1
|
Chen X, Ma B, Yang Y, Zhang M, Xu F. Predicting the potentially exacerbation of severe viral pneumonia in hospital by MuLBSTA score joint CD4 + and CD8 +T cell counts: construction and verification of risk warning model. BMC Pulm Med 2024; 24:261. [PMID: 38811907 PMCID: PMC11137986 DOI: 10.1186/s12890-024-03073-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/22/2024] [Indexed: 05/31/2024] Open
Abstract
PURPOSE This study mainly focuses on the immune function and introduces CD4+, CD8+ T cells and their ratios based on the MuLBSTA score, a previous viral pneumonia mortality risk warning model, to construct an early warning model of severe viral pneumonia risk. METHODS A retrospective single-center observational study was operated from January 2021 to December 2022 at the People's Hospital of Liangjiang New Area, Chongqing, China. A total of 138 patients who met the criteria for viral pneumonia in hospital were selected and their data, including demographic data, comorbidities, laboratory results, CT scans, immunologic and pathogenic tests, treatment regimens, and clinical outcomes, were collected and statistically analyzed. RESULTS Forty-one patients (29.7%) developed severe or critical illness. A viral pneumonia severe risk warning model was successfully constructed, including eight parameters: age, bacterial coinfection, CD4+, CD4+/CD8+, multiple lung lobe infiltrations, smoking, hypertension, and hospital admission days. The risk score for severe illness in patients was set at 600 points. The model had good predictive performance (AUROC = 0.94397), better than the original MuLBSTA score (AUROC = 0.8241). CONCLUSION A warning system constructed based on immune function has a good warning effect on the risk of severe conversion in patients with viral pneumonia.
Collapse
Affiliation(s)
- Xi Chen
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, 401120, China
| | - Bei Ma
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, 401120, China
| | - Yu Yang
- Department of Critical Care Medicine, People's Hospital of Chongqing Liangjiang New Area, Chongqing, 401120, China
| | - Mu Zhang
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| | - Fang Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
2
|
Maino A, Amen A, Plumas J, Bouquet L, Deschamps M, Saas P, Chaperot L, Manches O. Development of a New Off-the-Shelf Plasmacytoid Dendritic Cell-Based Approach for the Expansion and Characterization of SARS-CoV-2-Specific T Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 212:825-833. [PMID: 38214610 DOI: 10.4049/jimmunol.2300704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024]
Abstract
Global vaccination against COVID-19 has been widely successful; however, there is a need for complementary immunotherapies in severe forms of the disease and in immunocompromised patients. Cytotoxic CD8+ T cells have a crucial role in disease control, but their function can be dysregulated in severe forms of the disease. We report here a cell-based approach using a plasmacytoid dendritic cell line (PDC*line) to expand in vitro specific CD8+ responses against COVID-19 Ags. We tested the immunogenicity of eight HLA-A*02:01 restricted peptides derived from diverse SARS-Cov-2 proteins, selected by bioinformatics analyses in unexposed and convalescent donors. Higher ex vivo frequencies of specific T cells against these peptides were found in convalescent donors compared with unexposed donors, suggesting in situ T cell expansion upon viral infection. The peptide-loaded PDC*line induced robust CD8+ responses with total amplification rates that led up to a 198-fold increase in peptide-specific CD8+ T cell frequencies for a single donor. Of note, six of eight selected peptides provided significant amplifications, all of which were conserved between SARS-CoV variants and derived from the membrane, the spike protein, the nucleoprotein, and the ORF1ab. Amplified and cloned antiviral CD8+ T cells secreted IFN-γ upon peptide-specific activation. Furthermore, specific TCR sequences were identified for two highly immunogenic Ags. Hence, PDC*line represents an efficient platform to identify immunogenic viral targets for future immunotherapies.
Collapse
Affiliation(s)
- Anthony Maino
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Axelle Amen
- Laboratoire d'Immunologie, Centre Hospitalier Grenoble Alpes, Grenoble, France
- Université Grenoble Alpes, CNRS, CEA, UMR 5075, Institut de Biologie Structurale, Grenoble, France
| | - Joël Plumas
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- PDC*line Pharma SAS, Grenoble, France
| | - Lucie Bouquet
- Université de Franche-Comté, Etablissement Français du Sang, INSERM, UMR RIGHT, Besançon, France
| | - Marina Deschamps
- Université de Franche-Comté, Etablissement Français du Sang, INSERM, UMR RIGHT, Besançon, France
| | - Philippe Saas
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Laurence Chaperot
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Olivier Manches
- Etablissement Français du Sang, Recherche et Développement, Grenoble, France
- Université Grenoble Alpes, INSERM U 1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
3
|
Siemińska I, Węglarczyk K, Surmiak M, Kurowska-Baran D, Sanak M, Siedlar M, Baran J. Mild and Asymptomatic COVID-19 Convalescents Present Long-Term Endotype of Immunosuppression Associated With Neutrophil Subsets Possessing Regulatory Functions. Front Immunol 2021; 12:748097. [PMID: 34659245 PMCID: PMC8511487 DOI: 10.3389/fimmu.2021.748097] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 01/08/2023] Open
Abstract
The SARS-CoV-2 infection [coronavirus disease 2019 (COVID-19)] is associated with severe lymphopenia and impaired immune response, including expansion of myeloid cells with regulatory functions, e.g., so-called low-density neutrophils, containing granulocytic myeloid-derived suppressor cells (LDNs/PMN-MDSCs). These cells have been described in both infections and cancer and are known for their immunosuppressive activity. In the case of COVID-19, long-term complications have been frequently observed (long-COVID). In this context, we aimed to investigate the immune response of COVID-19 convalescents after a mild or asymptomatic course of disease. We enrolled 13 convalescents who underwent a mild or asymptomatic infection with SARS-CoV-2, confirmed by a positive result of the PCR test, and 13 healthy donors without SARS-CoV-2 infection in the past. Whole blood was used for T-cell subpopulation and LDNs/PMN-MDSCs analysis. LDNs/PMN-MDSCs and normal density neutrophils (NDNs) were sorted out by FACS and used for T-cell proliferation assay with autologous T cells activated with anti-CD3 mAb. Serum samples were used for the detection of anti-SARS-CoV-2 neutralizing IgG and GM-CSF concentration. Our results showed that in convalescents, even 3 months after infection, an elevated level of LDNs/PMN-MDSCs is still maintained in the blood, which correlates negatively with the level of CD8+ and double-negative T cells. Moreover, LDNs/PMN-MDSCs and NDNs showed a tendency for affecting the production of anti-SARS-CoV-2 S1 neutralizing antibodies. Surprisingly, our data showed that in addition to LDNs/PMN-MDSCs, NDNs from convalescents also inhibit proliferation of autologous T cells. Additionally, in the convalescent sera, we detected significantly higher concentrations of GM-CSF, indicating the role of emergency granulopoiesis. We conclude that in mild or asymptomatic COVID-19 convalescents, the neutrophil dysfunction, including propagation of PD-L1-positive LDNs/PMN-MDSCs and NDNs, is responsible for long-term endotype of immunosuppression.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Kazimierz Węglarczyk
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Marcin Surmiak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Dorota Kurowska-Baran
- Department of Clinical Microbiology, Laboratory of Virology and Serology, University Children’s Hospital, Krakow, Poland
| | - Marek Sanak
- Department of Internal Medicine, Jagiellonian University Medical College, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Yu KK, Fischinger S, Smith MT, Atyeo C, Cizmeci D, Wolf CR, Layton ED, Logue JK, Aguilar MS, Shuey K, Loos C, Yu J, Franko N, Choi RY, Wald A, Barouch DH, Koelle DM, Lauffenburger D, Chu HY, Alter G, Seshadri C. Comorbid illnesses are associated with altered adaptive immune responses to SARS-CoV-2. JCI Insight 2021; 6:146242. [PMID: 33621211 PMCID: PMC8026190 DOI: 10.1172/jci.insight.146242] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 02/17/2021] [Indexed: 12/16/2022] Open
Abstract
Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multiparameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n = 20) or not hospitalized (n = 40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4+ T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4+ T cells and antibodies targeting the S1 domain of spike among subjects who were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2, which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19.
Collapse
Affiliation(s)
- Krystle Kq Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,PhD program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Malisa T Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,PhD program in Virology, Division of Medical Sciences, Harvard University, Boston, Massachusetts, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Caitlin R Wolf
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erik D Layton
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Jennifer K Logue
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Melissa S Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Kiel Shuey
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicholas Franko
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | | | - Anna Wald
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Epidemiology and.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Dan H Barouch
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA.,Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - David M Koelle
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA.,Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, Washington, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.,Department of Global Health, University of Washington, Seattle, Washington, USA.,Benaroya Research Institute, Seattle, Washington, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Helen Y Chu
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
5
|
Yu KK, Fischinger S, Smith MT, Atyeo C, Cizmeci D, Wolf CR, Layton ED, Logue JK, Aguilar MS, Shuey K, Loos C, Yu J, Franko N, Choi RY, Wald A, Barouch DH, Koelle DM, Lauffenburger D, Chu HY, Alter G, Seshadri C. T cell and antibody functional correlates of severe COVID-19. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020:2020.11.25.20235150. [PMID: 33269369 PMCID: PMC7709190 DOI: 10.1101/2020.11.25.20235150] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Comorbid medical illnesses, such as obesity and diabetes, are associated with more severe COVID-19, hospitalization, and death. However, the role of the immune system in mediating these clinical outcomes has not been determined. We used multi-parameter flow cytometry and systems serology to comprehensively profile the functions of T cells and antibodies targeting spike, nucleocapsid, and envelope proteins in a convalescent cohort of COVID-19 subjects who were either hospitalized (n=20) or not hospitalized (n=40). To avoid confounding, subjects were matched by age, sex, ethnicity, and date of symptom onset. Surprisingly, we found that the magnitude and functional breadth of virus-specific CD4 T cell and antibody responses were consistently higher among hospitalized subjects, particularly those with medical comorbidities. However, an integrated analysis identified more coordination between polyfunctional CD4 T-cells and antibodies targeting the S1 domain of spike among subjects that were not hospitalized. These data reveal a functionally diverse and coordinated response between T cells and antibodies targeting SARS-CoV-2 which is reduced in the presence of comorbid illnesses that are known risk factors for severe COVID-19. Our data suggest that isolated measurements of the magnitudes of spike-specific immune responses are likely insufficient to anticipate vaccine efficacy in high-risk populations.
Collapse
Affiliation(s)
- Krystle K.Q. Yu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Stephanie Fischinger
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- PhD program in Immunology and Virology, University of Duisburg-Essen, Essen, Germany
| | - Malisa T. Smith
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Caroline Atyeo
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- PhD program in Virology, Division of Medical Sciences, Harvard University, Boston, MA, USA
| | - Deniz Cizmeci
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Caitlin R. Wolf
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Erik D. Layton
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer K. Logue
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Melissa S. Aguilar
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Kiel Shuey
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Carolin Loos
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jingyou Yu
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Nicholas Franko
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Anna Wald
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Epidemiology, University of Washington School of Public Health, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dan H. Barouch
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
- Center for Virology and Vaccine Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David M. Koelle
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, USA
- Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
- Benaroya Research Institute, Seattle, WA, USA
| | - Douglas Lauffenburger
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Helen Y. Chu
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| | - Galit Alter
- Ragon Institute of MGH, MIT and Harvard, Boston, MA, USA
| | - Chetan Seshadri
- Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|