1
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
2
|
Hawkes R. Cerebellar Patterning Defects in Mutant Mice. Front Neurosci 2021; 15:787425. [PMID: 34955734 PMCID: PMC8692567 DOI: 10.3389/fnins.2021.787425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/01/2021] [Indexed: 11/25/2022] Open
Abstract
The cerebellar cortex is highly compartmentalized and serves as a remarkable model for pattern formation throughout the brain. In brief, the adult cerebellar cortex is subdivided into five anteroposterior units—transverse zones—and subsequently, each zone is divided into ∼20 parasagittal stripes. Zone-and-stripe pattern formation involves the interplay of two parallel developmental pathways—one for inhibitory neurons, the second for excitatory. In the inhibitory pathway, progenitor cells of the 4th ventricle generate the Purkinje cells and inhibitory interneurons. In the excitatory pathway, progenitor cells in the upper rhombic lip give rise to the external granular layer, and subsequently to the granular layer of the adult. Both the excitatory and inhibitory developmental pathways are spatially patterned and the interactions of the two generate the complex topography of the adult. This review briefly describes the cellular and molecular mechanisms that underly zone-and-stripe development with a particular focus on mutations known to interfere with normal cerebellar development and the light they cast on the mechanisms of pattern formation.
Collapse
Affiliation(s)
- Richard Hawkes
- Department of Cell Biology, Cumming School of Medicine, Anatomy and Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Gutiérrez-Ibáñez C, Dannish MR, Kohl T, Kettler L, Carr CE, Tisdale RK, Iwaniuk AN, Luksch H, Wylie DR. Zebrin Expression in the Cerebellum of Two Crocodilian Species. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:45-55. [PMID: 32155640 DOI: 10.1159/000505897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 01/12/2020] [Indexed: 11/19/2022]
Abstract
While in birds and mammals the cerebellum is a highly convoluted structure that consists of numerous transverse lobules, in most amphibians and reptiles it consists of only a single unfolded sheet. Orthogonal to the lobules, the cerebellum is comprised of sagittal zones that are revealed in the pattern of afferent inputs, the projection patterns of Purkinje cells, and Purkinje cell response properties, among other features. The expression of several molecular markers, such as aldolase C, is also parasagittally organized. Aldolase C, also known as zebrin II (ZII), is a glycolytic enzyme expressed in the cerebellar Purkinje cells of the vertebrate cerebellum. In birds, mammals, and some lizards (Ctenophoresspp.), ZII is expressed in a heterogenous fashion of alternating sagittal bands of high (ZII+) and low (ZII-) expression Purkinje cells. In contrast, turtles and snakes express ZII homogenously (ZII+) in their cerebella, but the pattern in crocodilians is unknown. Here, we examined the expression of ZII in two crocodilian species (Crocodylus niloticus and Alligator mississippiensis) to help determine the evolutionary origin of striped ZII expression in vertebrates. We expected crocodilians to express ZII in a striped (ZII+/ZII-) manner because of their close phylogenetic relationship to birds and their larger and more folded cerebellum compared to that of snakes and turtles. Contrary to our prediction, all Purkinje cells in the crocodilian cerebellum had a generally homogenous expression of ZII (ZII+) rather than clear ZII+/- stripes. Our results suggest that either ZII stripes were lost in three groups (snakes, turtles, and crocodilians) or ZII stripes evolved independently three times (lizards, birds, and mammals).
Collapse
Affiliation(s)
| | - Max R Dannish
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Tobias Kohl
- Lehrstuhl für Zoologie,Technical University of Munich, Freising, Germany
| | - Lutz Kettler
- Lehrstuhl für Zoologie,Technical University of Munich, Freising, Germany
| | - Catherine E Carr
- Department of Biology, University of Maryland, College Park, Maryland, USA
| | - Ryan K Tisdale
- Max Planck Institute for Ornithology, Seewiesen, Germany
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Harald Luksch
- Lehrstuhl für Zoologie,Technical University of Munich, Freising, Germany
| | - Douglas R Wylie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada,
| |
Collapse
|
4
|
Comparative analysis of squamate brains unveils multi-level variation in cerebellar architecture associated with locomotor specialization. Nat Commun 2019; 10:5560. [PMID: 31804475 PMCID: PMC6895188 DOI: 10.1038/s41467-019-13405-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 11/07/2019] [Indexed: 01/02/2023] Open
Abstract
Ecomorphological studies evaluating the impact of environmental and biological factors on the brain have so far focused on morphology or size measurements, and the ecological relevance of potential multi-level variations in brain architecture remains unclear in vertebrates. Here, we exploit the extraordinary ecomorphological diversity of squamates to assess brain phenotypic diversification with respect to locomotor specialization, by integrating single-cell distribution and transcriptomic data along with geometric morphometric, phylogenetic, and volumetric analysis of high-definition 3D models. We reveal significant changes in cerebellar shape and size as well as alternative spatial layouts of cortical neurons and dynamic gene expression that all correlate with locomotor behaviours. These findings show that locomotor mode is a strong predictor of cerebellar structure and pattern, suggesting that major behavioural transitions in squamates are evolutionarily correlated with mosaic brain changes. Furthermore, our study amplifies the concept of ‘cerebrotype’, initially proposed for vertebrate brain proportions, towards additional shape characters. The cerebellum is critical in sensory-motor control and is structurally diverse across vertebrates. Here, the authors investigate the evolutionary relationship between locomotory mode and cerebellum architecture across squamates by integrating study of gene expression, cell distribution, and 3D morphology.
Collapse
|
5
|
Gill JS, Sillitoe RV. Functional Outcomes of Cerebellar Malformations. Front Cell Neurosci 2019; 13:441. [PMID: 31636540 PMCID: PMC6787289 DOI: 10.3389/fncel.2019.00441] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 09/18/2019] [Indexed: 12/20/2022] Open
Abstract
The cerebellum is well-established as a primary center for controlling sensorimotor functions. However, recent experiments have demonstrated additional roles for the cerebellum in higher-order cognitive functions such as language, emotion, reward, social behavior, and working memory. Based on the diversity of behaviors that it can influence, it is therefore not surprising that cerebellar dysfunction is linked to motor diseases such as ataxia, dystonia, tremor, and Parkinson's disease as well to non-motor disorders including autism spectrum disorders (ASD), schizophrenia, depression, and anxiety. Regardless of the condition, there is a growing consensus that developmental disturbances of the cerebellum may be a central culprit in triggering a number of distinct pathophysiological processes. Here, we consider how cerebellar malformations and neuronal circuit wiring impact brain function and behavior during development. We use the cerebellum as a model to discuss the expanding view that local integrated brain circuits function within the context of distributed global networks to communicate the computations that drive complex behavior. We highlight growing concerns that neurological and neuropsychiatric diseases with severe behavioral outcomes originate from developmental insults to the cerebellum.
Collapse
Affiliation(s)
- Jason S. Gill
- Section of Pediatric Neurology and Developmental Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
| | - Roy V. Sillitoe
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute of Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
6
|
Kamhi JF, Ilieş I, Traniello JFA. Social Complexity and Brain Evolution: Comparative Analysis of Modularity and Integration in Ant Brain Organization. BRAIN, BEHAVIOR AND EVOLUTION 2019; 93:4-18. [PMID: 30982030 DOI: 10.1159/000497267] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 01/27/2019] [Indexed: 11/19/2022]
Abstract
The behavioral demands of living in social groups have been linked to the evolution of brain size and structure, but how social organization shapes investment and connectivity within and among functionally specialized brain regions remains unclear. To understand the influence of sociality on brain evolution in ants, a premier clade of eusocial insects, we statistically analyzed patterns of brain region size covariation as a proxy for brain region connectivity. We investigated brain structure covariance in young and old workers of two formicine ants, the Australasian weaver ant Oecophylla smaragdina, a pinnacle of social complexity in insects, and its socially basic sister clade Formica subsericea. As previously identified in other ant species, we predicted that our analysis would recognize in both species an olfaction-related brain module underpinning social information processing in the brain, and a second neuroanatomical cluster involved in nonolfactory sensorimotor processes, thus reflecting conservation of compartmental connectivity. Furthermore, we hypothesized that covariance patterns would reflect divergence in social organization and life histories either within this species pair or compared to other ant species. Contrary to our predictions, our covariance analyses revealed a weakly defined visual, rather than olfactory, sensory processing cluster in both species. This pattern may be linked to the reliance on vision for worker behavioral performance outside of the nest and the correlated expansion of the optic lobes to meet navigational demands in both species. Additionally, we found that colony size and social organization, key measures of social complexity, were only weakly correlated with brain modularity in these formicine ants. Worker age also contributed to variance in brain organization, though in different ways in each species. These findings suggest that brain organization may be shaped by the divergent life histories of the two study species. We compare our findings with patterns of brain organization of other eusocial insects.
Collapse
Affiliation(s)
- J Frances Kamhi
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA, .,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia,
| | - Iulian Ilieş
- Healthcare Systems Engineering Institute, Department of Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts, USA
| | - James F A Traniello
- Graduate Program for Neuroscience, Boston University, Boston, Massachusetts, USA.,Department of Biology, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
7
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Craciun I, Gutiérrez-Ibáñez C, Corfield JR, Hurd PL, Wylie DR. Topographic Organization of Inferior Olive Projections to the Zebrin II Stripes in the Pigeon Cerebellar Uvula. Front Neuroanat 2018; 12:18. [PMID: 29599710 PMCID: PMC5862790 DOI: 10.3389/fnana.2018.00018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 02/26/2018] [Indexed: 11/25/2022] Open
Abstract
This study was aimed at mapping the organization of the projections from the inferior olive (IO) to the ventral uvula in pigeons. The uvula is part of the vestibulocerebellum (VbC), which is involved in the processing of optic flow resulting from self-motion. As in other areas of the cerebellum, the uvula is organized into sagittal zones, which is apparent with respect to afferent inputs, the projection patterns of Purkinje cell (PC) efferents, the response properties of PCs and the expression of molecular markers such as zebrin II (ZII). ZII is heterogeneously expressed such that there are sagittal stripes of PCs with high ZII expression (ZII+), alternating with sagittal stripes of PCs with little to no ZII expression (ZII−). We have previously demonstrated that a ZII+/− stripe pair in the uvula constitutes a functional unit, insofar as the complex spike activity (CSA) of all PCs within a ZII+/− stripe pair respond to the same type of optic flow stimuli. In the present study we sought to map the climbing fiber (CF) inputs from the IO to the ZII+ and ZII− stripes in the uvula. We injected fluorescent Cholera Toxin B (CTB) of different colors (red and green) into ZII+ and ZII− bands of functional stripe pair. Injections in the ZII+ and ZII− bands resulted in retrograde labeling of spatially separate, but adjacent regions in the IO. Thus, although a ZII+/− stripe pair represents a functional unit in the pigeon uvula, CF inputs to the ZII+ and ZII− stripes of a unit arise from separate regions of the IO.
Collapse
Affiliation(s)
- Iulia Craciun
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | | | - Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, MD, United States
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| | - Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
9
|
Wylie DR, Gutiérrez-Ibáñez C, Corfield JR, Craciun I, Graham DJ, Hurd PL. Inferior olivary projection to the zebrin II stripes in lobule IXcd of the pigeon flocculus: A retrograde tracing study. J Comp Neurol 2017. [PMID: 28649766 DOI: 10.1002/cne.24270] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Zebrin II (ZII; a.k.a. aldolase C) is expressed heterogeneously in Purkinje cells (PCs) such that there are sagittal stripes of high expression (ZII+) interdigitated with stripes of little or no expression (ZII-). The pigeon flocculus receives visual-optokinetic information and is important for generating compensatory eye movements. It consists of 4 sagittal zones based on PC complex spike activity (CSA) in response to rotational optokinetic stimuli. There are two zones where CSA responds best to rotation about the vertical axis (VA), interdigitated with two zones where CSA responds best to rotation about an horizontal axis (HA). These optokinetic zones relate to the ZII stripes in folium IXcd of the flocculus, such that an optokinetic zone spans a ZII+/- pair: the HA zones span the P5+/- and P7+/- ZII stripe pairs, whereas the VA zones correspond to ZII stripe pairs P4+/- and P6+/-. In the present study, we used fluorescent retrograde tracing to determine the olivary inputs to the ZII+ and ZII- stripes within the functional pairs. We found that separate but adjacent areas of the medial column of the inferior olive (mcIO) project to the ZII+ and ZII- stripes within each of the functional pairs. Thus, although a ZII+/- stripe pair represents a functional unit in the pigeon flocculus insofar as the CSA of all PCs in the stripe pair encodes similar sensory information, the olivary inputs to the ZII+ and ZII- stripes arise from different, although adjacent, regions of the mcIO.
Collapse
Affiliation(s)
- Douglas R Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | | | - Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, Maryland
| | - Iulia Craciun
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - David J Graham
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| | - Peter L Hurd
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Alberta, Canada, T6G 2E9
| |
Collapse
|
10
|
Corfield JR, Kolominsky J, Craciun I, Mulvany-Robbins BE, Wylie DR. Is Cerebellar Architecture Shaped by Sensory Ecology in the New Zealand Kiwi (Apteryx mantelli). BRAIN, BEHAVIOR AND EVOLUTION 2016; 87:88-104. [PMID: 27192984 DOI: 10.1159/000445315] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 03/09/2016] [Indexed: 11/19/2022]
Abstract
Among some mammals and birds, the cerebellar architecture appears to be adapted to the animal's ecological niche, particularly their sensory ecology and behavior. This relationship is, however, not well understood. To explore this, we examined the expression of zebrin II (ZII) in the cerebellum of the kiwi (Apteryx mantelli), a fully nocturnal bird with auditory, tactile, and olfactory specializations and a reduced visual system. We predicted that the cerebellar architecture, particularly those regions receiving visual inputs and those that receive trigeminal afferents from their beak, would be modified in accordance with their unique way of life. The general stripe-and-transverse region architecture characteristic of birds is present in kiwi, with some differences. Folium IXcd was characterized by large ZII-positive stripes and all Purkinje cells in the flocculus were ZII positive, features that resemble those of small mammals and suggest a visual ecology unlike that of other birds. The central region in kiwi appeared reduced or modified, with folium IV containing ZII+/- stripes, unlike that of most birds, but similar to that of Chilean tinamous. It is possible that a reduced visual system has contributed to a small central region, although increased trigeminal input and flightlessness have undoubtedly played a role in shaping its architecture. Overall, like in mammals, the cerebellar architecture in kiwi and other birds may be substantially modified to serve a particular ecological niche, although we still require a larger comparative data set to fully understand this relationship.
Collapse
Affiliation(s)
- Jeremy R Corfield
- Department of Biological Sciences, Salisbury University, Salisbury, Md., USA
| | | | | | | | | |
Collapse
|
11
|
Marzban H, Del Bigio MR, Alizadeh J, Ghavami S, Zachariah RM, Rastegar M. Cellular commitment in the developing cerebellum. Front Cell Neurosci 2015; 8:450. [PMID: 25628535 PMCID: PMC4290586 DOI: 10.3389/fncel.2014.00450] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 12/12/2014] [Indexed: 12/11/2022] Open
Abstract
The mammalian cerebellum is located in the posterior cranial fossa and is critical for motor coordination and non-motor functions including cognitive and emotional processes. The anatomical structure of cerebellum is distinct with a three-layered cortex. During development, neurogenesis and fate decisions of cerebellar primordium cells are orchestrated through tightly controlled molecular events involving multiple genetic pathways. In this review, we will highlight the anatomical structure of human and mouse cerebellum, the cellular composition of developing cerebellum, and the underlying gene expression programs involved in cell fate commitments in the cerebellum. A critical evaluation of the cell death literature suggests that apoptosis occurs in ~5% of cerebellar cells, most shortly after mitosis. Apoptosis and cellular autophagy likely play significant roles in cerebellar development, we provide a comprehensive discussion of their role in cerebellar development and organization. We also address the possible function of unfolded protein response in regulation of cerebellar neurogenesis. We discuss recent advancements in understanding the epigenetic signature of cerebellar compartments and possible connections between DNA methylation, microRNAs and cerebellar neurodegeneration. Finally, we discuss genetic diseases associated with cerebellar dysfunction and their role in the aging cerebellum.
Collapse
Affiliation(s)
- Hassan Marzban
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada ; Department of Pathology, University of Manitoba Winnipeg, MB, Canada
| | - Javad Alizadeh
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Saeid Ghavami
- Department of Human Anatomy and Cell Science, University of Manitoba Winnipeg, MB, Canada
| | - Robby M Zachariah
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Department of Biochemistry and Medical Genetics, University of Manitoba Winnipeg, MB, Canada ; Regenerative Medicine Program, University of Manitoba Winnipeg, MB, Canada
| |
Collapse
|