1
|
Durkee C, Kofuji P, Navarrete M, Araque A. Astrocyte and neuron cooperation in long-term depression. Trends Neurosci 2021; 44:837-848. [PMID: 34334233 DOI: 10.1016/j.tins.2021.07.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/28/2023]
Abstract
Activity-dependent long-term changes in synaptic transmission known as synaptic plasticity are fundamental processes in brain function and are recognized as the cellular basis of learning and memory. While the neuronal mechanisms underlying synaptic plasticity have been largely identified, the involvement of astrocytes in these processes has been less recognized. However, astrocytes are emerging as important cells that regulate synaptic function by interacting with neurons at tripartite synapses. In this review, we discuss recent evidence suggesting that astrocytes are necessary elements in long-term synaptic depression (LTD). We highlight the mechanistic heterogeneity of astrocyte contribution to this form of synaptic plasticity and propose that astrocytes are integral participants in LTD.
Collapse
Affiliation(s)
- Caitlin Durkee
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Paulo Kofuji
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Alfonso Araque
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
2
|
Neuropathophysiology of Lysosomal Storage Diseases: Synaptic Dysfunction as a Starting Point for Disease Progression. J Clin Med 2020; 9:jcm9030616. [PMID: 32106459 PMCID: PMC7141115 DOI: 10.3390/jcm9030616] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 02/21/2020] [Accepted: 02/21/2020] [Indexed: 12/11/2022] Open
Abstract
About two thirds of the patients affected with lysosomal storage diseases (LSD) experience neurological manifestations, such as developmental delay, seizures, or psychiatric problems. In order to develop efficient therapies, it is crucial to understand the neuropathophysiology underlying these symptoms. How exactly lysosomal storage affects biogenesis and function of neurons is still under investigation however recent research highlights a substantial role played by synaptic defects, such as alterations in synaptic spines, synaptic proteins, postsynaptic densities, and synaptic vesicles that might lead to functional impairments in synaptic transmission and neurodegeneration, finally culminating in massive neuronal death and manifestation of cognitive symptoms. Unveiling how the synaptic components are affected in neurological LSD will thus enable a better understanding of the complexity of disease progression as well as identify crucial targets of therapeutic relevance and optimal time windows for targeted intervention.
Collapse
|
3
|
Alteration of GABAergic Input Precedes Neurodegeneration of Cerebellar Purkinje Cells of NPC1-Deficient Mice. Int J Mol Sci 2019; 20:ijms20246288. [PMID: 31847086 PMCID: PMC6940741 DOI: 10.3390/ijms20246288] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 11/21/2022] Open
Abstract
Niemann-Pick Disease Type C1 (NPC1) is a rare hereditary neurodegenerative disease belonging to the family of lysosomal storage disorders. NPC1-patients suffer from, amongst other symptoms, ataxia, based on the dysfunction and loss of cerebellar Purkinje cells. Alterations in synaptic transmission are believed to contribute to a pathological mechanism leading to the progressive loss of Purkinje cells observed in NPC1-deficient mice. With regard to inhibitory synaptic transmission, alterations of GABAergic synapses are described but functional data are missing. For this reason, we have examined here the inhibitory GABAergic synaptic transmission of Purkinje cells of NPC1-deficient mice (NPC1−/−). Patch clamp recordings of inhibitory post-synaptic currents (IPSCs) of Purkinje cells revealed an increased frequency of GABAergic IPSCs in NPC1−/− mice. In addition, Purkinje cells of NPC1−/− mice were less amenable for modulation of synaptic transmission via the activation of excitatory NMDA-receptors (NMDA-Rs). Western blot testing disclosed a reduced protein level of phosphorylated alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-Rs) subunit GluA2 in the cerebella of NPC1−/− mice, indicating a disturbance in the internalization of GluA2-containing AMPA-Rs. Since this is triggered by the activation of NMDA-Rs, we conclude that a disturbance in the synaptic turnover of AMPA-Rs underlies the defective inhibitory GABAergic synaptic transmission. While these alterations precede obvious signs of neurodegeneration of Purkinje cells, we propose a contribution of synaptic malfunction to the initiation of the loss of Purkinje cells in NPC1. Thus, a prevention of the disturbance of synaptic transmission in early stages of the disease might display a target with which to avert progressive neurodegeneration in NPC1.
Collapse
|
4
|
Addressing neurodegeneration in lysosomal storage disorders: Advances in Niemann Pick diseases. Neuropharmacology 2019; 171:107851. [PMID: 31734384 DOI: 10.1016/j.neuropharm.2019.107851] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/11/2019] [Accepted: 11/08/2019] [Indexed: 12/16/2022]
Abstract
Most lysosomal storage disorders (LSDs) cause progressive neurodegeneration leading to early death. While the genetic defects that cause these disorders impact all cells of the body, neurons are particularly affected. This vulnerability may be explained by neuronal cells' critical dependence on the lysosomal degradative capacity, as they cannot use division to eliminate their waste. However, mounting evidence supports the extension of storage beyond lysosomes to other cellular compartments (mitochondria, plasma membrane and synapses) as a key event in pathogenesis. Impaired energy supply, oxidative stress, calcium imbalance, synaptic failure and glial alterations may all contribute to neuronal death and thus could be suitable therapeutic targets for these disorders. Here we review the pathological mechanisms underlying neurodegeneration in Niemann Pick diseases and therapeutic strategies developed in animal models and patients suffering from these devastating disorders. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
|
5
|
Mitroi DN, Pereyra‐Gómez G, Soto‐Huelin B, Senovilla F, Kobayashi T, Esteban JA, Ledesma MD. NPC1 enables cholesterol mobilization during long-term potentiation that can be restored in Niemann-Pick disease type C by CYP46A1 activation. EMBO Rep 2019; 20:e48143. [PMID: 31535451 PMCID: PMC6832102 DOI: 10.15252/embr.201948143] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/08/2019] [Accepted: 08/23/2019] [Indexed: 01/21/2023] Open
Abstract
NPC is a neurodegenerative disorder characterized by cholesterol accumulation in endolysosomal compartments. It is caused by mutations in the gene encoding NPC1, an endolysosomal protein mediating intracellular cholesterol trafficking. Cognitive and psychiatric alterations are hallmarks in NPC patients pointing to synaptic defects. However, the role of NPC1 in synapses has not been explored. We show that NPC1 is present in the postsynaptic compartment and is locally translated during LTP. A mutation in a region of the NPC1 gene commonly altered in NPC patients reduces NPC1 levels at synapses due to enhanced NPC1 protein degradation. This leads to shorter postsynaptic densities, increased synaptic cholesterol and impaired LTP in NPC1nmf164 mice with cognitive deficits. NPC1 mediates cholesterol mobilization and enables surface delivery of CYP46A1 and GluA1 receptors necessary for LTP, which is defective in NPC1nmf164 mice. Pharmacological activation of CYP46A1 normalizes synaptic levels of cholesterol, LTP and cognitive abilities, and extends life span of NPC1nmf164 mice. Our results unveil NPC1 as a regulator of cholesterol dynamics in synapses contributing to synaptic plasticity, and provide a potential therapeutic strategy for NPC patients.
Collapse
Affiliation(s)
- Daniel N Mitroi
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Guadalupe Pereyra‐Gómez
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Beatriz Soto‐Huelin
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Fernando Senovilla
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - Toshihide Kobayashi
- Laboratoire de Biophotonique et PharmacologieFaculté de PharmacieUniversité de StrasbourgIllkirchFrance
| | - Jose A Esteban
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| | - María Dolores Ledesma
- Department of Molecular NeuropathologyCentro de Biología Molecular “Severo Ochoa” (CSIC‐UAM)MadridSpain
| |
Collapse
|
6
|
Feng X, Bader BM, Yang F, Segura M, Schultz L, Schröder OHU, Rolfs A, Luo J. Improvement of impaired electrical activity in NPC1 mutant cortical neurons upon DHPG stimulation detected by micro-electrode array. Brain Res 2018; 1694:87-93. [PMID: 29753706 DOI: 10.1016/j.brainres.2018.05.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/20/2018] [Accepted: 05/09/2018] [Indexed: 12/20/2022]
Abstract
Niemann-Pick Type C1 (NPC1) disease is an autosomal recessive neurodegenerative disease characterized by an excessive accumulation of unesterified cholesterol in late endosomes/lysosomes. Patients with NPC1 disease show a series of symptoms in neuropathology, including a gradually increased loss of motor control and seizures. However, mechanism of the neurological manifestations in NPC1 disease is not fully understood yet. In this study, we utilized the micro-electrode array (MEA) to analyze the spontaneous extracellular electrical activity in cultivated cortical neurons of the NPC1 mutant (NPC1-/-) mouse. Our results show a decrease of the spontaneous electrical activity in NPC1-/- neuronal network when compared to wild type neurons, as indicated by the decreased spike rate, burst rate, event rate, and the increased burst period and event period. Application of 3,5-dihydroxyphenylglycine (DHPG), a specific agonist of group I metabotropic glutamate receptors, improved the electrical activity of the NPC1-/- neuronal network, suggesting that DHPG can be used as a potential therapeutic strategy for recovery of the electrical activity in NPC1 disease.
Collapse
Affiliation(s)
- Xiao Feng
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Benjamin M Bader
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Fan Yang
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Monica Segura
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Luise Schultz
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Olaf H-U Schröder
- NeuroProof GmbH, Friedrich-Barnewitz-Straße 4, 18119 Rostock, Germany
| | - Arndt Rolfs
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany
| | - Jiankai Luo
- Albrecht-Kossel-Institute for Neuroregeneration, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany; Centre for Transdisciplinary Neuroscience Rostock, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| |
Collapse
|
7
|
Ablation of TFR1 in Purkinje Cells Inhibits mGlu1 Trafficking and Impairs Motor Coordination, But Not Autistic-Like Behaviors. J Neurosci 2017; 37:11335-11352. [PMID: 29054881 DOI: 10.1523/jneurosci.1223-17.2017] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 11/21/2022] Open
Abstract
Group 1 metabotropic glutamate receptors (mGlu1/5s) are critical to synapse formation and participate in synaptic LTP and LTD in the brain. mGlu1/5 signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases, but underlying mechanisms for its modulation are not clear. Here, we report that transferrin receptor 1 (TFR1), a transmembrane protein of the clathrin complex, modulates the trafficking of mGlu1 in cerebellar Purkinje cells (PCs) from male mice. We show that conditional knock-out of TFR1 in PCs does not affect the cytoarchitecture of PCs, but reduces mGlu1 expression at synapses. This regulation by TFR1 acts in concert with that by Rab8 and Rab11, which modulate the internalization and recycling of mGlu1, respectively. TFR1 can bind to Rab proteins and facilitate their expression at synapses. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-LTP and PC intrinsic excitability are not affected. Finally, we demonstrate that PC ablation of TFR1 impairs motor coordination, but does not affect social behaviors in mice. Together, these findings underscore the importance of TFR1 in regulating mGlu1 trafficking and suggest that mGlu1- and mGlu1-dependent parallel fiber-LTD are associated with regulation of motor coordination, but not autistic behaviors.SIGNIFICANCE STATEMENT Group 1 metabotropic glutamate receptor (mGlu1/5) signaling alterations have been documented in cognitive impairment, neurodegenerative disorders, and psychiatric diseases. Recent work suggests that altered mGlu1 signaling in Purkinje cells (PCs) may be involved in not only motor learning, but also autistic-like behaviors. We find that conditional knock-out of transferrin receptor 1 (TFR1) in PCs reduces synaptic mGlu1 by tethering Rab8 and Rab11 in the cytosol. PC ablation of TFR1 inhibits parallel fiber-PC LTD, whereas parallel fiber-PC LTP and PC intrinsic excitability are intact. Motor coordination is impaired, but social behaviors are normal in TFR1flox/flox;pCP2-cre mice. Our data reveal a new regulator for trafficking and synaptic expression of mGlu1 and suggest that mGlu1-dependent LTD is associated with motor coordination, but not autistic-like behaviors.
Collapse
|
8
|
Role of Diffusion Tensor Imaging in Prognostication and Treatment Monitoring in Niemann-Pick Disease Type C1. Diseases 2016; 4:diseases4030029. [PMID: 28933409 PMCID: PMC5456286 DOI: 10.3390/diseases4030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/01/2016] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick Disease, type C1 (NPC1) is a rapidly progressive neurodegenerative disorder characterized by cholesterol sequestration within late endosomes and lysosomes, for which no reliable imaging marker exists for prognostication and management. Cerebellar volume deficits are found to correlate with disease severity and diffusion tensor imaging (DTI) of the corpus callosum and brainstem, which has shown that microstructural disorganization is associated with NPC1 severity. This study investigates the utility of cerebellar DTI in clinical severity assessment. We hypothesize that cerebellar volume, fractional anisotropy (FA) and mean diffusivity (MD) negatively correlate with NIH NPC neurological severity score (NNSS) and motor severity subscores. Magnetic resonance imaging (MRI) was obtained for thirty-nine NPC1 subjects, ages 1–21.9 years (mean = 11.1, SD = 6.1). Using an atlas-based automated approach, the cerebellum of each patient was measured for FA, MD and volume. Additionally, each patient was given an NNSS. Decreased cerebellar FA and volume, and elevated MD correlate with higher NNSS. The cognition subscore and motor subscores for eye movement, ambulation, speech, swallowing, and fine motor skills were also statistically significant. Microstructural disorganization negatively correlated with motor severity in subjects. Additionally, Miglustat therapy correlated with lower severity scores across ranges of FA, MD and volume in all regions except the inferior peduncle, where a paradoxical effect was observed at high FA values. These findings suggest that DTI is a promising prognostication tool.
Collapse
|
9
|
Numb deficiency in cerebellar Purkinje cells impairs synaptic expression of metabotropic glutamate receptor and motor coordination. Proc Natl Acad Sci U S A 2015; 112:15474-9. [PMID: 26621723 DOI: 10.1073/pnas.1512915112] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein Numb, first identified as a cell-fate determinant in Drosophila, has been shown to promote the development of neurites in mammals and to be cotransported with endocytic receptors in clathrin-coated vesicles in vitro. Nevertheless, its function in mature neurons has not yet been elucidated. Here we show that cerebellar Purkinje cells (PCs) express high levels of Numb during adulthood and that conditional deletion of Numb in PCs is sufficient to impair motor coordination despite maintenance of a normal cerebellar cyto-architecture. Numb proved to be critical for internalization and recycling of metabotropic glutamate 1 receptor (mGlu1) in PCs. A significant decrease of mGlu1 and an inhibition of long-term depression at the parallel fiber-PC synapse were observed in conditional Numb knockout mice. Indeed, the trafficking of mGlu1 induced by agonists was inhibited significantly in these mutants, but the expression of ionotropic glutamate receptor subunits and of mGlu1-associated proteins was not affected by the loss of Numb. Moreover, transient and persistent forms of mGlu1 plasticity were robustly induced in mutant PCs, suggesting that they do not require mGlu1 trafficking. Together, our data demonstrate that Numb is a regulator for constitutive expression and dynamic transport of mGlu1.
Collapse
|
10
|
Atwood BK, Lovinger DM, Mathur BN. Presynaptic long-term depression mediated by Gi/o-coupled receptors. Trends Neurosci 2014; 37:663-73. [PMID: 25160683 DOI: 10.1016/j.tins.2014.07.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/25/2014] [Indexed: 01/20/2023]
Abstract
Long-term depression (LTD) of the efficacy of synaptic transmission is now recognized as an important mechanism for the regulation of information storage and the control of actions, as well as for synapse, neuron, and circuit development. Studies of LTD mechanisms have focused mainly on postsynaptic AMPA-type glutamate receptor trafficking. However, the focus has now expanded to include presynaptically expressed plasticity, the predominant form being initiated by presynaptically expressed Gi/o-coupled metabotropic receptor (Gi/o-GPCR) activation. Several forms of LTD involving activation of different presynaptic Gi/o-GPCRs as a 'common pathway' are described. We review here the literature on presynaptic Gi/o-GPCR-mediated LTD, discuss known mechanisms, gaps in our knowledge, and evaluate whether all Gi/o-GPCRs are capable of inducing presynaptic LTD.
Collapse
Affiliation(s)
- Brady K Atwood
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - David M Lovinger
- Section on Synaptic Pharmacology, Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, US National Institutes of Health, 5625 Fishers Lane, MSC 9411, Bethesda, MD 20852-9411, USA
| | - Brian N Mathur
- Department of Pharmacology, University of Maryland, School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
11
|
Buard I, Pfrieger FW. Relevance of neuronal and glial NPC1 for synaptic input to cerebellar Purkinje cells. Mol Cell Neurosci 2014; 61:65-71. [DOI: 10.1016/j.mcn.2014.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 05/27/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022] Open
|
12
|
Long-term potentiation at cerebellar parallel fiber-Purkinje cell synapses requires presynaptic and postsynaptic signaling cascades. J Neurosci 2014; 34:2355-64. [PMID: 24501374 DOI: 10.1523/jneurosci.4064-13.2014] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Long-term depression (LTD) and long-term potentiation (LTP) at cerebellar parallel fiber-Purkinje cell (PF-PC) synapses play critical roles in motor learning. The 1 Hz stimulation at PF-PC synapses induces a postsynaptically expressed LTP that requires a postsynaptic Ca(2+) transient, phosphatases, and nitric oxide (NO). However, the mechanism underlying 1 Hz PF-LTP remains unclear because none of the known events is related to each other. Here, we demonstrated that 1 Hz PF-LTP requires postsynaptic cytosolic phospholipase A2 α (cPLA2α)/arachidonic acid (AA) signaling and presynaptic endocannabinoid receptors. Using patch-clamp recording in cerebellar slices, we found that 1 Hz PF-LTP was abolished in cPLA2α-knock-out mice. This deficit was effectively rescued by the conjunction of 1 Hz PF stimulation and the local application of AA. 2-Arachidonoylglycerol and the retrograde activation of cannabinoid receptor 1 (CB1R) were also involved in 1 Hz LTP because it was blocked by the hydrolysis of 2-AG or by inhibiting CB1Rs. The amount of NO released was detected using an NO electrode in cultured granule cells and PF terminals. Our results showed that the activation of CB1Rs at PF terminals activated NO synthetase and promoted NO production. The 1 Hz PF-stimuli evoked limited NO, but 100 Hz PF stimulation generated a large amount. Therefore, 1 Hz PF-LTP, distinct from classical postsynaptically expressed plasticity, requires concurrent presynaptic and postsynaptic activity. In addition, NO of sufficient amplitude decides between the weakening and strengthening of PF-PC synapses.
Collapse
|
13
|
Vance JE, Karten B. Niemann-Pick C disease and mobilization of lysosomal cholesterol by cyclodextrin. J Lipid Res 2014; 55:1609-21. [PMID: 24664998 DOI: 10.1194/jlr.r047837] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Indexed: 12/31/2022] Open
Abstract
Niemann-Pick type C (NPC) disease is a lysosomal storage disease in which endocytosed cholesterol becomes sequestered in late endosomes/lysosomes (LEs/Ls) because of mutations in either the NPC1 or NPC2 gene. Mutations in either of these genes can lead to impaired functions of the NPC1 or NPC2 proteins and progressive neurodegeneration as well as liver and lung disease. NPC1 is a polytopic protein of the LE/L limiting membrane, whereas NPC2 is a soluble protein in the LE/L lumen. These two proteins act in tandem and promote the export of cholesterol from LEs/Ls. Consequently, a defect in either NPC1 or NPC2 causes cholesterol accumulation in LEs/Ls. In this review, we summarize the molecular mechanisms leading to NPC disease, particularly in the CNS. Recent exciting data on the mechanism by which the cholesterol-sequestering agent cyclodextrin can bypass the functions of NPC1 and NPC2 in the LEs/Ls, and mobilize cholesterol from LEs/Ls, will be highlighted. Moreover, the possible use of cyclodextrin as a valuable therapeutic agent for treatment of NPC patients will be considered.
Collapse
Affiliation(s)
- Jean E Vance
- The Group on Molecular and Cell Biology of Lipids and Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Barbara Karten
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
14
|
Wang Z, Wang YN, Sun CL, Yang D, Su LD, Xie YJ, Zhou L, Wang Y, Shen Y. C-terminal domain of ICA69 interacts with PICK1 and acts on trafficking of PICK1-PKCα complex and cerebellar plasticity. PLoS One 2013; 8:e83862. [PMID: 24358315 PMCID: PMC3865253 DOI: 10.1371/journal.pone.0083862] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Accepted: 11/08/2013] [Indexed: 01/19/2023] Open
Abstract
Background PICK1 (protein interacting with C-kinase 1) is a PKC (protein kinase C)-binding protein, which is essential for synaptic plasticity. The trafficking of PKCα-PICK1 complex to plasma membrane is critical for the internalization of GluR2 and induction of long-term depression. ICA69 (islet cell autoantigen 69 kDa) is identified as a major binding partner of PICK1. While heteromeric BAR domain complex is suggested to underlie the interaction between PICK1 and ICA69, the role of C-terminal domain of ICA69 (ICAC) in PICK1-ICA69 complex is unknown. Methodology/Principal Findings We found that ICAC interacted with PICK1 and regulated the trafficking of PICK1-PKCα complex. ICAC and ΔICAC (containing BAR domain) might function distinctly in the association of ICA69 with PICK1. While ΔICAC domain inclined to form clusters, the distribution of ICAC was diffuse. The trafficking of PICK1 to plasma membrane mediated by activated PKCα was inhibited by ICA69. This action might ascribe to ICAC, because overexpression of ICAC, but not ΔICAC, interrupted PKCα-mediated PICK1 trafficking. Notably, infusion of maltose binding protein (MBP) fusion protein, MBP-ICA69 or MBP-ICAC, in cerebellar Purkinje cells significantly inhibited the induction of long-term depression at parallel fiber- and climbing fiber-Purkinje cell synapses. Conclusions Our experiments showed that ICAC is an important domain for the ICA69-PICK1 interaction and plays essential roles in PICK1-mediated neuronal plasticity.
Collapse
Affiliation(s)
- Zhen Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ya-Nan Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Cheng-Long Sun
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Dong Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Li-Da Su
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Ya-Jun Xie
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Lin Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
| | - Yin Wang
- Department of Neurobiology, Center of Scientific Technology, Cranial Cerebral Disease Laboratory, Ningxia Medical University, Yinchuan, P. R. China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, P. R. China
- * E-mail:
| |
Collapse
|
15
|
Zhu J, Shao CY, Yang W, Zhang XM, Wu ZY, Zhou L, Wang XX, Li YH, Xia J, Luo JH, Shen Y. Chronic zinc exposure decreases the surface expression of NR2A-containing NMDA receptors in cultured hippocampal neurons. PLoS One 2012; 7:e46012. [PMID: 23049922 PMCID: PMC3457937 DOI: 10.1371/journal.pone.0046012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 08/23/2012] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Zinc distributes widely in the central nervous system, especially in the hippocampus, amygdala and cortex. The dynamic balance of zinc is critical for neuronal functions. Zinc modulates the activity of N-methyl-D-aspartate receptors (NMDARs) through the direct inhibition and various intracellular signaling pathways. Abnormal NMDAR activities have been implicated in the aetiology of many brain diseases. Sustained zinc accumulation in the extracellular fluid is known to link to pathological conditions. However, the mechanism linking this chronic zinc exposure and NMDAR dysfunction is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We reported that chronic zinc exposure reduced the numbers of NR1 and NR2A clusters in cultured hippocampal pyramidal neurons. Whole-cell and synaptic NR2A-mediated currents also decreased. By contrast, zinc did not affect NR2B, suggesting that chronic zinc exposure specifically influences NR2A-containg NMDARs. Surface biotinylation indicated that zinc exposure attenuated the membrane expression of NR1 and NR2A, which might arise from to the dissociation of the NR2A-PSD-95-Src complex. CONCLUSIONS Chronic zinc exposure perturbs the interaction of NR2A to PSD-95 and causes the disorder of NMDARs in hippocampal neurons, suggesting a novel action of zinc distinct from its acute effects on NMDAR activity.
Collapse
Affiliation(s)
- Jia Zhu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Chong-Yu Shao
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Wei Yang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xiao-Min Zhang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Zhen-Yong Wu
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Liang Zhou
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Xin-Xin Wang
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Yun-Hong Li
- Department of Neurobiology, Center of Scientific Technology, Cranial Cerebral Disease Lab, Ningxia Medical University, Yinchuan, People’s Republic of China
| | - Jun Xia
- Department of Biochemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, People’s Republic of China
| | - Jian-Hong Luo
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| | - Ying Shen
- Department of Neurobiology, Key Laboratory of Medical Neurobiology of Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People’s Republic of China
| |
Collapse
|
16
|
Wang DJ, Yang D, Su LD, Xie YJ, Zhou L, Sun CL, Wang Y, Wang XX, Zhou L, Shen Y. Cytosolic phospholipase A2 alpha/arachidonic acid signaling mediates depolarization-induced suppression of excitation in the cerebellum. PLoS One 2012; 7:e41499. [PMID: 22927908 PMCID: PMC3425552 DOI: 10.1371/journal.pone.0041499] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 06/21/2012] [Indexed: 12/22/2022] Open
Abstract
Background Depolarization-induced suppression of excitation (DSE) at parallel fiber-Purkinje cell synapse is an endocannabinoid-mediated short-term retrograde plasticity. Intracellular Ca2+ elevation is critical for the endocannabinoid production and DSE. Nevertheless, how elevated Ca2+ leads to DSE is unclear. Methodology/Principal Findings We utilized cytosolic phospholipase A2 alpha (cPLA2α) knock-out mice and whole-cell patch clamp in cerebellar slices to observed the action of cPLA2α/arachidonic acid signaling on DSE at parallel fiber-Purkinje cell synapse. Our data showed that DSE was significantly inhibited in cPLA2α knock-out mice, which was rescued by arachidonic acid. The degradation enzyme of 2-arachidonoylglycerol (2-AG), monoacylglycerol lipase (MAGL), blocked DSE, while another catabolism enzyme for N-arachidonoylethanolamine (AEA), fatty acid amide hydrolase (FAAH), did not affect DSE. These results suggested that 2-AG is responsible for DSE in Purkinje cells. Co-application of paxilline reversed the blockade of DSE by internal K+, indicating that large conductance Ca2+-activated potassium channel (BK) is sufficient to inhibit cPLA2α/arachidonic acid-mediated DSE. In addition, we showed that the release of 2-AG was independent of soluble NSF attachment protein receptor (SNARE), protein kinase C and protein kinase A. Conclusions/Significance Our data first showed that cPLA2α/arachidonic acid/2-AG signaling pathway mediates DSE at parallel fiber-Purkinje cell synapse.
Collapse
Affiliation(s)
- De-Juan Wang
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Dong Yang
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Li-Da Su
- Neuroscience Care Unit, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ya-jun Xie
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Lin Zhou
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Cheng-Long Sun
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yin Wang
- Department of Neurobiology, Center of Scientific Technology, Cranial Cerebral Disease Lab, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Xin-Xin Wang
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Liang Zhou
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Ying Shen
- Key Laboratory of Medical Neurobiology of the Ministry of Health, Zhejiang Province Key Laboratory of Neurobiology, Department of Neurobiology, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
- * E-mail:
| |
Collapse
|