1
|
Bai Y, Zhou Z, Han B, Xiang X, Huang W, Yao H. Revisiting astrocytic calcium signaling in the brain. FUNDAMENTAL RESEARCH 2024; 4:1365-1374. [PMID: 39734522 PMCID: PMC11670731 DOI: 10.1016/j.fmre.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 12/31/2024] Open
Abstract
Astrocytes, characterized by complex spongiform morphology, participate in various physiological processes, and abnormal changes in their calcium (Ca2+) signaling are implicated in central nervous system disorders. However, medications targeting the control of Ca2+ have fallen short of the anticipated therapeutic outcomes in clinical applications. This underscores the fact that our comprehension of this intricate regulation of calcium ions remains considerably incomplete. In recent years, with the advancement of Ca2+ labeling, imaging, and analysis techniques, Ca2+ signals have been found to exhibit high specificity at different spatial locations within the intricate structure of astrocytes. This has ushered the study of Ca2+ signaling in astrocytes into a new phase, leading to several groundbreaking research achievements. Despite this, the comprehensive understanding of astrocytic Ca2+ signaling and their implications remains challenging area for future research.
Collapse
Affiliation(s)
- Ying Bai
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Zhongqiu Zhou
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Bing Han
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
| | - Xianyuan Xiang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Wenhui Huang
- Molecular Physiology, CIPMM, University of Saarland, Homburg 66421, Germany
| | - Honghong Yao
- Department of Pharmacology, Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Medicine, Southeast University, Nanjing 210009, China
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing 210096, China
- Center for Global Health, School of Public Health, Nanjig Medical University, Nanjing 211166, China
| |
Collapse
|
2
|
Schreurs BG, O'Dell DE, Wang D. The Role of Cerebellar Intrinsic Neuronal Excitability, Synaptic Plasticity, and Perineuronal Nets in Eyeblink Conditioning. BIOLOGY 2024; 13:200. [PMID: 38534469 DOI: 10.3390/biology13030200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/28/2024]
Abstract
Evidence is strong that, in addition to fine motor control, there is an important role for the cerebellum in cognition and emotion. The deep nuclei of the mammalian cerebellum also contain the highest density of perineural nets-mesh-like structures that surround neurons-in the brain, and it appears there may be a connection between these nets and cognitive processes, particularly learning and memory. Here, we review how the cerebellum is involved in eyeblink conditioning-a particularly well-understood form of learning and memory-and focus on the role of perineuronal nets in intrinsic membrane excitability and synaptic plasticity that underlie eyeblink conditioning. We explore the development and role of perineuronal nets and the in vivo and in vitro evidence that manipulations of the perineuronal net in the deep cerebellar nuclei affect eyeblink conditioning. Together, these findings provide evidence of an important role for perineuronal net in learning and memory.
Collapse
Affiliation(s)
- Bernard G Schreurs
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| | - Deidre E O'Dell
- Department of Biology, Earth and Environmental Sciences, Pennsylvania Western (PennWest) University, California, PA 15419, USA
| | - Desheng Wang
- Department of Neuroscience, West Virginia University, Morgantown, WV 26505, USA
| |
Collapse
|
3
|
Costa RM, Baxter DA, Byrne JH. Computational model of the distributed representation of operant reward memory: combinatoric engagement of intrinsic and synaptic plasticity mechanisms. ACTA ACUST UNITED AC 2020; 27:236-249. [PMID: 32414941 PMCID: PMC7233148 DOI: 10.1101/lm.051367.120] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 02/13/2020] [Indexed: 01/15/2023]
Abstract
Operant reward learning of feeding behavior in Aplysia increases the frequency and regularity of biting, as well as biases buccal motor patterns (BMPs) toward ingestion-like BMPs (iBMPs). The engram underlying this memory comprises cells that are part of a central pattern generating (CPG) circuit and includes increases in the intrinsic excitability of identified cells B30, B51, B63, and B65, and increases in B63-B30 and B63-B65 electrical synaptic coupling. To examine the ways in which sites of plasticity (individually and in combination) contribute to memory expression, a model of the CPG was developed. The model included conductance-based descriptions of cells CBI-2, B4, B8, B20, B30, B31, B34, B40, B51, B52, B63, B64, and B65, and their synaptic connections. The model generated patterned activity that resembled physiological BMPs, and implementation of the engram reproduced increases in frequency, regularity, and bias. Combined enhancement of B30, B63, and B65 excitabilities increased BMP frequency and regularity, but not bias toward iBMPs. Individually, B30 increased regularity and bias, B51 increased bias, B63 increased frequency, and B65 decreased all three BMP features. Combined synaptic plasticity contributed primarily to regularity, but also to frequency and bias. B63-B30 coupling contributed to regularity and bias, and B63-B65 coupling contributed to all BMP features. Each site of plasticity altered multiple BMP features simultaneously. Moreover, plasticity loci exhibited mutual dependence and synergism. These results indicate that the memory for operant reward learning emerged from the combinatoric engagement of multiple sites of plasticity.
Collapse
Affiliation(s)
- Renan M Costa
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Douglas A Baxter
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,Engineering in Medicine (EnMed), Texas A&M Health Science Center-Houston, Houston, Texas 77030, USA
| | - John H Byrne
- Keck Center for the Neurobiology of Learning and Memory, Department of Neurobiology and Anatomy, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, Texas 77030, USA.,MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
4
|
Changes in cerebellar intrinsic neuronal excitability and synaptic plasticity result from eyeblink conditioning. Neurobiol Learn Mem 2019; 166:107094. [PMID: 31542329 DOI: 10.1016/j.nlm.2019.107094] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 08/27/2019] [Accepted: 09/16/2019] [Indexed: 12/21/2022]
Abstract
There is a long history of research documenting plasticity in the cerebellum as well as the role of the cerebellum in learning and memory. Recordings in slices of cerebellum have provided evidence of long-term depression and long-term potentiation at several excitatory and inhibitory synapses. Lesions and recordings show the cerebellum is crucial for eyeblink conditioning and it appears changes in both synaptic and membrane plasticity are involved. In addition to its role in fine motor control, there is growing consensus that the cerebellum is crucial for perceptual, cognitive, and emotional functions. In the current review, we explore the evidence that eyeblink conditioning results in significant changes in intrinsic membrane excitability as well as synaptic plasticity in Purkinje cells of the cerebellar cortex in rabbits and changes in intrinsic membrane excitability in principal neurons of the deep cerebellar nuclei in rats.
Collapse
|
5
|
Kim Y, Im S, Kim SH, Park GY. Laterality of cerebellar afferent and efferent pathways in a healthy right-handed population: A diffusion tensor imaging study. J Neurosci Res 2018; 97:582-596. [PMID: 30582195 DOI: 10.1002/jnr.24378] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/16/2018] [Accepted: 12/07/2018] [Indexed: 11/11/2022]
Abstract
The cerebellum communicates with the cerebral cortex through the cortico-ponto-cerebellar tract (CPCT, cerebellar afferent) and the dentato-rubro-thalamo-cortical tract (DRTCT, cerebellar efferent). This study explored the laterality of CPCT and DRTCT in a right-handed population. Forty healthy right-handed subjects (18 males and 22 females with age range of 26-79 years old) who underwent diffusion tensor imaging (DTI) were retrospectively enrolled. Bilateral CPCT, DRTCT, and the corticospinal tract (CST) were reconstructed using probabilistic diffusion tensor tractography (DTT). Tract volume (TV) and fractional anisotropy (FA) were compared between dominant and non-dominant tracts. Subjects were divided into age groups (20-40, 41-60, and 61-80 years), and the DTI-derived parameters of the groups were compared to determine age-related differences. TV and FA of non-dominant CPCT were higher than those of dominant CPCT, and the dominant CST was higher than the non-dominant CST. The TV and FA of DRTCT showed no side-to-side difference. The 61-80 years age group had the highest TV of the dominant and non-dominant DRTCT among the three groups and the highest FA of the non-dominant CPCT and DRTCT. The results revealed the structural characteristics of CPCT and DRTCT using probabilistic DTT. Normal asymmetric patterns and age-related changes in cerebellar white matter tracts may be important to researchers investigating cerebro-cerebellar structural connectivity.
Collapse
Affiliation(s)
- Youngkook Kim
- Department of Rehabilitation Medicine, Graduate School, The Catholic University of Korea, Seoul, Republic of Korea.,Department of Rehabilitation Medicine, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Im
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Se-Hong Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Suwon, Republic of Korea
| | - Geun-Young Park
- Department of Rehabilitation Medicine, Bucheon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
6
|
Kim Y, Kim SH, Kim JS, Hong BY. Modification of Cerebellar Afferent Pathway in the Subacute Phase of Stroke. J Stroke Cerebrovasc Dis 2018; 27:2445-2452. [PMID: 29801815 DOI: 10.1016/j.jstrokecerebrovasdis.2018.04.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/22/2018] [Accepted: 04/28/2018] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND This study aims to identify the relationship between corticopontocerebellar tract (CPCT) and corticospinal tract (CST) integrity as well as motor function after stroke. MATERIALS AND METHODS A total of 33 patients with stroke (18 left, 15 right hemispheric lesions) who underwent diffusion tensor imaging within 2 months of stroke onset and 17 age- and sex-matched healthy controls were retrospectively enrolled. Tract volume and the asymmetry index based on tract volume (AITV) of the CST and CPCT were used to identify structural changes in individual tracts and the correlation between those tracts. Motor function was assessed using the Medical Research Council (MRC) muscle scale, manual function test (MFT), functional ambulation category, and modified Barthel index. RESULTS The volume of the affected CPCT was lower, and that of the unaffected CPCT was higher than the volumes in the control group (P < .001, P = .001, respectively). The CPCT AITV showed a strong positive correlation with the CST AITV in patients with either left or right hemispheric lesions (rs = .779, P < .001; rs = .732, P = .003, respectively). The CPCT AITV negatively correlated with the MRC muscle scale of the shoulder, wrist, and ankle muscles (r = -.490, -.490, -.416; P = .004, .004, .016, respectively). A higher unaffected CPCT volume was indicative of less affected upper extremity function, as assessed by MFT (rs = -.546, P = .029). CONCLUSIONS Modification of the CPCT depended on CST integrity and was associated with the severity of hemiplegia and hemiplegic upper extremity function. The CPCT may complement the role of the CST and help to predict the motor function.
Collapse
Affiliation(s)
- Youngkook Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Paldal-gu, Suwon, Republic of Korea
| | - Se-Hong Kim
- Department of Family Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Paldal-gu, Suwon, Republic of Korea
| | - Joon-Sung Kim
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Paldal-gu, Suwon, Republic of Korea
| | - Bo Young Hong
- Department of Rehabilitation Medicine, St. Vincent's Hospital, College of Medicine, The Catholic University of Korea, Paldal-gu, Suwon, Republic of Korea.
| |
Collapse
|
7
|
Consensus Paper: Towards a Systems-Level View of Cerebellar Function: the Interplay Between Cerebellum, Basal Ganglia, and Cortex. THE CEREBELLUM 2017; 16:203-229. [PMID: 26873754 PMCID: PMC5243918 DOI: 10.1007/s12311-016-0763-3] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Despite increasing evidence suggesting the cerebellum works in concert with the cortex and basal ganglia, the nature of the reciprocal interactions between these three brain regions remains unclear. This consensus paper gathers diverse recent views on a variety of important roles played by the cerebellum within the cerebello-basal ganglia-thalamo-cortical system across a range of motor and cognitive functions. The paper includes theoretical and empirical contributions, which cover the following topics: recent evidence supporting the dynamical interplay between cerebellum, basal ganglia, and cortical areas in humans and other animals; theoretical neuroscience perspectives and empirical evidence on the reciprocal influences between cerebellum, basal ganglia, and cortex in learning and control processes; and data suggesting possible roles of the cerebellum in basal ganglia movement disorders. Although starting from different backgrounds and dealing with different topics, all the contributors agree that viewing the cerebellum, basal ganglia, and cortex as an integrated system enables us to understand the function of these areas in radically different ways. In addition, there is unanimous consensus between the authors that future experimental and computational work is needed to understand the function of cerebellar-basal ganglia circuitry in both motor and non-motor functions. The paper reports the most advanced perspectives on the role of the cerebellum within the cerebello-basal ganglia-thalamo-cortical system and illustrates other elements of consensus as well as disagreements and open questions in the field.
Collapse
|
8
|
New insights into olivo-cerebellar circuits for learning from a small training sample. Curr Opin Neurobiol 2017; 46:58-67. [PMID: 28841437 DOI: 10.1016/j.conb.2017.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/26/2017] [Accepted: 07/27/2017] [Indexed: 11/24/2022]
Abstract
Artificial intelligence such as deep neural networks exhibited remarkable performance in simulated video games and 'Go'. In contrast, most humanoid robots in the DARPA Robotics Challenge fell down to ground. The dramatic contrast in performance is mainly due to differences in the amount of training data, which is huge and small, respectively. Animals are not allowed with millions of the failed trials, which lead to injury and death. Humans fall only several thousand times before they balance and walk. We hypothesize that a unique closed-loop neural circuit formed by the Purkinje cells, the cerebellar deep nucleus and the inferior olive in and around the cerebellum and the highest density of gap junctions, which regulate synchronous activities of the inferior olive nucleus, are computational machinery for learning from a small sample. We discuss recent experimental and computational advances associated with this hypothesis.
Collapse
|
9
|
Jörntell H. Cerebellar physiology: links between microcircuitry properties and sensorimotor functions. J Physiol 2016; 595:11-27. [PMID: 27388692 DOI: 10.1113/jp272769] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
Existing knowledge of the cerebellar microcircuitry structure and physiology allows a rather detailed description of what it in itself can and cannot do. Combined with a known mapping of different cerebellar regions to afferent systems and motor output target structures, there are several constraints that can be used to describe how specific components of the cerebellar microcircuitry may work during sensorimotor control. In fact, as described in this review, the major factor that hampers further progress in understanding cerebellar function is the limited insights into the circuitry-level function of the targeted motor output systems and the nature of the information in the mossy fiber afferents. The cerebellar circuitry in itself is here summarized as a gigantic associative memory element, primarily consisting of the parallel fiber synapses, whereas most other circuitry components, including the climbing fiber system, primarily has the role of maintaining activity balance in the intracerebellar and extracerebellar circuitry. The review explores the consistency of this novel interpretational framework with multiple diverse observations at the synaptic and microcircuitry level within the cerebellum.
Collapse
Affiliation(s)
- Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Sweden
| |
Collapse
|
10
|
Bower JM. The 40-year history of modeling active dendrites in cerebellar Purkinje cells: emergence of the first single cell "community model". Front Comput Neurosci 2015; 9:129. [PMID: 26539104 PMCID: PMC4611061 DOI: 10.3389/fncom.2015.00129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 10/02/2015] [Indexed: 11/13/2022] Open
Abstract
The subject of the effects of the active properties of the Purkinje cell dendrite on neuronal function has been an active subject of study for more than 40 years. Somewhat unusually, some of these investigations, from the outset have involved an interacting combination of experimental and model-based techniques. This article recounts that 40-year history, and the view of the functional significance of the active properties of the Purkinje cell dendrite that has emerged. It specifically considers the emergence from these efforts of what is arguably the first single cell "community" model in neuroscience. The article also considers the implications of the development of this model for future studies of the complex properties of neuronal dendrites.
Collapse
|