metastasis dissemination. In this research, we investigated the role of a new HPSE inhibitor, RDS 3337, in the regulation of the autophagic process and the balance between apoptosis and autophagy in U87 glioblastoma cells. METHODS After treatment with RDS 3337, cell lysates were analyzed for autophagy and apoptosis-related proteins by Western blot. RESULTS We observed, firstly, that LC3II expression increased in U87 cells incubated with RDS 3337, together with a significant increase of p62/SQSTM1 levels, indicating that RDS 3337 could act through the inhibition of autophagic-lysosomal flux of LC3-II, thereby leading to accumulation of lipidated LC3-II form. Conversely, the suppression of autophagic flux could activate apoptosis mechanisms, as revealed by the activation of caspase 3, the increased level of cleaved Parp1, and DNA fragmentation. CONCLUSIONS These findings support the notion that HPSE promotes autophagy, providing evidence that RDS 3337 blocks autophagic flux. It indicates a role for HPSE inhibitors in the balance between apoptosis and autophagy in U87 human glioblastoma cells, suggesting a potential role for this new class of compounds in the control of tumor growth progression.
Collapse
Affiliation(s)
- Valeria Manganelli
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Roberta Misasi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Gloria Riitano
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Antonella Capozzi
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Vincenzo Mattei
- Biomedicine and Advanced Technologies Rieti Center, Sabina Universitas, 02100 Rieti, Italy
| | - Tuba Rana Caglar
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Davide Ialongo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Valentina Noemi Madia
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Antonella Messore
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Roberta Costi
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Roberto Di Santo
- Dipartimento di Chimica e Tecnologie del Farmaco, Istituto Pasteur-Fondazione Cenci Bolognetti, "Sapienza" University of Rome, 00185 Rome, Italy
| | - Maurizio Sorice
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| | - Tina Garofalo
- Department of Experimental Medicine, "Sapienza" University, 00161 Rome, Italy
| |
Collapse
|
12
|
Zhang Y, Cui L. Discovery and development of small-molecule heparanase inhibitors. Bioorg Med Chem 2023; 90:117335. [PMID: 37257254 PMCID: PMC10884955 DOI: 10.1016/j.bmc.2023.117335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/08/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023]
Abstract
Heparanase-1 (HPSE) is a promising yet challenging therapeutic target. It is the only known enzyme that is responsible for cleavage of heparan sulfate (HS) side chains from heparan sulfate proteoglycans (HSPGs), and is the key enzyme involved in the remodeling and degradation of the extracellular matrix (ECM). Overexpression of HPSE is found in various types of diseases, including cancers, inflammations, diabetes, and viral infections. Inhibiting HPSE can restore ECM functions and integrity, making the development of HPSE inhibitors a highly sought-after topic. So far, all HPSE inhibitors that have entered clinical trials belong to the category of HS mimetics, and no small-molecule or drug-like HPSE inhibitors have made similar progress. None of the HS mimetics have been approved as drugs, with some clinical trials discontinued due to poor bioavailability, side effects, and unfavorable pharmacokinetics characteristics. Small-molecule HPSE inhibitors are, therefore, particularly appealing due to their drug-like characteristics. Advances in the chemical spaces and drug design technologies, including the increasing use of in vitro and in silico screening methods, have provided new opportunities in drug discovery. This article aims to review the discovery and development of small-molecule HPSE inhibitors via screening strategies to shed light on the future endeavors in the development of novel HPSE inhibitors.
Collapse
Affiliation(s)
- Yuzhao Zhang
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA
| | - Lina Cui
- Department of Medicinal Chemistry, College of Pharmacy, UF Health Science Center, UF Health Cancer Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
13
|
Vlodavsky I, Kayal Y, Hilwi M, Soboh S, Sanderson RD, Ilan N. Heparanase-A single protein with multiple enzymatic and nonenzymatic functions. PROTEOGLYCAN RESEARCH 2023; 1:e6. [PMID: 37547889 PMCID: PMC10398610 DOI: 10.1002/pgr2.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023]
Abstract
Heparanase (Hpa1) is expressed by tumor cells and cells of the tumor microenvironment and functions extracellularly to remodel the extracellular matrix (ECM) and regulate the bioavailability of ECM-bound factors, augmenting, among other effects, gene transcription, autophagy, exosome formation, and heparan sulfate (HS) turnover. Much of the impact of heparanase on tumor progression is related to its function in mediating tumor-host crosstalk, priming the tumor microenvironment to better support tumor growth, metastasis, and chemoresistance. The enzyme appears to fulfill some normal functions associated, for example, with vesicular traffic, lysosomal-based secretion, autophagy, HS turnover, and gene transcription. It activates cells of the innate immune system, promotes the formation of exosomes and autophagosomes, and stimulates signal transduction pathways via enzymatic and nonenzymatic activities. These effects dynamically impact multiple regulatory pathways that together drive tumor growth, dissemination, and drug resistance as well as inflammatory responses. The emerging premise is that heparanase expressed by tumor cells, immune cells, endothelial cells, and other cells of the tumor microenvironment is a key regulator of the aggressive phenotype of cancer, an important contributor to the poor outcome of cancer patients and a valid target for therapy. So far, however, antiheparanase-based therapy has not been implemented in the clinic. Unlike heparanase, heparanase-2 (Hpa2), a close homolog of heparanase (Hpa1), does not undergo proteolytic processing and hence lacks intrinsic HS-degrading activity, the hallmark of heparanase. Hpa2 retains the capacity to bind heparin/HS and exhibits an even higher affinity towards HS than heparanase, thus competing for HS binding and inhibiting heparanase enzymatic activity. It appears that Hpa2 functions as a natural inhibitor of Hpa1 regulates the expression of selected genes that maintain tissue hemostasis and normal function, and plays a protective role against cancer and inflammation, together emphasizing the significance of maintaining a proper balance between Hpa1 and Hpa2.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Yasmin Kayal
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Maram Hilwi
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Soaad Soboh
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| | - Ralph D. Sanderson
- Department of PathologyUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Neta Ilan
- Technion Integrated Cancer Center, TechnionRappaport Faculty of MedicineHaifaIsrael
| |
Collapse
|
14
|
Cai H, Chen Y, Zhang Q, Liu Y, Jia H. High preoperative CEA and systemic inflammation response index (C-SIRI) predict unfavorable survival of resectable colorectal cancer. World J Surg Oncol 2023; 21:178. [PMID: 37291634 DOI: 10.1186/s12957-023-03056-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND CEA and systemic inflammation were reported to correlate with proliferation, invasion, and metastasis of colorectal cancer. This study investigated the prognostic significance of the preoperative CEA and systemic inflammation response index (C-SIRI) in patients with resectable colorectal cancer. METHODS Two hundred seventeen CRC patients were recruited from Chongqing Medical University, the first affiliated hospital, between January 2015 and December 2017. Baseline characteristics, preoperative CEA level, and peripheral monocyte, neutrophil, and lymphocyte counts were retrospectively reviewed. The optimal cutoff value for SIRI was defined as 1.1, and for CEA, the best cutoff values were 4.1 ng/l and 13.0 ng/l. Patients with low levels of CEA (< 4.1 ng/l) and SIRI (< 1.1) were assigned a value of 0, those with high levels of CEA (≥ 13.0 ng/l) and SIRI (≥ 1.1) were assigned a value of 3, and those with CEA (4.1-13.0 ng/l) and SIRI (≥ 1.1), CEA (≥ 13.0 ng/l), and SIRI (< 1.1) were assigned a value of 2. Those with CEA (< 4.1 ng/l) and SIRI (≥ 1.1) and CEA (4.1-13.0 ng/l) and SIRI (< 1.1) were assigned a value of 1. The prognostic value was assessed based on univariate and multivariate survival analysis. RESULTS Preoperative C-SIRI was statistically correlated with gender, site, stage, CEA, OPNI, NLR, PLR, and MLR. However, no difference was observed between C-SIRI and age, BMI, family history of cancer, adjuvant therapy, and AGR groups. Among these indicators, the correlation between PLR and NLR is the strongest. In addition, high preoperative C-SIRI was significantly correlated with poorer overall survival (OS) (HR: 2.782, 95% CI: 1.630-4.746, P < 0.001) based on univariate survival analysis. Moreover, it remained an independent predictor for OS (HR: 2.563, 95% CI: 1.419-4.628, p = 0.002) in multivariate Cox regression analysis. CONCLUSION Our study showed that preoperative C-SIRI could serve as a significant prognostic biomarker in patients with resectable colorectal cancer.
Collapse
Affiliation(s)
- Hao Cai
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Qiao Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - Yang Liu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China
| | - HouJun Jia
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Chongqing Medical University, No.1, Medical College Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
15
|
Pham SH, Vuorinen SI, Arif KT, Griffiths LR, Okolicsanyi RK, Haupt LM. Syndecan-4 regulates the HER2-positive breast cancer cell proliferation cells via CK19/AKT signalling. Biochimie 2023; 207:49-61. [PMID: 36460206 DOI: 10.1016/j.biochi.2022.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/27/2022] [Accepted: 11/18/2022] [Indexed: 12/02/2022]
Abstract
Despite the use of the highly specific anti-HER2 receptor (trastuzumab) therapy, HER2-positive breast cancers account for 20-30% of all breast cancer carcinomas, with HER2 status a challenge to treatment interventions. The heparan sulfate proteoglycans (HSPGs) are prominently expressed in the extracellular matrix (ECM), mediate breast cancer proliferation, development, and metastasis with most studies to date conducted in animal models. This study examined HSPGs in HER2-positive human breast cancer cell lines and their contribution to cancer cell proliferation. The study examined the cells following enhancement (via the addition of heparin) and knockdown (KD; using short interfering RNA, siRNA) of HSPG core proteins. The interaction of HSPG core proteins and AKT signalling molecules was examined to identify any influence of this signalling pathway on cancer cell proliferation. Our findings illustrated the HSPG syndecan-4 (SDC4) core protein significantly regulates cell proliferation with increased BC cell proliferation following heparin addition to cultures and decreased cell number following SDC4 KD. In addition, along with SDC4, significant changes in CK19/AKT signalling were identified as mediators of BC HER2-positive BC cell proliferation. This study provides evidence for a cell growth regulatory axis involving HSPGs/CK19 and AKT that represents a potential molecular target to prevent proliferation of HER2-positive breast cancer cells.
Collapse
Affiliation(s)
- Son H Pham
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Sofia I Vuorinen
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Km Taufiqul Arif
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Lyn R Griffiths
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Rachel K Okolicsanyi
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia
| | - Larisa M Haupt
- Queensland University of Technology (QUT), Centre for Genomics and Personalised Health, Genomics Research Centre, School of Biomedical Sciences, 60 Musk Ave., Kelvin Grove, Queensland, 4059, Australia; ARC Training Centre for Cell and Tissue Engineering Technologies, Queensland University of Technology (QUT), Australia.
| |
Collapse
|
16
|
Al-Kuraishy HM, Al-Gareeb AI, Hetta HF, Alexiou A, Papadakis M, Batiha GES. Heparanase is the possible link between monkeypox and Covid-19: robust candidature in the mystic and present perspective. AMB Express 2023; 13:13. [PMID: 36705773 PMCID: PMC9880376 DOI: 10.1186/s13568-023-01517-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/18/2023] [Indexed: 01/28/2023] Open
Abstract
Heparanase (HPSE) is an endoglycosidase cleaves heparan sulfate (HS) and this contributes to the degradation and remodeling of the extracellular matrix. HS cleaved by HPSE induces activation of autophagy and formation of autophagosommes which facilitate binding of HPSE to the HS and subsequent release of growth factors. The interaction between HPSE and HS triggers releases of chemokines and cytokines which affect inflammatory response and cell signaling pathways with development of hyperinflammation, cytokine storm (CS) and coagulopathy. HPSE expression is induced by both SARS-CoV-2 and monkeypox virus (MPXV) leading to induction release of pro-inflammatory cytokines, endothelial dysfunction and thrombotic events. Co-infection of MPX with SARS-CoV-2 may occur as we facing many outbreaks of MPX cases during Covid-19 pandemic. Therefore, targeting of HPSE by specific inhibitors may reduce the risk of complications in both SARS-CoV-2 and MPXV infections. Taken together, HPSE could be a potential link between MPX with SARS-CoV-2 in Covid-19 era.
Collapse
Affiliation(s)
- Hayder M. Al-Kuraishy
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Ali I. Al-Gareeb
- Department of Clinical Pharmacology and Therapeutic Medicine, College of Medicine, ALmustansiriyiah University, Baghdad, Iraq
| | - Helal F. Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515 Egypt
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW 2770 Australia
- AFNP Med, 1030 Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283 Wuppertal, Germany
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Damanhour, 22511 Egypt
| |
Collapse
|
17
|
Lebsir N, Zoulim F, Grigorov B. Heparanase-1: From Cancer Biology to a Future Antiviral Target. Viruses 2023; 15:237. [PMID: 36680276 PMCID: PMC9860851 DOI: 10.3390/v15010237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023] Open
Abstract
Heparan sulfate proteoglycans (HSPGs) are a major constituent of the extracellular matrix (ECM) and are found to be implicated in viral infections, where they play a role in both cell entry and release for many viruses. The enzyme heparanase-1 is the only known endo-beta-D-glucuronidase capable of degrading heparan sulphate (HS) chains of HSPGs and is thus important for regulating ECM homeostasis. Heparanase-1 expression is tightly regulated as the uncontrolled cleavage of HS may result in abnormal cell activation and significant tissue damage. The overexpression of heparanase-1 correlates with pathological scenarios and is observed in different human malignancies, such as lymphoma, breast, colon, lung, and hepatocellular carcinomas. Interestingly, heparanase-1 has also been documented to be involved in numerous viral infections, e.g., HSV-1, HPV, DENV. Moreover, very recent reports have demonstrated a role of heparanase-1 in HCV and SARS-CoV-2 infections. Due to the undenied pro-carcinogenic role of heparanase-1, multiple inhibitors have been developed, some reaching phase II and III in clinical studies. However, the use of heparanase inhibitors as antivirals has not yet been proposed. If it can be assumed that heparanase-1 is implicated in numerous viral life cycles, its inhibition by specific heparanase-acting compounds should result in a blockage of viral infection. This review addresses the perspectives of using heparanase inhibitors, not only for cancer treatment, but also as antivirals. Eventually, the development of a novel class antivirals targeting a cellular protein could help to alleviate the resistance problems seen with some current antiretroviral therapies.
Collapse
Affiliation(s)
- Nadjet Lebsir
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
- Confluence: Sciences et Humanités (EA 1598), UCLy, 10 Place des Archives, 69002 Lyon, France
| | - Fabien Zoulim
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
- Hospices Civils de Lyon, 69002 Lyon, France
| | - Boyan Grigorov
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, 69434 Lyon, France
| |
Collapse
|
18
|
Heparanase: A Novel Therapeutic Target for the Treatment of Atherosclerosis. Cells 2022; 11:cells11203198. [PMID: 36291066 PMCID: PMC9599978 DOI: 10.3390/cells11203198] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/07/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death and disability worldwide, and its management places a huge burden on healthcare systems through hospitalisation and treatment. Atherosclerosis is a chronic inflammatory disease of the arterial wall resulting in the formation of lipid-rich, fibrotic plaques under the subendothelium and is a key contributor to the development of CVD. As such, a detailed understanding of the mechanisms involved in the development of atherosclerosis is urgently required for more effective disease treatment and prevention strategies. Heparanase is the only mammalian enzyme known to cleave heparan sulfate of heparan sulfate proteoglycans, which is a key component of the extracellular matrix and basement membrane. By cleaving heparan sulfate, heparanase contributes to the regulation of numerous physiological and pathological processes such as wound healing, inflammation, tumour angiogenesis, and cell migration. Recent evidence suggests a multifactorial role for heparanase in atherosclerosis by promoting underlying inflammatory processes giving rise to plaque formation, as well as regulating lesion stability. This review provides an up-to-date overview of the role of heparanase in physiological and pathological processes with a focus on the emerging role of the enzyme in atherosclerosis.
Collapse
|
19
|
Jahangiri B, Saei AK, Obi PO, Asghari N, Lorzadeh S, Hekmatirad S, Rahmati M, Velayatipour F, Asghari MH, Saleem A, Moosavi MA. Exosomes, autophagy and ER stress pathways in human diseases: Cross-regulation and therapeutic approaches. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166484. [PMID: 35811032 DOI: 10.1016/j.bbadis.2022.166484] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/01/2022] [Accepted: 07/03/2022] [Indexed: 02/08/2023]
Abstract
Exosomal release pathway and autophagy together maintain homeostasis and survival of cells under stressful conditions. Autophagy is a catabolic process through which cell entities, such as malformed biomacromolecules and damaged organelles, are degraded and recycled via the lysosomal-dependent pathway. Exosomes, a sub-type of extracellular vesicles (EVs) formed by the inward budding of multivesicular bodies (MVBs), are mostly involved in mediating communication between cells. The unfolded protein response (UPR) is an adaptive response that is activated to sustain survival in the cells faced with the endoplasmic reticulum (ER) stress through a complex network that involves protein synthesis, exosomes secretion and autophagy. Disruption of the critical crosstalk between EVs, UPR and autophagy may be implicated in various human diseases, including cancers and neurodegenerative diseases, yet the molecular mechanism(s) behind the coordination of these communication pathways remains obscure. Here, we review the available information on the mechanisms that control autophagy, ER stress and EV pathways, with the view that a better understanding of their crosstalk and balance may improve our knowledge on the pathogenesis and treatment of human diseases, where these pathways are dysregulated.
Collapse
Affiliation(s)
- Babak Jahangiri
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Ali Kian Saei
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Patience O Obi
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada
| | - Narjes Asghari
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Shahrokh Lorzadeh
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
| | - Shirin Hekmatirad
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Marveh Rahmati
- Cancer Biology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Velayatipour
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran
| | - Mohammad Hosseni Asghari
- Department of Pharmacology and Toxicology, School of Medicine, Student Research Committee, Babol University of Medical Sciences, Babol, Iran
| | - Ayesha Saleem
- Applied Health Sciences, University of Manitoba, Winnipeg R3T 2N2, Canada; Faculty of Kinesiology and Recreation Management, University of Manitoba, Winnipeg R3T 2N2, Canada; Children's Hospital Research Institute of Manitoba, Winnipeg R3E 3P4, Canada.
| | - Mohammad Amin Moosavi
- Department of Molecular Medicine, Institute of Medical Biotechnology, National Institute of Genetic Engineering and Biotechnology, Tehran, P.O Box 14965/161, Iran.
| |
Collapse
|
20
|
Inflammation- and Metastasis-Related Proteins Expression Changes in Early Stages in Tumor and Non-Tumor Adjacent Tissues of Colorectal Cancer Samples. Cancers (Basel) 2022; 14:cancers14184487. [PMID: 36139645 PMCID: PMC9497293 DOI: 10.3390/cancers14184487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Non-tumor adjacent tissue plays a key role in colorectal cancer development, as well as chronic inflammation, but their role has not yet been dilucidated. In addition, inflammation is a process which is related to epithelial-mesenchymal transition and metastasis, but their changes across the different colorectal cancer stages are not fully studied. Understanding how these processes participate in all colorectal cancer phases can be key to a better understanding of the disease. Abstract Chronic inflammation can induce malignant cell transformation, having an important role in all colorectal cancer (CRC) phases. Non-tumor adjacent tissue plays an important role in tumor progression, but its implication in CRC has not yet been fully elucidated. The aim was to analyze the expression of inflammatory, epithelial-mesenchymal transition (EMT), and metastasis-related proteins in both tumor and non-tumor adjacent tissues from CRC patients by western blot. Tumor tissue presented an increase in metastasis and EMT-related proteins compared to non-tumor adjacent tissue, especially in stage II. Tumor tissue stage II also presented an increase in inflammatory-related proteins compared to other stages, which was also seen in non-tumor adjacent tissue stage II. Additionally, the relapse-free survival study of Vimentin and VEGF-B expression levels in stage II patients showed that the higher the expression levels of each protein, the lower 10-year relapse-free survival. These could suggest that some metastasis-related signalling pathways may be activated in stage II in tumor tissue, accompanied by an increase in inflammation. Furthermore, non-tumor adjacent tissue presented an increase of the inflammatory status that could be the basis for future tumor progression. In conclusion, these proteins could be useful as biomarkers of diagnosis for CRC at early stages.
Collapse
|
21
|
Yuan F, Yang Y, Zhou H, Quan J, Liu C, Wang Y, Zhang Y, Yu X. Heparanase in cancer progression: Structure, substrate recognition and therapeutic potential. Front Chem 2022; 10:926353. [PMID: 36157032 PMCID: PMC9500389 DOI: 10.3389/fchem.2022.926353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/22/2022] [Indexed: 12/03/2022] Open
Abstract
Heparanase, a member of the carbohydrate-active enzyme (CAZy) GH79 family, is an endo-β-glucuronidase capable of degrading the carbohydrate moiety of heparan sulphate proteoglycans, thus modulating and facilitating remodeling of the extracellular matrix. Heparanase activity is strongly associated with major human pathological complications, including but not limited to tumour progress, angiogenesis and inflammation, which make heparanase a valuable therapeutic target. Long-due crystallographic structures of human and bacterial heparanases have been recently determined. Though the overall architecture of human heparanase is generally comparable to that of bacterial glucuronidases, remarkable differences exist in their substrate recognition mode. Better understanding of regulatory mechanisms of heparanase in substrate recognition would provide novel insight into the anti-heparanase inhibitor development as well as potential clinical applications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xing Yu
- *Correspondence: Yujing Zhang, ; Xing Yu,
| |
Collapse
|
22
|
Alorda-Clara M, Torrens-Mas M, Morla-Barcelo PM, Roca P, Sastre-Serra J, Pons DG, Oliver J. High Concentrations of Genistein Decrease Cell Viability Depending on Oxidative Stress and Inflammation in Colon Cancer Cell Lines. Int J Mol Sci 2022; 23:ijms23147526. [PMID: 35886874 PMCID: PMC9323408 DOI: 10.3390/ijms23147526] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 12/24/2022] Open
Abstract
Genistein could play a crucial role in modulating three closely linked physiological processes altered during cancer: oxidative stress, mitochondrial biogenesis, and inflammation. However, genistein’s role in colorectal cancer remains unclear. We aimed to determine genistein’s effects in two colon cancer cells: HT29 and SW620, primary and metastatic cancer cells, respectively. After genistein treatment for 48 h, cell viability and hydrogen peroxide (H2O2) production were studied. The cell cycle was studied by flow cytometry, mRNA and protein levels were analyzed by RT-qPCR and Western blot, respectively, and finally, cytoskeleton remodeling and NF-κB translocation were determined by confocal microscopy. Genistein 100 µM decreased cell viability and produced G2/M arrest, increased H2O2, and produced filopodia in SW620 cells. In HT29 cells, genistein produced an increase of cell death, H2O2 production, and in the number of stress fibers. In HT29 cells, mitochondrial biogenesis was increased, however, in SW620 cells, it was decreased. Finally, the expression of inflammation-related genes increased in both cell lines, being greater in SW620 cells, where NF-κB translocation to the nucleus was higher. These results indicate that high concentrations of genistein could increase oxidative stress and inflammation in colon cancer cells and, ultimately, decrease cell viability.
Collapse
Affiliation(s)
- Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Correspondence: ; Tel.: +34-971173149
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (P.R.); (J.S.-S.); (J.O.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03), Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| |
Collapse
|
23
|
Gallard C, Lebsir N, Khursheed H, Reungoat E, Plissonnier ML, Bré J, Michelet M, Chouik Y, Zoulim F, Pécheur EI, Bartosch B, Grigorov B. Heparanase-1 is upregulated by hepatitis C virus and favors its replication. J Hepatol 2022; 77:29-41. [PMID: 35085593 DOI: 10.1016/j.jhep.2022.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 01/03/2022] [Accepted: 01/13/2022] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Over time, chronic HCV infection can lead to hepatocellular carcinoma (HCC), a process that involves changes to the liver extracellular matrix (ECM). However, the exact mechanisms by which HCV induces HCC remain unclear. Therefore, we sought to investigate the impact of HCV on the liver ECM, with a focus on heparanase-1 (HPSE). METHODS HPSE expression was assessed by quantitative reverse-transcription PCR, immunoblotting and immunofluorescence in liver biopsies infected or not with HCV, and in 10-day-infected hepatoma Huh7.5 cells. Cell lines deficient for or overexpressing HPSE were established to study its role during infection. RESULTS HCV propagation led to significant HPSE induction, in vivo and in vitro. HPSE enhanced infection when exogenously expressed or supplemented as a recombinant protein. Conversely, when HPSE expression was downregulated or its activity blocked, HCV infection dropped, suggesting a role of HPSE in the HCV life cycle. We further studied the underlying mechanisms of such observations and found that HPSE favored HCV release by enhancing CD63 synthesis and exosome secretion, but not by stimulating HCV entry or genome replication. We also showed that virus-induced oxidative stress was involved in HPSE induction, most likely through NF-κB activation. CONCLUSIONS We report for the first time that HCV infection is favored by HPSE, and upregulates HPSE expression and secretion, which may result in pathogenic alterations of the ECM. LAY SUMMARY Chronic hepatitis C virus (HCV) infection can lead to hepatocellular carcinoma development in a process that involves derangement of the extracellular matrix (ECM). Herein, we show that heparanase-1, a protein involved in ECM degradation and remodeling, favors HCV infection and is upregulated by HCV infection; this upregulation may result in pathogenic alterations of the ECM.
Collapse
Affiliation(s)
- Christophe Gallard
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Nadjet Lebsir
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Hira Khursheed
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Emma Reungoat
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Marie-Laure Plissonnier
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Jennifer Bré
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Maud Michelet
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Yasmina Chouik
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France; Hospices Civils de Lyon, Lyon, France
| | - Fabien Zoulim
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France; Hospices Civils de Lyon, Lyon, France
| | - Eve-Isabelle Pécheur
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France.
| | - Birke Bartosch
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France
| | - Boyan Grigorov
- Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, 69434, France.
| |
Collapse
|
24
|
Rodrigues AAN, Lopes-Santos L, Lacerda PA, Juste MF, Mariz BA, Cajazeiro DC, Giacobbe V, Borges R, Casarim A, Callegari GDS, Claret Arcadipane FAM, Aprahamian I, Salo TA, De Oliveira CE, Coletta RD, Augusto TM, Cervigne NK. Heparanase 1 Upregulation Promotes Tumor Progression and Is a Predictor of Low Survival for Oral Cancer. Front Cell Dev Biol 2022; 10:742213. [DOI: 10.3389/fcell.2022.742213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Oral cavity cancer is still an important public health problem throughout the world. Oral squamous cell carcinomas (OSCCs) can be quite aggressive and metastatic, with a low survival rate and poor prognosis. However, this is usually related to the clinical stage and histological grade, and molecular prognostic markers for clinical practice are yet to be defined. Heparanase (HPSE1) is an endoglycosidase associated with extracellular matrix remodeling, and although involved in several malignancies, the clinical implications of HPSE1 expression in OSCCs are still unknown.Methods: We sought to investigate HPSE1 expression in a series of primary OSCCs and further explore whether its overexpression plays a relevant role in OSCC tumorigenesis. mRNA and protein expression analyses were performed in OSCC tissue samples and cell lines. A loss-of-function strategy using shRNA and a gain-of-function strategy using an ORF vector targeting HPSE1 were employed to investigate the endogenous modulation of HPSE1 and its effects on proliferation, apoptosis, adhesion, epithelial–mesenchymal transition (EMT), angiogenesis, migration, and invasion of oral cancer in vitro.Results: We demonstrated that HPSE1 is frequently upregulated in OSCC samples and cell lines and is an unfavorable prognostic indicator of disease-specific survival when combined with advanced pT stages. Moreover, abrogation of HPSE1 in OSCC cells significantly promoted apoptosis and inhibited proliferation, migration, invasion, and epithelial–mesenchymal transition by significantly decreasing the expression of N-cadherin and vimentin. Furthermore, a conditioned medium of HPSE1-downregulated cells resulted in reduced vascular endothelial growth.Conclusion: Our results confirm the overexpression of HPSE1 in OSCCs, suggest that HPSE1 expression correlates with disease progression as it is associated with several important biological processes for oral tumorigenesis, and can be managed as a prognostic marker for patients with OSCC.
Collapse
|
25
|
Regulation of biomineralization by proteoglycans: From mechanisms to application. Carbohydr Polym 2022; 294:119773. [DOI: 10.1016/j.carbpol.2022.119773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 11/17/2022]
|
26
|
Tang XD, Lü KL, Yu J, Du HJ, Fan CQ, Chen L. In vitro and in vivo evaluation of DC-targeting PLGA nanoparticles encapsulating heparanase CD4 + and CD8 + T-cell epitopes for cancer immunotherapy. Cancer Immunol Immunother 2022; 71:2969-2983. [PMID: 35546204 DOI: 10.1007/s00262-022-03209-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 04/08/2022] [Indexed: 12/17/2022]
Abstract
Heparanase has been identified as a universal tumor-associated antigen, but heparanase epitope peptides are difficult to recognize. Therefore, it is necessary to explore novel strategies to ensure efficient delivery to antigen-presenting cells. Here, we established a novel immunotherapy model targeting antigens to dendritic cell (DC) receptors using a combination of heparanase CD4+ and CD8+ T-cell epitope peptides to achieve an efficient cytotoxic T-cell response, which was associated with strong activation of DCs. First, pegylated poly(lactic-coglycolic acid) (PLGA) nanoparticles (NPs) were used to encapsulate a combined heparanase CD4+ and CD8+ T-cell epitope alone or in combination with Toll-like receptor 3 and 7 ligands as a model antigen to enhance immunogenicity. The ligands were then targeted to DC cell-surface molecules using a DEC-205 antibody. The binding and internalization of these PLGA NPs and the activation of DCs, the T-cell response and the tumor-killing effect were assessed. The results showed that PLGA NPs encapsulating epitope peptides (mHpa399 + mHpa519) could be targeted to and internalized by DCs more efficiently, stimulating higher levels of IL-12 production, T-cell proliferation and IFN-γ production by T cells in vitro. Moreover, vaccination with DEC-205-targeted PLGA NPs encapsulating combined epitope peptides exhibited higher tumor-killing efficacy both in vitro and in vivo. In conclusion, delivery of PLGA NP vaccines targeting DEC-205 based on heparanase CD4+ and CD8+ T-cell epitopes are suitable immunogens for antitumor immunotherapy and have promising potential for clinical applications.
Collapse
Affiliation(s)
- Xu-Dong Tang
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Kui-Lin Lü
- Department of Pediatrics, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Jin Yu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China
| | - Han-Jian Du
- Department of Neurosurgery, Chongqing University Cancer Hospital and Chongqing Cancer Institute and Chongqing Cancer Hospital, Chongqing, 400030, China
| | - Chao-Qiang Fan
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| | - Lei Chen
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400037, China.
| |
Collapse
|
27
|
Whitefield C, Hong N, Mitchell JA, Jackson CJ. Computational design and experimental characterisation of a stable human heparanase variant. RSC Chem Biol 2022; 3:341-349. [PMID: 35382258 PMCID: PMC8905545 DOI: 10.1039/d1cb00239b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Heparanase is the only human enzyme known to hydrolyse heparin sulfate and is involved in many important physiological processes. However, it is also unregulated in many disease states, such as cancer, diabetes and Covid-19. It is thus an important drug target, yet the heterologous production of heparanase is challenging and only possible in mammalian or insect expression systems, which limits the ability of many laboratories to study it. Here we describe the computational redesign of heparanase to allow high yield expression in Escherchia coli. This mutated form of heparanase exhibits essentially identical kinetics, inhibition, structure and protein dynamics to the wild type protein, despite the presence of 26 mutations. This variant will facilitate wider study of this important enzyme and contributes to a growing body of literature that shows evolutionarily conserved and functionally neutral mutations can have significant effects on protein folding and expression. A mutant heparanase that exhibits wild type structure and activity but can be heterologously produced in bacterial protein expression systems.![]()
Collapse
Affiliation(s)
- Cassidy Whitefield
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Nansook Hong
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Joshua A. Mitchell
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| | - Colin J. Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
28
|
Ravi Kiran AVVV, Kusuma Kumari G, Krishnamurthy PT, Khaydarov RR. Tumor microenvironment and nanotherapeutics: intruding the tumor fort. Biomater Sci 2021; 9:7667-7704. [PMID: 34673853 DOI: 10.1039/d1bm01127h] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Over recent years, advancements in nanomedicine have allowed new approaches to diagnose and treat tumors. Nano drug delivery systems exploit the enhanced permeability and retention (EPR) effect and enter the tumor tissue's interstitial space. However, tumor barriers play a crucial role, and cause inefficient EPR or the homing effect. Mounting evidence supports the hypothesis that the components of the tumor microenvironment, such as the extracellular matrix, and cellular and physiological components collectively or cooperatively hinder entry and distribution of drugs, and therefore, limit the theragnostic applications of cancer nanomedicine. This abnormal tumor microenvironment plays a pivotal role in cancer nanomedicine and was recently recognized as a promising target for improving nano-drug delivery and their therapeutic outcomes. Strategies like passive or active targeting, stimuli-triggered nanocarriers, and the modulation of immune components have shown promising results in achieving anticancer efficacy. The present review focuses on the tumor microenvironment and nanoparticle-based strategies (polymeric, inorganic and organic nanoparticles) for intruding the tumor barrier and improving therapeutic effects.
Collapse
Affiliation(s)
- Ammu V V V Ravi Kiran
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Garikapati Kusuma Kumari
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Praveen T Krishnamurthy
- Department of Pharmacology, JSS College of Pharmacy (JSS Academy of Higher Education and Research), Ooty, Tamil Nadu, 643001, India
| | - Renat R Khaydarov
- Institute of Nuclear Physics, Uzbekistan Academy of Sciences, Tashkent, 100047, Uzbekistan.
| |
Collapse
|
29
|
Yang WJ, Shi L, Wang XM, Yang GW. Heparanase is a novel biomarker for immune infiltration and prognosis in breast cancer. Aging (Albany NY) 2021; 13:20836-20852. [PMID: 34461608 PMCID: PMC8436937 DOI: 10.18632/aging.203489] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 04/29/2021] [Indexed: 04/28/2023]
Abstract
Heparanase (HPSE), an endoglycosidase that cleaves heparan sulfate, regulates a variety of biological processes that promote tumor progression. In this study, we analyzed the correlation between HPSE expression and prognosis in cancer patients, using multiple databases (Oncomine, TIMER, PrognoScan, GEPIA, Kaplan-Meier plotter, miner v4.1, DAVID). HPSE expression was significantly increased in bladder, breast, lung, and stomach cancer compared to matched normal tissues. The increased HPSE expression correlated with poor prognosis and increased immune infiltration levels of B cells, CD8+ and CD4+ T cells, macrophages, neutrophils and dendritic cells in bladder and breast cancer. In breast cancer, the high HPSE expression was associated with basal-like subtypes, younger age (0-40), advanced Scarff-Bloom-Richardson grade, Nottingham Prognostic Index and p53 mutation status. In addition, using a mouse model of breast cancer, our data showed that HPSE upregulated IL-10 expression and promoted macrophage M2 polarization and T cell exhaustion. Together, our data provide a novel immunological perspective on the mechanisms underlying breast cancer progression, and indicate that HPSE may serve as a biomarker for immune infiltration and prognosis in breast cancer.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Lin Shi
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, China
| |
Collapse
|
30
|
Tang L, Tang B, Lei Y, Yang M, Wang S, Hu S, Xie Z, Liu Y, Vlodavsky I, Yang S. Helicobacter pylori-Induced Heparanase Promotes H. pylori Colonization and Gastritis. Front Immunol 2021; 12:675747. [PMID: 34220822 PMCID: PMC8248549 DOI: 10.3389/fimmu.2021.675747] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Chronic gastritis caused by Helicobacter pylori (H. pylori) infection has been widely recognized as the most important risk factor for gastric cancer. Analysis of the interaction between the key participants in gastric mucosal immunity and H. pylori infection is expected to provide important insights for the treatment of chronic gastritis and the prevention of gastric cancer. Heparanase is an endoglycosidase that degrades heparan sulfate, resulting in remodeling of the extracellular matrix thereby facilitating the extravasation and migration of immune cells towards sites of inflammation. Heparanase also releases heparan sulfate-bound cytokines and chemokines that further promote directed motility and recruitment of immune cells. Heparanase is highly expressed in a variety of inflammatory conditions and diseases, but its role in chronic gastritis has not been sufficiently explored. In this study, we report that H. pylori infection promotes up-regulation of heparanase in gastritis, which in turn facilitates the colonization of H. pylori in the gastric mucosa, thereby aggravating gastritis. By sustaining continuous activation, polarization and recruitment of macrophages that supply pro-inflammatory and pro-tumorigenic cytokines (i.e., IL-1, IL-6, IL-1β, TNF-α, MIP-2, iNOS), heparanase participates in the generation of a vicious circle, driven by enhanced NFκB and p38-MAPK signaling, that supports the development and progression of gastric cancer. These results suggest that inhibition of heparanase may block this self-sustaining cycle, and thereby reduce the risk of gastritis and gastric cancer.
Collapse
Affiliation(s)
- Li Tang
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Yuanyuan Lei
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Min Yang
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Shiping Hu
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Zhuo Xie
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Yaojiang Liu
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shiming Yang
- Department of Gastroenterology, Xinqiao Hospital, The Army Medical University, Chongqing, China
| |
Collapse
|
31
|
Barash U, Rangappa S, Mohan CD, Vishwanath D, Boyango I, Basappa B, Vlodavsky I, Rangappa KS. New Heparanase-Inhibiting Triazolo-Thiadiazoles Attenuate Primary Tumor Growth and Metastasis. Cancers (Basel) 2021; 13:cancers13122959. [PMID: 34199150 PMCID: PMC8231572 DOI: 10.3390/cancers13122959] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/27/2022] Open
Abstract
Simple Summary Heparanase is an endoglycosidase that plays a critical role in tumor progression and metastasis. The expression of heparanase in the tumor microenvironment is positively correlated with the aggressiveness of the tumor and is associated with poor prognosis. In this study, we have demonstrated that a new triazole–thiadiazole-bearing small molecule showed good heparanase inhibition along with attenuation of tumor growth and metastasis. To the best of our knowledge, this is the first report showing a marked decrease in primary tumor growth in mice treated with a small molecule that inhibits heparanase enzymatic activity. Given these encouraging results, studies are underway to better elucidate the mode of action and clinical significance of triazolo–thiadiazoles. Abstract Compelling evidence ties heparanase, an endoglycosidase that cleaves heparan sulfate side (HS) chains of proteoglycans, with all steps of tumor development, including tumor initiation, angiogenesis, growth, metastasis, and chemoresistance. Moreover, heparanase levels correlate with shorter postoperative survival of cancer patients, encouraging the development of heparanase inhibitors as anti-cancer drugs. Heparanase-inhibiting heparin/heparan sulfate-mimicking compounds and neutralizing antibodies are highly effective in animal models of cancer progression, yet none of the compounds reached the stage of approval for clinical use. The present study focused on newly synthesized triazolo–thiadiazoles, of which compound 4-iodo-2-(3-(p-tolyl)-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazol-6-yl)phenol (4-MMI) was identified as a potent inhibitor of heparanase enzymatic activity, cell invasion, experimental metastasis, and tumor growth in mouse models. To the best of our knowledge, this is the first report showing a marked decrease in primary tumor growth in mice treated with small molecules that inhibit heparanase enzymatic activity. This result encourages the optimization of 4-MMI for preclinical and clinical studies primarily in cancer but also other indications (i.e., colitis, pancreatitis, diabetic nephropathy, tissue fibrosis) involving heparanase, including viral infection and COVID-19.
Collapse
Affiliation(s)
- Uri Barash
- Technion Integrated Cancer Center (TICC), the Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (U.B.); (I.B.)
| | - Shobith Rangappa
- Adichunchanagiri Institute for Molecular Medicine, BG Nagara, Nagamangala Taluk 571448, India;
| | | | - Divakar Vishwanath
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (D.V.); (B.B.)
| | - Ilanit Boyango
- Technion Integrated Cancer Center (TICC), the Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (U.B.); (I.B.)
| | - Basappa Basappa
- Laboratory of Chemical Biology, Department of Studies in Organic Chemistry, University of Mysore, Manasagangotri, Mysore 570006, India; (D.V.); (B.B.)
| | - Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), the Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel; (U.B.); (I.B.)
- Correspondence: (I.V.); (K.S.R.)
| | - Kanchugarakoppal S. Rangappa
- Institution of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore 570006, India
- Correspondence: (I.V.); (K.S.R.)
| |
Collapse
|
32
|
Zahavi T, Salmon-Divon M, Salgado R, Elkin M, Hermano E, Rubinstein AM, Francis PA, Di Leo A, Viale G, de Azambuja E, Ameye L, Sotiriou C, Salmon A, Kravchenko-Balasha N, Sonnenblick A. Heparanase: a potential marker of worse prognosis in estrogen receptor-positive breast cancer. NPJ Breast Cancer 2021; 7:67. [PMID: 34050190 PMCID: PMC8163849 DOI: 10.1038/s41523-021-00277-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 05/11/2021] [Indexed: 01/09/2023] Open
Abstract
Heparanase promotes tumor growth in breast tumors. We now evaluated heparanase protein and gene-expression status and investigated its impact on disease-free survival in order to gain better insight into the role of heparanase in ER-positive (ER+) breast cancer prognosis and to clarify its role in cell survival following chemotherapy. Using pooled analysis of gene-expression data, we found that heparanase was associated with a worse prognosis in estrogen receptor-positive (ER+) tumors (log-rank p < 10-10) and predictive to chemotherapy resistance (interaction p = 0.0001) but not hormonal therapy (Interaction p = 0.62). These results were confirmed by analysis of data from a phase III, prospective randomized trial which showed that heparanase protein expression is associated with increased risk of recurrence in ER+ breast tumors (log-rank p = 0.004). In vitro experiments showed that heparanase promoted tumor progression and increased cell viability via epithelial-mesenchymal transition, stemness, and anti-apoptosis pathways in luminal breast cancer. Taken together, our results demonstrated that heparanase is associated with worse outcomes and increased cell viability in ER+ BC.
Collapse
Affiliation(s)
- Tamar Zahavi
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Mali Salmon-Divon
- Department of Molecular Biology, Adelson School of Medicine, Ariel University, Ariel, Israel
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Department of Pathology, GZA-ZNA Hospitals, Antwerp, Belgium
| | - Michael Elkin
- Department of Oncology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Esther Hermano
- Department of Oncology, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ariel M Rubinstein
- The Institute of Biomedical and Oral Research, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Prudence A Francis
- Peter MacCallum Cancer Centre, University of Melbourne, Melbourne, VIC, Australia
- Breast Cancer Trials Australia & New Zealand, Newcastle, NSW, Australia
- International Breast Cancer Study Group, Bern, Switzerland
| | - Angelo Di Leo
- Sandro Pitigliani Department of Medical Oncology, Hospital of Prato, Prato, Italy
| | - Giuseppe Viale
- The University of Milan, and IEO European Institute of Oncology IRCCS, Milan, Italy
| | - Evandro de Azambuja
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Lieveke Ameye
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | - Christos Sotiriou
- Institut Jules Bordet and l'Université Libre de Bruxelles (U.L.B), Brussels, Belgium
| | | | | | - Amir Sonnenblick
- Tel Aviv Sourasky Medical Center, Tel Aviv, Israel.
- Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
33
|
Cheng J, Li X. Development and Application of Activity-based Fluorescent Probes for High-Throughput Screening. Curr Med Chem 2021; 29:1739-1756. [PMID: 34036907 DOI: 10.2174/0929867328666210525141728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/22/2022]
Abstract
High-throughput screening facilitates the rapid identification of novel hit compounds; however, it remains challenging to design effective high-throughput assays, partially due to the difficulty of achieving sensitivity in the assay techniques. Among the various analytical methods that are used, fluorescence-based assays dominate owing to their high sensitivity and ease of operation. Recent advances in activity-based sensing/imaging have further expanded the availability of fluorescent probes as monitors for high-throughput screening of result outputs. In this study, we have reviewed various activity-based fluorescent probes used in high-throughput screening assays, emphasizing their structure-related working mechanisms. Moreover, we have explored the possibility of the development of additional and better probes to boost hit identification and drug development against various targets.
Collapse
Affiliation(s)
- Juan Cheng
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xin Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, Zhejiang, China
| |
Collapse
|
34
|
Computational Investigation Identified Potential Chemical Scaffolds for Heparanase as Anticancer Therapeutics. Int J Mol Sci 2021; 22:ijms22105311. [PMID: 34156395 PMCID: PMC8157885 DOI: 10.3390/ijms22105311] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/11/2022] Open
Abstract
Heparanase (Hpse) is an endo-β-D-glucuronidase capable of cleaving heparan sulfate side chains. Its upregulated expression is implicated in tumor growth, metastasis and angiogenesis, thus making it an attractive target in cancer therapeutics. Currently, a few small molecule inhibitors have been reported to inhibit Hpse, with promising oral administration and pharmacokinetic (PK) properties. In the present study, a ligand-based pharmacophore model was generated from a dataset of well-known active small molecule Hpse inhibitors which were observed to display favorable PK properties. The compounds from the InterBioScreen database of natural (69,034) and synthetic (195,469) molecules were first filtered for their drug-likeness and the pharmacophore model was used to screen the drug-like database. The compounds acquired from screening were subjected to molecular docking with Heparanase, where two molecules used in pharmacophore generation were used as reference. From the docking analysis, 33 compounds displayed higher docking scores than the reference and favorable interactions with the catalytic residues. Complex interactions were further evaluated by molecular dynamics simulations to assess their stability over a period of 50 ns. Furthermore, the binding free energies of the 33 compounds revealed 2 natural and 2 synthetic compounds, with better binding affinities than reference molecules, and were, therefore, deemed as hits. The hit compounds presented from this in silico investigation could act as potent Heparanase inhibitors and further serve as lead scaffolds to develop compounds targeting Heparanase upregulation in cancer.
Collapse
|
35
|
Zhang X, O’Callaghan P, Li H, Tan Y, Zhang G, Barash U, Wang X, Lannfelt L, Vlodavsky I, Lindahl U, Li JP. Heparanase overexpression impedes perivascular clearance of amyloid-β from murine brain: relevance to Alzheimer's disease. Acta Neuropathol Commun 2021; 9:84. [PMID: 33971986 PMCID: PMC8111754 DOI: 10.1186/s40478-021-01182-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/14/2021] [Indexed: 12/23/2022] Open
Abstract
Defective amyloid-β (Aβ) clearance from the brain is a major contributing factor to the pathophysiology of Alzheimer's disease (AD). Aβ clearance is mediated by macrophages, enzymatic degradation, perivascular drainage along the vascular basement membrane (VBM) and transcytosis across the blood-brain barrier (BBB). AD pathology is typically associated with cerebral amyloid angiopathy due to perivascular accumulation of Aβ. Heparan sulfate (HS) is an important component of the VBM, thought to fulfill multiple roles in AD pathology. We previously showed that macrophage-mediated clearance of intracortically injected Aβ was impaired in the brains of transgenic mice overexpressing heparanase (Hpa-tg). This study revealed that perivascular drainage was impeded in the Hpa-tg brain, evidenced by perivascular accumulation of the injected Aβ in the thalamus of Hpa-tg mice. Furthermore, endogenous Aβ accumulated at the perivasculature of Hpa-tg thalamus, but not in control thalamus. This perivascular clearance defect was confirmed following intracortical injection of dextran that was largely retained in the perivasculature of Hpa-tg brains, compared to control brains. Hpa-tg brains presented with thicker VBMs and swollen perivascular astrocyte endfeet, as well as elevated expression of the BBB-associated water-pump protein aquaporin 4 (AQP4). Elevated levels of both heparanase and AQP4 were also detected in human AD brain. These findings indicate that elevated heparanase levels alter the organization and composition of the BBB, likely through increased fragmentation of BBB-associated HS, resulting in defective perivascular drainage. This defect contributes to perivascular accumulation of Aβ in the Hpa-tg brain, highlighting a potential role for heparanase in the pathogenesis of AD.
Collapse
|
36
|
Cui Y, Zhang J, Chen Y, Chen LG. Upregulation of Fecal Epithelial Heparanase mRNA Is Associated with Increased Ulcerative Colitis Activity and Cancerization Risk. Dig Dis Sci 2021; 66:1488-1498. [PMID: 32445051 PMCID: PMC8053146 DOI: 10.1007/s10620-020-06350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 05/12/2020] [Indexed: 12/09/2022]
Abstract
BACKGROUND Heparanase (HPSE) is considered to play an important role in the occurrence, development and carcinogenesis of ulcerative colitis (UC). There are no reports about the detection of HPSE mRNA in feces to predict UC activity and cancerization risk. AIMS To explore the feasibility and effectiveness of fecal epithelial HPSE mRNA in monitoring patients' UC activity and predicting cancer risk. METHODS The clinical part of the study enrolled 20 patients with UC and 20 controls. Meanwhile, a UC-induced carcinogenesis mouse model was established using a combination treatment of dimethylhydrazine and dextran sulfate sodium. Tissue expression of HPSE protein was detected by immunohistochemistry. RT-qPCR was used to detect the expression of HPSE mRNA in colonic mucosa and feces. RESULTS In the human study, the relative expressions of HPSE mRNA in colonic mucosa and feces were positively correlated with the Mayo score (P < 0.05), and with a significant correlation between feces and colonic mucosa (P < 0.05). In the mouse model, the relative expressions of HPSE mRNA in colonic mucosa and feces in the ulcerative colitis-associated colorectal cancer group was significantly higher than that of the UC group and the normal control group (P < 0.05), and with a significant correlation between feces and colonic mucosa (P < 0.05). CONCLUSIONS The relative level of HPSE mRNA was positively correlated with UC activity and cancerization. The relative level of HPSE mRNA in feces was correlated with that in colonic mucosa. The detection of HPSE mRNA in feces can be used as a new marker for disease monitoring and cancer risk prediction of UC.
Collapse
Affiliation(s)
- Ying Cui
- Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Jun Zhang
- Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
- People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China
| | - Yan Chen
- The Second Affiliated Hospital of Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, Zhejiang, China
| | - Le-Gao Chen
- Zhejiang Provincial People's Hospital, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
- People's Hospital of Hangzhou Medical College, 158 Shangtang Road, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
37
|
Chen Y. Recent progress in natural product-based inhibitor screening with enzymatic fluorescent probes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1778-1787. [PMID: 33885636 DOI: 10.1039/d1ay00245g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Drug discovery is a complex process in which many challenges need to be overcome, from the discovery of a drug candidate to ensuring the efficacy and safety of the candidate in humans. Modern analytical methods allow tens of thousands of drug candidates to be screened for their inhibition of specific enzymes or receptors. In recent years, fluorescent probes have been used for the detection and diagnosis of human pathogens as well as high-throughput screening. This review focuses on recent progress in organic small-molecule based enzyme-activated fluorescent probes for screening of inhibitors from natural products. The contents include the construction of fluorescent probes, working mechanism and the process of inhibitor screening. The progress suggests that fluorescent probes are a vital and rapidly growing technology for inhibitor screening of enzymes, in particular, inhibitor screening in situ.
Collapse
Affiliation(s)
- Yi Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China. and University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
38
|
Abstract
The extracellular matrix is a fundamental, core component of all tissues and organs, and is essential for the existence of multicellular organisms. From the earliest stages of organism development until death, it regulates and fine-tunes every cellular process in the body. In cancer, the extracellular matrix is altered at the biochemical, biomechanical, architectural and topographical levels, and recent years have seen an exponential increase in the study and recognition of the importance of the matrix in solid tumours. Coupled with the advancement of new technologies to study various elements of the matrix and cell-matrix interactions, we are also beginning to see the deployment of matrix-centric, stromal targeting cancer therapies. This Review touches on many of the facets of matrix biology in solid cancers, including breast, pancreatic and lung cancer, with the aim of highlighting some of the emerging interactions of the matrix and influences that the matrix has on tumour onset, progression and metastatic dissemination, before summarizing the ongoing work in the field aimed at developing therapies to co-target the matrix in cancer and cancer metastasis.
Collapse
Affiliation(s)
- Thomas R Cox
- The Kinghorn Cancer Centre, The Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- St Vincent's Clinical School, Faculty of Medicine, UNSW Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
39
|
Vlodavsky I, Barash U, Nguyen HM, Yang SM, Ilan N. Biology of the Heparanase-Heparan Sulfate Axis and Its Role in Disease Pathogenesis. Semin Thromb Hemost 2021; 47:240-253. [PMID: 33794549 DOI: 10.1055/s-0041-1725066] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cell surface proteoglycans are important constituents of the glycocalyx and participate in cell-cell and cell-extracellular matrix (ECM) interactions, enzyme activation and inhibition, and multiple signaling routes, thereby regulating cell proliferation, survival, adhesion, migration, and differentiation. Heparanase, the sole mammalian heparan sulfate degrading endoglycosidase, acts as an "activator" of HS proteoglycans, thus regulating tissue hemostasis. Heparanase is a multifaceted enzyme that together with heparan sulfate, primarily syndecan-1, drives signal transduction, immune cell activation, exosome formation, autophagy, and gene transcription via enzymatic and nonenzymatic activities. An important feature is the ability of heparanase to stimulate syndecan-1 shedding, thereby impacting cell behavior both locally and distally from its cell of origin. Heparanase releases a myriad of HS-bound growth factors, cytokines, and chemokines that are sequestered by heparan sulfate in the glycocalyx and ECM. Collectively, the heparan sulfate-heparanase axis plays pivotal roles in creating a permissive environment for cell proliferation, differentiation, and function, often resulting in the pathogenesis of diseases such as cancer, inflammation, endotheliitis, kidney dysfunction, tissue fibrosis, and viral infection.
Collapse
Affiliation(s)
- Israel Vlodavsky
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Hien M Nguyen
- Department of Chemistry, Wayne State University, Detroit, Michigan
| | - Shi-Ming Yang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, People's Republic of China
| | - Neta Ilan
- Technion Integrated Cancer Center (TICC), Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
40
|
Naeh A, Hantisteanu S, Meisel-Sharon S, Boyango I, Hallak M, Gabbay-Benziv R. The expression of heparanase in term and preterm human placentas. J Matern Fetal Neonatal Med 2021; 35:5840-5845. [PMID: 33691578 DOI: 10.1080/14767058.2021.1895743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
PURPOSE Heparanase is an endo-β-glucuronidase that cleaves side chains of heparan-sulfate proteoglycans, an integral constituent of the extra cellular matrix. The abundance of heparanase in placental trophoblast cells implies its role in the processes of placentation and trophoblast invasion. This study aims to explore the involvement of heparanase in parturition and preterm deliveries (PTD). METHODS Sixteen human placentas were collected following singleton spontaneous onset term vaginal deliveries (n = 6), spontaneous onset preterm vaginal deliveries (n = 7) and term elective cesarean sections (n = 3). Placentas were excluded in case of any maternal chronic illness, pregnancy or delivery complications apart from PTD. Placental tissue samples were dissected, homogenized and proteins were extracted. Additionally, cryosections were prepared from the placental tissues. Heparanase expression was evaluated utilizing western blot analysis and immunofluorescence staining using heparanase specific antibodies. Heparanase expression was compared between the study groups qualitatively and quantitatively. RESULTS Western blot analysis results demonstrated higher expression of both pro-heparanase and heparanase in PTD placentas compared to term vaginal placentas. Accordingly, immunofluorescence staining shows elevated heparanase expression in PTD placentas compared to term vaginal placentas (5.1 ± 0.92 vs. 1.2 ± 0.18, p < .005). Expression level of heparanase was higher in term cesarean section placentas as compared to term vaginal deliveries placentas, but did not reach statistical significance (1.8 ± 0.39 vs. 1.2 ± 0.18, p = .06). CONCLUSION This study demonstrates for the first time that preterm vaginal deliveries are associated with higher expression of heparanase in placental tissue. This may imply a direct effect of heparanase on preterm labor. Further studies should evaluate the functional role by which heparanase influence preterm delivery.
Collapse
Affiliation(s)
- Amir Naeh
- Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, The Hillel Yaffe Medical Center, Hadera, Israel, The Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shay Hantisteanu
- Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, The Hillel Yaffe Medical Center, Hadera, Israel, The Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shilhav Meisel-Sharon
- Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, The Hillel Yaffe Medical Center, Hadera, Israel, The Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Ilanit Boyango
- Cancer and Vascular Biology Research Center, The Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Mordechai Hallak
- Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, The Hillel Yaffe Medical Center, Hadera, Israel, The Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Rinat Gabbay-Benziv
- Laboratory for Reproductive Immunology, Department of Obstetrics and Gynecology, The Hillel Yaffe Medical Center, Hadera, Israel, The Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
41
|
Zhou L, Yin R, Gao N, Sun H, Chen D, Cai Y, Ren L, Yang L, Zuo Z, Zhang H, Zhao J. Oligosaccharides from fucosylated glycosaminoglycan prevent breast cancer metastasis in mice by inhibiting heparanase activity and angiogenesis. Pharmacol Res 2021; 166:105527. [PMID: 33667689 DOI: 10.1016/j.phrs.2021.105527] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/10/2021] [Accepted: 02/28/2021] [Indexed: 01/05/2023]
Abstract
The invasion and metastasis of tumor cells are the hallmarks of malignant diseases and the greatest obstacle to overcome. Heparanase-mediated degradation of heparan sulfate (HS) is the critical process for tumor angiogenesis and metastasis, therefore, heparanase become an attractive target for cancer research. Herein, we reported a native fucosylated glycosaminoglycan (nHG) extracted from sea cucumber Holothuria fuscopunctata and a depolymerized nHG (dHG) and its contained oligosaccharides (hs17, hs14, hs11, hs8 and hs5), acting as heparanase inhibitors. nHG and its derivatives have the ability to bind with heparanase directly, leading to significant inhibition of heparanase activity. Moreover, their apparent binding affinity to heparanase was comparable to their inhibitory effect, which was elevated along with the increase of chain length, similar to the effect of heparins. In addition, oligosaccharides inhibited the migration and invasion of 4T1 mammary carcinoma cells and human umbilical vein endothelial cells (HUVECs) and also suppressed tube formation in Matrigel matrix and angiogenesis in the chick chorioallantoic membrane (CAM) assay. In the metastatic mouse model, oligosaccharides exhibited practical antimetastatic effects on 4T1 mammary carcinoma cells. According to the reported anticoagulant activity and the low bleeding tendency of dHG and its oligosaccharides, the use of the oligosaccharides may lead to better effects on tumor patients with thrombosis tendency.
Collapse
Affiliation(s)
- Lutan Zhou
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China; Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Ronghua Yin
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Na Gao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China
| | - Huifang Sun
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dingyuan Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cai
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Ren
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Lian Yang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Zhili Zuo
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China.
| | - Hongbin Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Jinhua Zhao
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan 430074, China.
| |
Collapse
|
42
|
Barbosa GO, Biancardi MF, Carvalho HF. Heparan sulfate fine‐tunes stromal‐epithelial communication in the prostate gland. Dev Dyn 2020; 250:618-628. [DOI: 10.1002/dvdy.281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/20/2020] [Accepted: 12/10/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Guilherme O. Barbosa
- Department of Structural and Functional Biology, Institute of Biology State University of Campinas Campinas Brazil
| | - Manoel F. Biancardi
- Department of Histology, Embryology and Cell Biology, Institute of Biological Sciences Federal University of Goiás Goiânia Brazil
| | - Hernandes F. Carvalho
- Department of Structural and Functional Biology, Institute of Biology State University of Campinas Campinas Brazil
| |
Collapse
|
43
|
Clark RL. Teratogen update: Malaria in pregnancy and the use of antimalarial drugs in the first trimester. Birth Defects Res 2020; 112:1403-1449. [PMID: 33079495 DOI: 10.1002/bdr2.1798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 02/04/2023]
Abstract
Malaria is a particular problem in pregnancy because of enhanced sensitivity, the possibility of placental malaria, and adverse effects on pregnancy outcome. Artemisinin-containing combination therapies (ACTs) are the most effective antimalarials known. WHO recommends 7-day quinine therapy for uncomplicated Plasmodium falciparum malaria in the first trimester despite the superior tolerability and efficacy of 3-day ACT regimens because artemisinins caused embryolethality and/or cardiovascular malformations at relatively low doses in rats, rabbits, and monkeys. The developmental toxicity of artesunate, artemether, and DHA were similar in rats but artesunate was embryotoxic at lower doses in rabbits (5 mg/kg/day) than artemether (no effect level = 25 mg/kg/day). In clinical studies in Africa, treatment with artemether-lumefantrine in the first trimester was observed to be highly efficacious and the miscarriage rate (≤3.1%) was similar to no antimalarial treatment (2.6%). When data from the first-trimester use of largely artesunate-based therapies in Thailand were pooled together, there was no difference in miscarriage rate compared to quinine. However, individually, artesunate-mefloquine was associated with a higher miscarriage rate (15/71 = 21%) compared to other artemisinin-based therapies including 7-day artesunate + clindamycin (2/50 = 4%) and quinine (92/842 = 11%). Thus, appropriate statistical comparisons of individual ACT groups are needed prior to assuming that they all have the same risk for developmental toxicity. Current limitations in the assessment of the safety of ACTs in the first trimester are a lack of exposures early in gestation (gestational weeks 6-7), limited postnatal evaluation for cardiovascular malformations, and the pooling of all ACTs for the assessment of risk.
Collapse
Affiliation(s)
- Robert L Clark
- Artemis Pharmaceutical Research, Saint Augustine, Florida, USA
| |
Collapse
|
44
|
Melo CM, Prado HP, Attie GA, Ruiz DL, Girão MJBC, Pinhal MADS. In silico investigation of heparanase-correlated genes in breast cancer subtypes. EINSTEIN-SAO PAULO 2020; 18:eAO5447. [PMID: 33053017 PMCID: PMC7531901 DOI: 10.31744/einstein_journal/2020ao5447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/16/2020] [Indexed: 11/26/2022] Open
Abstract
Objective To investigate the possible genes that may be related to the mechanisms that modulate heparanase-1. Methods The analysis was conducted at Universidade Federal de São Paulo, on the data provided by: The Cancer Genome Atlas, University of California Santa Cruz Genome Browser, Kyoto Encyclopedia of Genes and Genomes Pathway Database, Database for Annotation, Visualization and Integrated Discovery Bioinformatics Database and the softwares cBioPortal and Ingenuity Pathway Analysis. Results Using messenger RNA expression pattern of different molecular subtypes of breast cancer, we proposed that heparinase-1 was co-related with its progression. In addition, genes that were analyzed presented co-expression with heparanase-1. The results that showed that heparanase-1 co-expressed with phosphoinositide 3-kinase adapter protein 1, sialic acid-binding immunoglobulin-like lectin 7, and leukocyte-associated immunoglobulin-like receptor 1 are directed related with immune system evasion during breast cancer progression. Furthermore, cathepsin L was co-expressed with heparanase-1 and transformed inactive heparanase-1 form into active heparanase-1, triggering extracellular matrix remodeling, which contributes to enhanced tumor-host interaction of the tumor. Conclusion The signaling pathway analysis using bioinformatics tools gives supporting evidence of possible mechanisms related to breast cancer development. Evasion genes of the immune system co-expressed with heparanase-1, a enzyme related with tumor progression.
Collapse
|
45
|
Cui J, Dean D, Hornicek FJ, Chen Z, Duan Z. The role of extracelluar matrix in osteosarcoma progression and metastasis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:178. [PMID: 32887645 PMCID: PMC7650219 DOI: 10.1186/s13046-020-01685-w] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 08/20/2020] [Indexed: 02/07/2023]
Abstract
Osteosarcoma (OS) is the most common primary bone malignancy and responsible for considerable morbidity and mortality due to its high rates of pulmonary metastasis. Although neoadjuvant chemotherapy has improved 5-year survival rates for patients with localized OS from 20% to over 65%, outcomes for those with metastasis remain dismal. In addition, therapeutic regimens have not significantly improved patient outcomes over the past four decades, and metastases remains a primary cause of death and obstacle in curative therapy. These limitations in care have given rise to numerous works focused on mechanisms and novel targets of OS pathogenesis, including tumor niche factors. OS is notable for its hallmark production of rich extracellular matrix (ECM) of osteoid that goes beyond simple physiological growth support. The aberrant signaling and structural components of the ECM are rich promoters of OS development, and very recent works have shown the specific pathogenic phenotypes induced by these macromolecules. Here we summarize the current developments outlining how the ECM contributes to OS progression and metastasis with supporting mechanisms. We also illustrate the potential of tumorigenic ECM elements as prognostic biomarkers and therapeutic targets in the evolving clinical management of OS.
Collapse
Affiliation(s)
- Juncheng Cui
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.,Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Dylan Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA
| | - Zhiwei Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of University of South China, 69 Chuanshan Road, Hengyang, 421001, Hunan, China.
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. South, Los Angeles, CA, 90095, USA.
| |
Collapse
|
46
|
Yang WJ, Zhang GL, Cao KX, Liu XN, Wang XM, Yu MW, Li JP, Yang GW. Heparanase from triple‑negative breast cancer and platelets acts as an enhancer of metastasis. Int J Oncol 2020; 57:890-904. [PMID: 32945393 PMCID: PMC7473754 DOI: 10.3892/ijo.2020.5115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC), which is characterized by inherently aggressive behavior and lack of recognized molecular targets for therapy, poses a serious threat to women's health worldwide. However, targeted treatments have yet to be made available. A crosstalk between tumor cells and platelets (PLT) contributing to growth, angiogenesis and metastasis has been reported in numerous cancers. Heparanase (Hpa), the only mammalian endoglycosidase that cleaves heparan sulfate, has been demonstrated to contribute to the growth, angiogenesis and metastasis of numerous cancers. Hypoxia affects the growth, angiogenesis and metastasis of nearly all solid tumors, and the ability of Hpa to promote invasion is enhanced in hypoxia. However, whether Hpa can strengthen the crosstalk between tumor cells and PLT, and whether enhancing the biological function of Hpa in TNBC promotes malignant progression, have yet to be fully elucidated. The present study, based on bioinformatics analysis and experimental studies in vivo and in vitro, demonstrated that Hpa enhanced the crosstalk between TNBC cells and PLT to increase the supply of oxygen and nutrients, while also conferring tolerance of TNBC cells to oxygen and nutrient shortage, both of which are important for overcoming the stress of hypoxia and nutritional deprivation in the tumor microenvironment, thereby promoting malignant progression, including growth, angiogenesis and metastasis in TNBC. In addition, the hypoxia-inducible factor-1a (HIF-1a)/vascular endothelial growth factor-a (VEGF- a)/phosphorylated protein kinase B (p-)Akt axis may be the key pathway involved in the effects of Hpa on the biological processes mentioned above. Therefore, improving local hypoxia, anti-Hpa treatment and inhibiting PLT activation may improve the prognosis of TNBC.
Collapse
Affiliation(s)
- Wen-Jing Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Gan-Lin Zhang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ke-Xin Cao
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Xiao-Ni Liu
- Beijing Institute of Hepatology, Beijing Youan Hospital, Capital Medical University, Beijing 100069, P.R. China
| | - Xiao-Min Wang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Ming-Wei Yu
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| | - Jin-Ping Li
- Biomedical Center, Uppsala University, Uppsala 75123, Sweden
| | - Guo-Wang Yang
- Department of Oncology, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing 100010, P.R. China
| |
Collapse
|
47
|
Huang X, Reye G, Momot KI, Blick T, Lloyd T, Tilley WD, Hickey TE, Snell CE, Okolicsanyi RK, Haupt LM, Ferro V, Thompson EW, Hugo HJ. Heparanase Promotes Syndecan-1 Expression to Mediate Fibrillar Collagen and Mammographic Density in Human Breast Tissue Cultured ex vivo. Front Cell Dev Biol 2020; 8:599. [PMID: 32760722 PMCID: PMC7373078 DOI: 10.3389/fcell.2020.00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/19/2020] [Indexed: 01/06/2023] Open
Abstract
Mammographic density (MD) is a strong and independent factor for breast cancer (BC) risk and is increasingly associated with BC progression. We have previously shown in mice that high MD, which is characterized by the preponderance of a fibrous stroma, facilitates BC xenograft growth and metastasis. This stroma is rich in extracellular matrix (ECM) factors, including heparan sulfate proteoglycans (HSPGs), such as the BC-associated syndecan-1 (SDC1). These proteoglycans tether growth factors, which are released by heparanase (HPSE). MD is positively associated with estrogen exposure and, in cell models, estrogen has been implicated in the upregulation of HPSE, the activity of which promotes SDC expression. Herein we describe a novel measurement approach (single-sided NMR) using a patient-derived explant (PDE) model of normal human (female) mammary tissue cultured ex vivo to investigate the role(s) of HPSE and SDC1 on MD. Relative HSPG gene and protein analyses determined in patient-paired high vs. low MD tissues identified SDC1 and SDC4 as potential mediators of MD. Using the PDE model we demonstrate that HPSE promotes SDC1 rather than SDC4 expression and cleavage, leading to increased MD. In this model system, synstatin (SSTN), an SDC1 inhibitory peptide designed to decouple SDC1-ITGαvβ3 parallel collagen alignment, reduced the abundance of fibrillar collagen as assessed by picrosirius red viewed under polarized light, and reduced MD. Our results reveal a potential role for HPSE in maintaining MD via its direct regulation of SDC1, which in turn physically tethers collagen into aligned fibers characteristic of MD. We propose that inhibitors of HPSE and/or SDC1 may afford an opportunity to reduce MD in high BC risk individuals and reduce MD-associated BC progression in conjunction with established BC therapies.
Collapse
Affiliation(s)
- Xuan Huang
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Gina Reye
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Konstantin I Momot
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Faculty of Science and Engineering, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tony Blick
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Thomas Lloyd
- Radiology Department, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Wayne D Tilley
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Theresa E Hickey
- Dame Roma Mitchell Cancer Research Laboratories, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Cameron E Snell
- Cancer Pathology Research Group, Mater Research Institute, The University of Queensland, Brisbane, QLD, Australia.,Mater Pathology, Mater Hospital Brisbane, South Brisbane, QLD, Australia
| | - Rachel K Okolicsanyi
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Larisa M Haupt
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia.,Genomics Research Centre, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia
| | - Vito Ferro
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, Australia
| | - Erik W Thompson
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Honor J Hugo
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, QLD, Australia.,Translational Research Institute, Woolloongabba, QLD, Australia.,School of Biomedical Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Khanna M, Parish CR. Heparanase: Historical Aspects and Future Perspectives. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:71-96. [PMID: 32274707 DOI: 10.1007/978-3-030-34521-1_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Heparanase is an endo-β-glucuronidase that cleaves at a limited number of internal sites the glycosaminoglycan heparan sulfate (HS). Heparanase enzymatic activity was first reported in 1975 and by 1983 evidence was beginning to emerge that the enzyme was a facilitator of tumor metastasis by cleaving HS chains present in blood vessel basement membranes and, thereby, aiding the passage of tumor cells through blood vessel walls. Due to a range of technical difficulties, it took another 16 years before heparanase was cloned and characterized in 1999 and a further 14 years before the crystal structure of the enzyme was solved. Despite these substantial deficiencies, there was steady progress in our understanding of heparanase long before the enzyme was fully characterized. For example, it was found as early as 1984 that activated T cells upregulate heparanase expression, like metastatic tumor cells, and the enzyme aids the entry of T cells and other leukocytes into inflammatory sites. Furthermore, it was discovered in 1989 that heparanase releases pre-existing growth factors and cytokines associated with HS in the extracellular matrix (ECM), the liberated growth factors/cytokines enhancing angiogenesis and wound healing. There were also the first hints that heparanase may have functions other than enzymatic activity, in 1995 it being reported that under certain conditions the enzyme could act as a cell adhesion molecule. Also, in the same year PI-88 (Muparfostat), the first heparanase inhibitor to reach and successfully complete a Phase III clinical trial was patented.Nevertheless, the cloning of heparanase (also known as heparanase-1) in 1999 gave the field an enormous boost and some surprises. The biggest surprise was that there is only one heparanase encoding gene in the mammalian genome, despite earlier research, based on substrate specificity, suggesting that there are at least three different heparanases. This surprising conclusion has remained unchanged for the last 20 years. It also became evident that heparanase is a family 79 glycoside hydrolase that is initially produced as a pro-enzyme that needs to be processed by proteases to form an enzymatically active heterodimer. A related molecule, heparanase-2, was also discovered that is enzymatically inactive but, remarkably, recently has been shown to inhibit heparanase-1 activity as well as acting as a tumor suppressor that counteracts many of the pro-tumor properties of heparanase-1.The early claim that heparanase plays a key role in tumor metastasis, angiogenesis and inflammation has been confirmed by many studies over the last 20 years. In fact, heparanase expression is enhanced in all major cancer types, namely carcinomas, sarcomas, and hematological malignancies, and correlates with increased metastasis and poor prognosis. Also, there is mounting evidence that heparanase plays a central role in the induction of inflammation-associated cancers. The enzymatic activity of heparanase has also emerged in unexpected situations, such as in the spread of HS-binding viruses and in Type-1 diabetes where the destruction of intracellular HS in pancreatic insulin-producing beta cells precipitates diabetes. But the most extraordinary recent discoveries have been with the realization that heparanase can exert a range of biological activities that are independent of its enzymatic function, most notably activation of several signaling pathways and being a transcription factor that controls methylation of histone tails. Collectively, these data indicate that heparanase is a truly multifunctional protein that has the additional property of cleaving HS chains and releasing from ECM and cell surfaces hundreds of HS-binding proteins with a plethora of functional consequences. Clearly, there are many unique features of this intriguing molecule that still remain to be explored and are highlighted in this Chapter.
Collapse
Affiliation(s)
- Mayank Khanna
- Department of Immunology and Infectious Diseases, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.,Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | - Christopher R Parish
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia.
| |
Collapse
|
49
|
Heparanase: Cloning, Function and Regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1221:189-229. [PMID: 32274711 DOI: 10.1007/978-3-030-34521-1_7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In 2019, we mark the 20th anniversary of the cloning of the human heparanase gene. Heparanase remains the only known enzyme to cleave heparan sulfate, which is an abundant component of the extracellular matrix. Thus, elucidating the mechanisms underlying heparanase expression and activity is critical to understanding its role in healthy and pathological settings. This chapter provides a historical account of the race to clone the human heparanase gene, describes the intracellular and extracellular function of the enzyme, and explores the various mechanisms regulating heparanase expression and activity at the gene, transcript, and protein level.
Collapse
|
50
|
Cavé MC, Maillard S, Hildenbrand K, Mamelonet C, Feige MJ, Devergne O. Glycosaminoglycans bind human IL-27 and regulate its activity. Eur J Immunol 2020; 50:1484-1499. [PMID: 32483835 DOI: 10.1002/eji.202048558] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 03/24/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023]
Abstract
IL-27 is a cytokine of the IL-12 family, composed of EBI3 and IL-27p28. IL-27 regulates immune responses and also other physiological processes including hematopoiesis, angiogenesis, and bone formation. Its receptor, composed of IL-27Rα and gp130, activates the STAT pathway. Here, we show that different glycosaminoglycans (GAGs) modulate human IL-27 activity in vitro. We find that soluble heparin and heparan sulfate efficiently inhibit human IL-27 activity as shown by decreased STAT signaling and downstream biological effects. In contrast, membrane-bound heparan sulfate seems to positively regulate IL-27 activity. Our biochemical studies demonstrate that soluble GAGs directly bind to human IL-27, consistent with in silico analyses, and prevent its binding to IL-27Rα. Although murine IL-27 also bound to GAGs in vitro, its activity was less efficiently inhibited by soluble GAGs. Lastly, we show that two heparin-derivatives, low molecular weight heparin and fondaparinux, that like unfractionated heparin are used in clinics, had weaker or no effect on human IL-27 activity. Together, our data identify GAGs as new players in the regulation of human IL-27 activity that might act under physiological conditions and may also have a clinical impact in heparin-treated patients.
Collapse
Affiliation(s)
- Marie-Charlotte Cavé
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France
| | - Solène Maillard
- Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| | - Karen Hildenbrand
- Department of Chemistry, Technical University of Munich, Garching, Germany
| | - Claire Mamelonet
- Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| | - Matthias J Feige
- Department of Chemistry, Technical University of Munich, Garching, Germany.,Institute for Advanced Study, Technical University of Munich, Garching, Germany
| | - Odile Devergne
- Sorbonne Université, INSERM, CNRS, Centre d'Immunologie et des Maladies Infectieuses (Cimi-Paris), Paris, France.,Université Paris Descartes, INSERM, CNRS, Institut Necker Enfants Malades (INEM), Paris, France
| |
Collapse
|