1
|
Simona K, Veronika M, Zahinoor I, Martin V. Neuropsychiatric symptoms in spinocerebellar ataxias and Friedreich ataxia. Neurosci Biobehav Rev 2023; 150:105205. [PMID: 37137435 DOI: 10.1016/j.neubiorev.2023.105205] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 04/14/2023] [Accepted: 04/29/2023] [Indexed: 05/05/2023]
Abstract
Apart from its role in motor coordination, the importance of the cerebellum in cognitive and affective processes has been recognized in the past few decades. Spinocerebellar ataxias (SCA) and Friedreich ataxia (FRDA) are rare neurodegenerative diseases of the cerebellum presenting mainly with a progressive loss of gait and limb coordination, dysarthria, and other motor disturbances, but also a range of cognitive and neuropsychiatric symptoms. This narrative review summarizes the current knowledge on neuropsychiatric impairment in SCA and FRDA. We discuss the prevalence, clinical features and treatment approaches in the most commonly reported domains of depression, anxiety, apathy, agitation and impulse dyscontrol, and psychosis. Since these symptoms have a considerable impact on patients' quality of life, we argue that further research is mandated to improve the detection and treatment options of neuropsychiatric co-morbidities in ataxia patients.
Collapse
Affiliation(s)
- Karamazovova Simona
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| | - Matuskova Veronika
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic.
| | - Ismail Zahinoor
- Departments of Psychiatry, Clinical Neurosciences, and Community Health Sciences, Cumming School of Medicine; Hotchkiss Brain Institute and O'Brien Institute of Public Health, University of Calgary, Calgary, Alberta, Canada
| | - Vyhnalek Martin
- Center of Hereditary Ataxias, Department of Neurology, 2nd Faculty of Medicine and Motol University Hospital, Charles University, Prague, Czech Republic
| |
Collapse
|
2
|
Shishegar R, Harding IH, Selvadurai LP, Corben LA, Delatycki MB, Egan GF, Georgiou-Karistianis N. Longitudinal investigation of brain activation during motor tasks in Friedreich ataxia: 24-month data from IMAGE-FRDA. Brain Struct Funct 2021; 227:809-819. [PMID: 34687355 DOI: 10.1007/s00429-021-02413-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/08/2021] [Indexed: 11/26/2022]
Abstract
Friedreich ataxia (FRDA) is a progressive autosomal recessive disease. While motor dysfunction is the primary neurological hallmark, little is known about the underlying neurobiological changes associated with motor deficits over the course of disease. We investigated the hypothesis that progressive functional changes in both the cerebellum and cerebrum are related to longitudinal changes in performance on complex motor tasks in individuals with FRDA. Twenty-two individuals with FRDA and 28 controls participated over 24 months. The longitudinal investigation included finger tapping tasks with different levels of complexity (i.e., visually cued, multi-finger; self-paced, single finger), performed in conjunction with fMRI acquisitions, to interrogate changes in the neurobiology of motor and attentional brain networks including the cerebellum and cerebrum. We demonstrated evidence for significant longitudinal decreased cerebral fMRI activity over time in individuals with FRDA, relative to controls, during an attentionally-demanding motor task (visually cued tapping of multiple fingers) in six cerebral regions: right and left superior frontal gyri, right superior temporal gyrus, right primary somatosensory area, right anterior cingulate cortex, and right medial frontal gyrus. Importantly, longitudinal decreased activity was associated with more severe disease status at baseline, higher GAA1 repeat length and earlier age of onset. These findings suggest a dynamic pattern of neuronal activity in motor, attention and executive control networks over time in individuals with FRDA, which is associated with increased disease severity at baseline, increased GAA1 repeat length and earlier age at onset.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- The Australian e-Health Research Centre, CSIRO, Melbourne, VIC, Australia
| | - Ian H Harding
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Louisa P Selvadurai
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
| | - Louise A Corben
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
| | - Martin B Delatycki
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Department of Paediatrics, The University of Melbourne, Melbourne, VIC, Australia
- Victorian Clinical Genetics Service, Melbourne, VIC, Australia
| | - Gary F Egan
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, VIC, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Turner Institute for Brain and Mental Health, Monash University, Melbourne, VIC, 3800, Australia.
| |
Collapse
|
3
|
Shishegar R, Harding IH, Corben LA, Delatycki MB, Storey E, Egan GF, Georgiou-Karistianis N. Longitudinal Increases in Cerebral Brain Activation During Working Memory Performance in Friedreich Ataxia: 24-Month Data from IMAGE-FRDA. THE CEREBELLUM 2020; 19:182-191. [PMID: 31898277 DOI: 10.1007/s12311-019-01094-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Friedreich ataxia (FRDA) has been associated with functional abnormalities in cerebral and cerebellar networks, particularly in the ventral attention network. However, how functional alterations change with disease progression remains largely unknown. Longitudinal changes in brain activation, associated with working memory performance (N-back task), and grey matter volume were assessed over 24 months in 21 individuals with FRDA and 28 healthy controls using functional and structural magnetic resonance imaging, respectively. Participants also completed a neurocognitive battery assessing working memory (digit span), executive function (Stroop, Haylings), and set-shifting (Trail Making Test). Individuals with FRDA displayed significantly increased brain activation over 24 months in ventral attention brain regions, including bilateral insula and inferior frontal gyrus (pars triangularis and pars opercularis), compared with controls, but there was no difference in working memory (N-back) performance between groups. Moreover, there were no significant differences in grey matter volume changes between groups. Significant correlations between brain activations and both clinical severity and age at disease onset were observed in FRDA individuals only at 24 months. There was significant longitudinal decline in Trail Making Test (TMT) difference score (B-A) in individuals with FRDA, compared with controls. These findings provide the first evidence of increased longitudinal activation over time in the cerebral cortex in FRDA, compared with controls, despite comparable working memory performance. This finding represents a possible compensatory response in the ventral attention network to help sustain working memory performance in individuals with FRDA.
Collapse
Affiliation(s)
- Rosita Shishegar
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia.,The Australian e-Health Research Centre, CSIRO, Melbourne, Australia
| | - Ian H Harding
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Louise A Corben
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Martin B Delatycki
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Clinical Genetics, Austin Health, Melbourne, Australia
| | - Elsdon Storey
- Department of Medicine, Monash University, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and the Turner Institute for Brain and Mental Health, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, Australia.
| |
Collapse
|
4
|
La Rosa P, Russo M, D'Amico J, Petrillo S, Aquilano K, Lettieri-Barbato D, Turchi R, Bertini ES, Piemonte F. Nrf2 Induction Re-establishes a Proper Neuronal Differentiation Program in Friedreich's Ataxia Neural Stem Cells. Front Cell Neurosci 2019; 13:356. [PMID: 31417369 PMCID: PMC6685360 DOI: 10.3389/fncel.2019.00356] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/18/2019] [Indexed: 12/15/2022] Open
Abstract
Frataxin deficiency is the pathogenic cause of Friedreich’s Ataxia, an autosomal recessive disease characterized by the increase of oxidative stress and production of free radicals in the cell. Although the onset of the pathology occurs in the second decade of life, cognitive differences and defects in brain structure and functional activation are observed in patients, suggesting developmental defects to take place during fetal neurogenesis. Here, we describe impairments in proliferation, stemness potential and differentiation in neural stem cells (NSCs) isolated from the embryonic cortex of the Frataxin Knockin/Knockout mouse, a disease animal model whose slow-evolving phenotype makes it suitable to study pre-symptomatic defects that may manifest before the clinical onset. We demonstrate that enhancing the expression and activity of the antioxidant response master regulator Nrf2 ameliorates the phenotypic defects observed in NSCs, re-establishing a proper differentiation program.
Collapse
Affiliation(s)
- Piergiorgio La Rosa
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Marta Russo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Jessica D'Amico
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Sara Petrillo
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Katia Aquilano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Daniele Lettieri-Barbato
- Department of Biology, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Riccardo Turchi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Enrico S Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Fiorella Piemonte
- Unit of Neuromuscular and Neurodegenerative Diseases, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| |
Collapse
|
5
|
Selvadurai LP, Harding IH, Corben LA, Georgiou-Karistianis N. Cerebral abnormalities in Friedreich ataxia: A review. Neurosci Biobehav Rev 2018; 84:394-406. [DOI: 10.1016/j.neubiorev.2017.08.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/31/2022]
|
6
|
Nieto A, Hernández-Torres A, Pérez-Flores J, Montón F. Depressive symptoms in Friedreich ataxia. Int J Clin Health Psychol 2017; 18:18-26. [PMID: 30487906 PMCID: PMC6220911 DOI: 10.1016/j.ijchp.2017.11.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 11/22/2017] [Indexed: 12/15/2022] Open
Abstract
Background/Objective: Almost no attention has been paid to depression in Friedreich ataxia (FRDA), a highly disabling cerebellar degenerative disease. Our aim was to study the presence and the profile of depressive symptoms in FRDA and their relationship with demographic-disease variables and cognitive processing speed. Method: The study groups consisted of 57 patients with a diagnosis of FRDA. The Beck Depression Inventory-II was used to assess symptoms of depression. Speed of information processing was measured with a Choice Reaction time task. Results: The mean BDI score for patients was significantly higher than the mean score in the general population. Twenty one percent of participants scored in the moderate/severe range. A Cognitive-Affective score and a Somatic-Motivational score was calculated for each patient. Patients’ scores in both dimensions were significantly higher than the scores in the general population. Demographic and disease variables were not related with symptoms of depression, except for severity of ataxia. Depressive symptoms predict cognitive reaction times. The greater proportion of variance was explained by the Cognitive-Affective dimension. Conclusions: Our data show that both somatic-motivational and cognitive affective symptoms of depression are frequent in individuals with FRDA. In addition, depressive symptoms may influence cognition, especially, the cognitive and affective symptoms.
Collapse
Affiliation(s)
| | | | | | - Fernando Montón
- Universidad de La Laguna, Spain.,Hospital La Candelaria, Tenerife, Spain
| |
Collapse
|
7
|
Corben LA, Klopper F, Stagnitti M, Georgiou-Karistianis N, Bradshaw JL, Rance G, Delatycki MB. Measuring Inhibition and Cognitive Flexibility in Friedreich Ataxia. CEREBELLUM (LONDON, ENGLAND) 2017; 16:757-763. [PMID: 28229372 DOI: 10.1007/s12311-017-0848-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Friedreich ataxia (FRDA) is an autosomal recessive neurodegenerative disorder with subtle impact on cognition. Inhibitory processes and cognitive flexibility were examined in FRDA by assessing the ability to suppress a predictable verbal response. We administered the Hayling Sentence Completion Test (HSCT), the Trail Making Test, and the Stroop Test to 43 individuals with FRDA and 42 gender- and age-matched control participants. There were no significant group differences in performance on the Stroop or Trail Making Test whereas significant impairment in cognitive flexibility including the ability to predict and inhibit a pre-potent response as measured in the HSCT was evident in individuals with FRDA. These deficits did not correlate with clinical characteristics of FRDA (age of disease onset, disease duration, number of guanine-adenine-adenine repeats on the shorter or larger FXN allele, or Friedreich Ataxia Rating Scale score), suggesting that such impairment may not be related to the disease process in a straightforward way. The observed specific impairment of inhibition and predictive capacity in individuals with FRDA on the HSCT task, in the absence of impairment in associated executive functions, supports cerebellar dysfunction in conjunction with disturbance to cortico-thalamo-cerebellar connectivity, perhaps via inability to access frontal areas necessary for successful task completion.
Collapse
Affiliation(s)
- Louise A Corben
- Experimental Neuropsychology Research Unit, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia.
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia.
| | - Felicity Klopper
- Experimental Neuropsychology Research Unit, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Monique Stagnitti
- Experimental Neuropsychology Research Unit, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Nellie Georgiou-Karistianis
- Experimental Neuropsychology Research Unit, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - John L Bradshaw
- Experimental Neuropsychology Research Unit, School of Psychological Sciences, Monash University, Clayton, Victoria, Australia
| | - Gary Rance
- Department of Otolaryngology, University of Melbourne, Parkville, Victoria, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Flemington Road, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| |
Collapse
|
8
|
Selvadurai LP, Harding IH, Corben LA, Stagnitti MR, Storey E, Egan GF, Delatycki MB, Georgiou-Karistianis N. Cerebral and cerebellar grey matter atrophy in Friedreich ataxia: the IMAGE-FRDA study. J Neurol 2016; 263:2215-2223. [PMID: 27522354 DOI: 10.1007/s00415-016-8252-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/30/2016] [Accepted: 07/30/2016] [Indexed: 12/22/2022]
Abstract
Friedreich ataxia (FRDA) is traditionally associated with neuropathology in the cerebellar dentate nucleus and spinal cord. Growing evidence also suggests involvement of the cerebral and cerebellar cortices, although reports of structural abnormalities remain mixed. This study assessed the structural integrity of cortical grey matter in FRDA, focussing on regions in which pathology may underlie the motor deficits characteristic of this disorder. T1-weighted anatomical magnetic resonance imaging scans were acquired from 31 individuals with FRDA and 37 healthy controls. Cortical thickness (FreeSurfer) and cortical volume (SPM-VBM) were measured in cerebral motor regions-of-interest (primary motor, dorsal and ventral premotor, and supplementary motor areas) alongside unconstrained exploratory analyses of the cerebral and cerebellar cortices. Correlations were assessed between cortical thickness/volume measures and each of disease severity, length of the causative genetic triplet-repeat expansion, and finger-tapping behavioural measures. Individuals with FRDA had significantly reduced cortical thickness, relative to controls, in the premotor and supplementary motor areas. Reduced cortical thickness and/or volume were also observed in the cuneus and precuneus, posterior aspects of the medial and lateral prefrontal cortices, insula, temporal poles, and cerebellar lobules V, VI, and VII. Measures of clinical severity, genetic abnormality, and motor dysfunction correlated with volume loss in the lateral cerebellar hemispheres. These results suggest that atrophy preferentially affects premotor relative to primary areas of the cortical motor system, and also extends to a range of non-motor brain regions. Furthermore, cortical thickness and cortical volume findings were largely divergent, suggesting that each is sensitive to different aspects of neuropathology in FRDA. Overall, this study supports a disease model involving neural aberrations within the cerebral and cerebellar cortices, beyond those traditionally associated with this disorder.
Collapse
Affiliation(s)
- Louisa P Selvadurai
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Ian H Harding
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia.
| | - Louise A Corben
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia
| | - Monique R Stagnitti
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| | - Elsdon Storey
- Department of Medicine, Monash University, Melbourne, Australia
| | - Gary F Egan
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia.,Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | - Martin B Delatycki
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia.,Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Paediatrics, The University of Melbourne, Melbourne, Australia.,Clinical Genetics, Austin Health, Melbourne, Australia
| | - Nellie Georgiou-Karistianis
- School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, Monash University, 18 Innovation Walk, Melbourne, VIC, 3800, Australia
| |
Collapse
|
9
|
Harding IH, Corben LA, Storey E, Egan GF, Stagnitti MR, Poudel GR, Delatycki MB, Georgiou-Karistianis N. Fronto-cerebellar dysfunction and dysconnectivity underlying cognition in friedreich ataxia: The IMAGE-FRDA study. Hum Brain Mapp 2015; 37:338-50. [PMID: 26502936 DOI: 10.1002/hbm.23034] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 09/16/2015] [Accepted: 10/12/2015] [Indexed: 12/22/2022] Open
Abstract
Friedreich ataxia (FRDA) is a progressive neurodegenerative disorder defined by pathology within the cerebellum and spinal tracts. Although FRDA is most readily linked to motor and sensory dysfunctions, reported impairments in working memory and executive functions indicate that abnormalities may also extend to associations regions of the cerebral cortex and/or cerebello-cerebral interactions. To test this hypothesis, 29 individuals with genetically confirmed FRDA and 34 healthy controls performed a verbal n-back working memory task while undergoing functional magnetic resonance imaging. No significant group differences were evident in task performance. However, individuals with FRDA had deficits in brain activations both in the lateral cerebellar hemispheres, principally encompassing lobule VI, and the prefrontal cortex, including regions of the anterior insular and rostrolateral prefrontal cortices. Functional connectivity between these brain regions was also impaired, supporting a putative link between primary cerebellar dysfunction and subsequent cerebral abnormalities. Disease severity and genetic markers of disease liability were correlated specifically with cerebellar dysfunction, while correlations between behavioural performance and both cerebral activations and cerebello-cerebral connectivity were observed in controls, but not in the FRDA cohort. Taken together, these findings support a diaschisis model of brain dysfunction, whereby primary disease effects in the cerebellum result in functional changes in downstream fronto-cerebellar networks. These fronto-cerebellar disturbances provide a putative biological basis for the nonmotor symptoms observed in FRDA, and reflect the consequence of localized cerebellar pathology to distributed brain function underlying higher-order cognition.
Collapse
Affiliation(s)
- Ian H Harding
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Louise A Corben
- School of Psychological Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Australia.,Friedreich Ataxia Clinic, Monash Medical Centre, Monash Health, Melbourne, Australia
| | - Elsdon Storey
- Department of Medicine, Monash University, Melbourne, Australia
| | - Gary F Egan
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| | | | - Govinda R Poudel
- School of Psychological Sciences, Monash University, Melbourne, Australia
| | - Martin B Delatycki
- School of Psychological Sciences, Monash University, Melbourne, Australia.,Bruce Lefroy Centre, Murdoch Childrens Research Institute, Melbourne, Australia.,Department of Clinical Genetics, Austin Health, Melbourne, Australia
| | | |
Collapse
|
10
|
Friedreich ataxia: executive control is related to disease onset and GAA repeat length. THE CEREBELLUM 2014; 13:9-16. [PMID: 23925595 DOI: 10.1007/s12311-013-0513-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Friedreich ataxia (FRDA) is the most frequent inherited ataxia. Neuropsychological studies suggest that FRDA may be associated with specific cognitive impairment. Very little is known about the relation between cognitive performance, demographics and disease-related parameters, such as GAA repeat size, age of onset and disease duration. The present investigation aimed at assessing cognitive functions in a representative sample of FRDA patients and at identifying the most relevant disease-related parameters. Twenty-nine adult FRDA patients underwent neuropsychological tests assessing executive functions, attention, memory and visual perception. Performance was compared with 28 age- and education-matched controls as well as with standardized norms. The relation between neuropsychological outcome, demographical variables and disease-related parameters was assessed. Cognitive impairment affected only a subgroup of patients and mostly concerned attentional and executive functions. Good cognitive performance was associated with a later disease onset, shorter GAA repeat length and lower burden of disease. Age at disease onset has been found to be a good predictor when a cut-off of 14 years was chosen. No correlation was found between cognitive performance and education, age or disease duration. The present study extends earlier findings in FRDA showing that performance in attentional and executive function tasks is best predicted by the age at disease onset. Moreover, executive functions show a clear relationship to disease severity and repeat size of the shorter GAA allele. These findings therefore have important implications for patient counselling regarding education and career choices.
Collapse
|
11
|
Saccade reprogramming in Friedreich ataxia reveals impairments in the cognitive control of saccadic eye movement. Brain Cogn 2014; 87:161-7. [PMID: 24752035 DOI: 10.1016/j.bandc.2014.03.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 01/14/2014] [Accepted: 03/30/2014] [Indexed: 12/22/2022]
Abstract
Although cerebellar dysfunction has known effects on motor function in Friedreich ataxia (FRDA), it remains unclear the extent to which the reprogramming of eye movements (saccades) and inhibition of well-learned automatic responses are similarly compromised in affected individuals. Here we examined saccade reprogramming to assess the ability of people with FRDA to respond toward unexpected changes in either the amplitude or direction of an "oddball" target. Thirteen individuals with genetically confirmed FRDA and 12 age-matched controls participated in the study. The saccade reprogramming paradigm was used to examine the effect of an unpredictable "oddball" target on saccade latencies and accuracy when compared to a well-learned sequence of reciprocating movements. Horizontal eye movements were recorded using a scleral search coil eye tracking technique. The results showed a proportionally greater increase in latencies for reprogrammed saccades toward an oddball-direction target in the FRDA group when compared to controls. The FRDA group were also less accurate in primary saccade gain (i.e. ratio of saccade amplitude to target amplitude) when reprogramming saccades toward an unexpected change in direction. No significant group differences were found on any of the oddball-amplitude targets. Significant correlations were revealed between latency and disease severity as measured by the Friedreich Ataxia Rating Scale. These findings provide further support to the view that cognitive changes in FRDA may arise from disruption of cerebellar connections to cortical structures.
Collapse
|
12
|
Parkinson MH, Boesch S, Nachbauer W, Mariotti C, Giunti P. Clinical features of Friedreich's ataxia: classical and atypical phenotypes. J Neurochem 2013; 126 Suppl 1:103-17. [PMID: 23859346 DOI: 10.1111/jnc.12317] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 05/15/2013] [Accepted: 05/15/2013] [Indexed: 11/27/2022]
Abstract
One hundred and fifty years since Nikolaus Friedreich's first description of the degenerative ataxic syndrome which bears his name, his description remains at the core of the classical clinical phenotype of gait and limb ataxia, poor balance and coordination, leg weakness, sensory loss, areflexia, impaired walking, dysarthria, dysphagia, eye movement abnormalities, scoliosis, foot deformities, cardiomyopathy and diabetes. Onset is typically around puberty with slow progression and shortened life-span often related to cardiac complications. Inheritance is autosomal recessive with the vast majority of cases showing an unstable intronic GAA expansion in both alleles of the frataxin gene on chromosome 9q13. A small number of cases are caused by a compound heterozygous expansion with a point mutation or deletion. Understanding of the underlying molecular biology has enabled identification of atypical phenotypes with late onset, or atypical features such as retained reflexes. Late-onset cases tend to have slower progression and are associated with smaller GAA expansions. Early-onset cases tend to have more rapid progression and a higher frequency of non-neurological features such as diabetes, cardiomyopathy, scoliosis and pes cavus. Compound heterozygotes, including those with large deletions, often have atypical features. In this paper, we review the classical and atypical clinical phenotypes of Friedreich's ataxia.
Collapse
Affiliation(s)
- Michael H Parkinson
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | | | | | | | | |
Collapse
|
13
|
Zalesky A, Akhlaghi H, Corben LA, Bradshaw JL, Delatycki MB, Storey E, Georgiou-Karistianis N, Egan GF. Cerebello-cerebral connectivity deficits in Friedreich ataxia. Brain Struct Funct 2013; 219:969-81. [PMID: 23563750 DOI: 10.1007/s00429-013-0547-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 03/20/2013] [Indexed: 01/19/2023]
Abstract
Brain pathology in Friedreich ataxia is characterized by progressive degeneration of nervous tissue in the brainstem, cerebellum and cerebellar peduncles. Evidence of cerebral involvement is however equivocal. This brain imaging study investigates cerebello-cerebral white matter connectivity in Friedreich ataxia with diffusion MRI and tractography performed in 13 individuals homozygous for a GAA expansion in intron one of the frataxin gene and 14 age- and gender-matched control participants. New evidence is presented for disrupted cerebello-cerebral connectivity in the disease, leading to secondary effects in distant cortical and subcortical regions. Remote regions affected by primary cerebellar and brainstem pathology include the supplementary motor area, cingulate cortex, frontal cortices, putamen and other subcortical nuclei. The connectivity disruptions identified provide an explanation for some of the non-ataxic symptoms observed in the disease and support the notion of reverse cerebellar diaschisis. This is the first study to comprehensively map white matter connectivity disruptions in Friedreich ataxia using tractography, connectomic techniques and super-resolution track density imaging.
Collapse
Affiliation(s)
- Andrew Zalesky
- Melbourne Neuropsychiatry Centre, The University of Melbourne, Level 3, Alan Gilbert Building, Melbourne, VIC, 3010, Australia,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Low SC, Corben LA, Delatycki MB, Ternes AM, Addamo PK, Georgiou-Karistianis N. Excessive motor overflow reveals abnormal inter-hemispheric connectivity in Friedreich ataxia. J Neurol 2013; 260:1757-64. [PMID: 23463366 DOI: 10.1007/s00415-013-6869-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Revised: 01/26/2013] [Accepted: 02/06/2013] [Indexed: 11/24/2022]
Abstract
This study sought to characterise force variability and motor overflow in 12 individuals with Friedreich ataxia (FRDA) and 12 age- and gender-matched controls. Participants performed a finger-pressing task by exerting 30 and 70 % of their maximum finger force using the index finger of the right and left hand. Control of force production was measured as force variability, while any involuntary movements occurring on the finger of the other, passive hand, was measured as motor overflow. Significantly greater force variability in individuals with FRDA compared with controls is indicative of cortico-cerebellar disruption affecting motor control. Meanwhile, significantly greater motor overflow in this group provides the first evidence of possible abnormal inter-hemispheric activity that may be attributable to asymmetrical neuronal loss in the dentate nucleus. Overall, this study demonstrated a differential engagement in the underlying default processes of the motor system in FRDA.
Collapse
Affiliation(s)
- Sze-Cheen Low
- Experimental Neuropsychology Research Unit, School of Psychology and Psychiatry, Monash University, Clayton, VIC 3800, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Friedreich ataxia, the most common hereditary ataxia, affects approximately 1 per 29,000 white individuals. In about 98% of these individuals, it is due to homozygosity for a GAA trinucleotide repeat expansion in intron 1 of FXN; in the other 2%, it is due to compound heterozygosity for a GAA expansion and point mutation or deletion. The condition affects multiple sites in the central and peripheral nervous system as well as a number of other organ systems, resulting in multiple signs and symptoms. Onset of this autosomal recessive condition is usually in the first 2 decades of life. Major clinical features include progressive ataxia, absent lower limb reflexes, upgoing plantar responses, and peripheral sensory neuropathy. The main nonneurological sites of morbidity are the heart, resulting in cardiomyopathy, and the pancreas, resulting in diabetes mellitus. In this review, we provide an overview of the clinical features of Friedreich ataxia and discuss differential diagnoses.
Collapse
Affiliation(s)
- Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, Parkville, VIC, Australia.
| | | |
Collapse
|
16
|
Corben LA, Georgiou-Karistianis N, Bradshaw JL, Evans-Galea MV, Churchyard AJ, Delatycki MB. Characterising the neuropathology and neurobehavioural phenotype in Friedreich ataxia: a systematic review. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 769:169-84. [PMID: 23560311 DOI: 10.1007/978-1-4614-5434-2_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Friedreich ataxia (FRDA), the most common of the hereditary ataxias, is an autosomal recessive, multisystem disorder characterised by progressive ataxia, sensory symptoms, weakness, scoliosis and cardiomyopathy. FRDA is caused by a GAA expansion in intron one of the FXN gene, leading to reduced levels of the encoded protein frataxin, which is thought to regulate cellular iron homeostasis. The cerebellar and spinocerebellar dysfunction seen in FRDA has known effects on motor function; however until recently slowed information processing has been the main feature consistently reported by the limited studies addressing cognitive function in FRDA. This chapter will systematically review the current literature regarding the neuropathological and neurobehavioural phenotype associated with FRDA. It will evaluate more recent evidence adopting systematic experimental methodologies that postulate that the neurobehavioural phenotype associated with FRDA is likely to involve impairment in cerebello-cortico connectivity.
Collapse
Affiliation(s)
- Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia.
| | | | | | | | | | | |
Collapse
|