1
|
Li YE, Preissl S, Miller M, Johnson ND, Wang Z, Jiao H, Zhu C, Wang Z, Xie Y, Poirion O, Kern C, Pinto-Duarte A, Tian W, Siletti K, Emerson N, Osteen J, Lucero J, Lin L, Yang Q, Zhu Q, Zemke N, Espinoza S, Yanny AM, Nyhus J, Dee N, Casper T, Shapovalova N, Hirschstein D, Hodge RD, Linnarsson S, Bakken T, Levi B, Keene CD, Shang J, Lein E, Wang A, Behrens MM, Ecker JR, Ren B. A comparative atlas of single-cell chromatin accessibility in the human brain. Science 2023; 382:eadf7044. [PMID: 37824643 PMCID: PMC10852054 DOI: 10.1126/science.adf7044] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Recent advances in single-cell transcriptomics have illuminated the diverse neuronal and glial cell types within the human brain. However, the regulatory programs governing cell identity and function remain unclear. Using a single-nucleus assay for transposase-accessible chromatin using sequencing (snATAC-seq), we explored open chromatin landscapes across 1.1 million cells in 42 brain regions from three adults. Integrating this data unveiled 107 distinct cell types and their specific utilization of 544,735 candidate cis-regulatory DNA elements (cCREs) in the human genome. Nearly a third of the cCREs demonstrated conservation and chromatin accessibility in the mouse brain cells. We reveal strong links between specific brain cell types and neuropsychiatric disorders including schizophrenia, bipolar disorder, Alzheimer's disease (AD), and major depression, and have developed deep learning models to predict the regulatory roles of noncoding risk variants in these disorders.
Collapse
Affiliation(s)
- Yang Eric Li
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sebastian Preissl
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Michael Miller
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | - Zihan Wang
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Henry Jiao
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Chenxu Zhu
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Zhaoning Wang
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yang Xie
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Olivier Poirion
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Colin Kern
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | - Wei Tian
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Kimberly Siletti
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Nora Emerson
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Julia Osteen
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jacinta Lucero
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Lin Lin
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Qian Yang
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Quan Zhu
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Nathan Zemke
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Sarah Espinoza
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | | | | | | | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Trygve Bakken
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Boaz Levi
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104, USA
| | - Jingbo Shang
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ed Lein
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Allen Wang
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | | - Joseph R Ecker
- The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
- Howard Hughes Medical Institute, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Bing Ren
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA 92093, USA
- Center for Epigenomics, University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Chitra U, Arnold BJ, Sarkar H, Ma C, Lopez-Darwin S, Sanno K, Raphael BJ. Mapping the topography of spatial gene expression with interpretable deep learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.10.561757. [PMID: 37873258 PMCID: PMC10592770 DOI: 10.1101/2023.10.10.561757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Spatially resolved transcriptomics technologies provide high-throughput measurements of gene expression in a tissue slice, but the sparsity of this data complicates the analysis of spatial gene expression patterns such as gene expression gradients. We address these issues by deriving a topographic map of a tissue slice-analogous to a map of elevation in a landscape-using a novel quantity called the isodepth. Contours of constant isodepth enclose spatial domains with distinct cell type composition, while gradients of the isodepth indicate spatial directions of maximum change in gene expression. We develop GASTON, an unsupervised and interpretable deep learning algorithm that simultaneously learns the isodepth, spatial gene expression gradients, and piecewise linear functions of the isodepth that model both continuous gradients and discontinuous spatial variation in the expression of individual genes. We validate GASTON by showing that it accurately identifies spatial domains and marker genes across several biological systems. In SRT data from the brain, GASTON reveals gradients of neuronal differentiation and firing, and in SRT data from a tumor sample, GASTON infers gradients of metabolic activity and epithelial-mesenchymal transition (EMT)-related gene expression in the tumor microenvironment.
Collapse
Affiliation(s)
- Uthsav Chitra
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | - Brian J. Arnold
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | - Hirak Sarkar
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Ludwig Cancer Institute, Princeton Branch, Princeton University, Princeton, NJ, USA
| | - Cong Ma
- Department of Computer Science, Princeton University, Princeton, NJ, USA
| | | | - Kohei Sanno
- Department of Computer Science, Princeton University, Princeton, NJ, USA
- Center for Statistics and Machine Learning, Princeton University, Princeton, NJ, USA
| | | |
Collapse
|
3
|
Pathak D, Sriram K. Neuron-astrocyte omnidirectional signaling in neurological health and disease. Front Mol Neurosci 2023; 16:1169320. [PMID: 37363320 PMCID: PMC10286832 DOI: 10.3389/fnmol.2023.1169320] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 05/09/2023] [Indexed: 06/28/2023] Open
Abstract
Astrocytes are an abundantly distributed population of glial cells in the central nervous system (CNS) that perform myriad functions in the normal and injured/diseased brain. Astrocytes exhibit heterogeneous phenotypes in response to various insults, a process known as astrocyte reactivity. The accuracy and precision of brain signaling are primarily based on interactions involving neurons, astrocytes, oligodendrocytes, microglia, pericytes, and dendritic cells within the CNS. Astrocytes have emerged as a critical entity within the brain because of their unique role in recycling neurotransmitters, actively modulating the ionic environment, regulating cholesterol and sphingolipid metabolism, and influencing cellular crosstalk in diverse neural injury conditions and neurodegenerative disorders. However, little is known about how an astrocyte functions in synapse formation, axon specification, neuroplasticity, neural homeostasis, neural network activity following dynamic surveillance, and CNS structure in neurological diseases. Interestingly, the tripartite synapse hypothesis came to light to fill some knowledge gaps that constitute an interaction of a subpopulation of astrocytes, neurons, and synapses. This review highlights astrocytes' role in health and neurological/neurodegenerative diseases arising from the omnidirectional signaling between astrocytes and neurons at the tripartite synapse. The review also recapitulates the disruption of the tripartite synapse with a focus on perturbations of the homeostatic astrocytic function as a key driver to modulate the molecular and physiological processes toward neurodegenerative diseases.
Collapse
|
4
|
Edamakanti CR, Mohan V, Opal P. Reactive Bergmann glia play a central role in spinocerebellar ataxia inflammation via the JNK pathway. J Neuroinflammation 2023; 20:126. [PMID: 37237366 PMCID: PMC10214658 DOI: 10.1186/s12974-023-02801-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The spinocerebellar ataxias (SCAs) are devastating neurological diseases characterized by progressive cerebellar incoordination. While neurons bear the brunt of the pathology, a growing body of evidence suggests that glial cells are also affected. It has, however, been difficult to understand the role of glia, given the diversity of subtypes, each with their individual contributions to neuronal health. Using human SCA autopsy samples we have discovered that Bergmann glia-the radial glia of the cerebellum, which form intimate functional connections with cerebellar Purkinje neurons-display inflammatory JNK-dependent c-Jun phosphorylation. This phosphorylation defines a signaling pathway not observed in other activated glial populations, providing an opportunity to isolate the role of Bergmann glia in SCA inflammation. Turning to an SCA1 mouse model as a paradigmatic SCA, we demonstrate that inhibiting the JNK pathway reduces Bergmann glia inflammation accompanied by improvements in the SCA1 phenotype both behaviorally and pathologically. These findings demonstrate the causal role for Bergmann glia inflammation in SCA1 and point to a novel therapeutic strategy that could span several ataxic syndromes where Bergmann glia inflammation is a major feature.
Collapse
Affiliation(s)
- Chandrakanth Reddy Edamakanti
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
- Annexon Biosciences, 1400 Sierra Point Parkway Building C, 2nd Floor, Brisbane, CA, 94005, USA.
| | - Vishwa Mohan
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Puneet Opal
- Davee Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell and Molecular Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Neurology, Northwestern University Feinberg School of Medicine, Ward 10-332, 303 E. Chicago Ave, Chicago, IL, 60611, USA.
| |
Collapse
|
5
|
Akeret K, Weller M, Krayenbühl N. The anatomy of neuroepithelial tumours. Brain 2023:7171408. [PMID: 37201913 PMCID: PMC10393414 DOI: 10.1093/brain/awad138] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 04/10/2023] [Accepted: 04/12/2023] [Indexed: 05/20/2023] Open
Abstract
Many neurological conditions conceal specific anatomical patterns. Their study contributes to the understanding of disease biology and to tailored diagnostics and therapy. Neuroepithelial tumours exhibit distinct anatomical phenotypes and spatiotemporal dynamics that differ from those of other brain tumours. Brain metastases display a preference for the cortico-subcortical boundaries of watershed areas and have a predominantly spherical growth. Primary CNS lymphomas localize to the white matter and generally invade along fibre tracts. In neuroepithelial tumours, topographic probability mapping and unsupervised topological clustering have identified an inherent radial anatomy and adherence to ventriculopial configurations of specific hierarchical orders. Spatiotemporal probability and multivariate survival analyses have identified a temporal and prognostic sequence underlying the anatomical phenotypes of neuroepithelial tumours. Gradual neuroepithelial de-differentiation and declining prognosis follow (i) an expansion into higher order radial units; (ii) a subventricular spread; and (iii) the presence of mesenchymal patterns (expansion along white matter tracts, leptomeningeal or perivascular invasion, CSF spread). While different pathophysiological hypotheses have been proposed, the cellular and molecular mechanisms dictating this anatomical behaviour remain largely unknown. Here we adopt an ontogenetic approach towards the understanding of neuroepithelial tumour anatomy. Contemporary perception of histo- and morphogenetic processes during neurodevelopment permit us to conceptualize the architecture of the brain into hierarchically organized radial units. The anatomical phenotypes in neuroepithelial tumours and their temporal and prognostic sequences share remarkable similarities with the ontogenetic organization of the brain and the anatomical specifications that occur during neurodevelopment. This macroscopic coherence is reinforced by cellular and molecular observations that the initiation of various neuroepithelial tumours, their intratumoural hierarchy and tumour progression are associated with the aberrant reactivation of surprisingly normal ontogenetic programs. Generalizable topological phenotypes could provide the basis for an anatomical refinement of the current classification of neuroepithelial tumours. In addition, we have proposed a staging system for adult-type diffuse gliomas that is based on the prognostically critical steps along the sequence of anatomical tumour progression. Considering the parallels in anatomical behaviour between different neuroepithelial tumours, analogous staging systems may be implemented for other neuroepithelial tumour types and subtypes. Both the anatomical stage of a neuroepithelial tumour and the spatial configuration of its hosting radial unit harbour the potential to stratify treatment decisions at diagnosis and during follow-up. More data on specific neuroepithelial tumour types and subtypes are needed to increase the anatomical granularity in their classification and to determine the clinical impact of stage-adapted and anatomically tailored therapy and surveillance.
Collapse
Affiliation(s)
- Kevin Akeret
- Department of Neurosurgery, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Michael Weller
- Department of Neurology, Clinical Neuroscience Centre, University Hospital Zurich and University of Zurich, 8091 Zurich, Switzerland
| | - Niklaus Krayenbühl
- Division of Paediatric Neurosurgery, University Children's Hospital, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Gala DS, Titlow JS, Teodoro RO, Davis I. Far from home: the role of glial mRNA localization in synaptic plasticity. RNA (NEW YORK, N.Y.) 2023; 29:153-169. [PMID: 36442969 PMCID: PMC9891262 DOI: 10.1261/rna.079422.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neurons and glia are highly polarized cells, whose distal cytoplasmic functional subdomains require specific proteins. Neurons have axonal and dendritic cytoplasmic extensions containing synapses whose plasticity is regulated efficiently by mRNA transport and localized translation. The principles behind these mechanisms are equally attractive for explaining rapid local regulation of distal glial cytoplasmic projections, independent of their cell nucleus. However, in contrast to neurons, mRNA localization has received little experimental attention in glia. Nevertheless, there are many functionally diverse glial subtypes containing extensive networks of long cytoplasmic projections with likely localized regulation that influence neurons and their synapses. Moreover, glia have many other neuron-like properties, including electrical activity, secretion of gliotransmitters and calcium signaling, influencing, for example, synaptic transmission, plasticity and axon pruning. Here, we review previous studies concerning glial transcripts with important roles in influencing synaptic plasticity, focusing on a few cases involving localized translation. We discuss a variety of important questions about mRNA transport and localized translation in glia that remain to be addressed, using cutting-edge tools already available for neurons.
Collapse
Affiliation(s)
- Dalia S Gala
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Joshua S Titlow
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| | - Rita O Teodoro
- iNOVA4Health, NOVA Medical School-Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa 1169-056, Portugal
| | - Ilan Davis
- Department of Biochemistry, The University of Oxford, Oxford OX1 3QU, United Kingdom
| |
Collapse
|
7
|
Sutlive J, Seyyedhosseinzadeh H, Ao Z, Xiu H, Choudhury S, Gou K, Guo F, Chen Z. Mechanics of morphogenesis in neural development: In vivo, in vitro, and in silico. BRAIN MULTIPHYSICS 2023. [DOI: 10.1016/j.brain.2022.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
8
|
Yilmazer-Hanke D, Ouali Alami N, Fang L, Klotz S, Kovacs GG, Pankratz H, Weis J, Katona I, Scheuerle A, Streit WJ, Del Tredici K. Differential Glial Chitotriosidase 1 and Chitinase 3-like Protein 1 Expression in the Human Primary Visual Cortex and Cerebellum after Global Hypoxia-Ischemia. Neuroscience 2022; 506:91-113. [PMID: 36332693 DOI: 10.1016/j.neuroscience.2022.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 10/15/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Here, we studied the neuroinflammation- and ischemia-related glial markers chitotriosidase 1 (CHIT1) and chitinase-3-like protein 1 (CHI3L1, alias YKL-40) in the human striate cortex and cerebellum at different time points after global hypoxic-ischemic brain injury (HIBI). Both regions differ considerably in their glial cell population but are supplied by the posterior circulation. CHIT1 and CHI3L1 expression was compared to changes in microglial (IBA1, CD68), astrocytic (GFAP, S100β), and neuronal markers (H&E, neurofilament heavy chain, NfH; calretinin, CALR) using immunohistochemistry and multiple-label immunofluorescence. Initial striatal cortical and cerebellar Purkinje cell damage, detectable already 1/2 d after HIBI, led to delayed neuronal death, whereas loss of cerebellar NfH-positive stellate and CALR-positive granule cells was variable. During the first week post-HIBI, a transient reduction of IBA1-positive microglia was observed in both regions, and fragmented/clasmatodendritic cerebellar Bergmann glia appeared. In long-term survivors, both brain regions displayed high densities of activated IBA1-positive cells and CD68-positive macrophages, which showed CHIT1 co-localization in the striate cortex. Furthermore, enlarged GFAP- and S100β-positive astroglia emerged in both regions around 9-10 d post-HIBI, i.e., along with clearance of dead neurons from the neuropil, although GFAP-/S100β-positive gemistocytic astrocytes that co-expressed CHI3L1 were found only in the striate cortex. Thus, only GFAP-/S100β-positive astrocytes in the striate cortex, but not cerebellar Bergmann glia, differentiated into CHI3L1-positive gemistocytes. CHIT1 was co-expressed almost entirely in macrophages in the striate cortex and not cerebellum of long-term survivors, thereby indicating that CHIT1 and CHI3L1 could be valuable biomarkers for monitoring the outcome of global HIBI.
Collapse
Affiliation(s)
- Deniz Yilmazer-Hanke
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany.
| | - Najwa Ouali Alami
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Lubin Fang
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| | - Sigried Klotz
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Gabor G Kovacs
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Helmut Pankratz
- Institute of Forensic Medicine, Medical Faculty, Ludwig-Maximilian University Munich, Germany
| | - Joachim Weis
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Istvan Katona
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Angelika Scheuerle
- Department of Pathology, Section Neuropathology, University Hospital, Ulm, Germany
| | - Wolfgang J Streit
- Department of Neuroscience, College of Medicine, University of Florida, FL, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy, Neurology, School of Medicine, Ulm University, Ulm, Germany
| |
Collapse
|
9
|
Iskusnykh IY, Chizhikov VV. Cerebellar development after preterm birth. Front Cell Dev Biol 2022; 10:1068288. [PMID: 36523506 PMCID: PMC9744950 DOI: 10.3389/fcell.2022.1068288] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 11/09/2022] [Indexed: 11/30/2022] Open
Abstract
Preterm birth and its complications and the associated adverse factors, including brain hemorrhage, inflammation, and the side effects of medical treatments, are the leading causes of neurodevelopmental disability. Growing evidence suggests that preterm birth affects the cerebellum, which is the brain region involved in motor coordination, cognition, learning, memory, and social communication. The cerebellum is particularly vulnerable to the adverse effects of preterm birth because key cerebellar developmental processes, including the proliferation of neural progenitors, and differentiation and migration of neurons, occur in the third trimester of a human pregnancy. This review discusses the negative impacts of preterm birth and its associated factors on cerebellar development, focusing on the cellular and molecular mechanisms that mediate cerebellar pathology. A better understanding of the cerebellar developmental mechanisms affected by preterm birth is necessary for developing novel treatment and neuroprotective strategies to ameliorate the cognitive, behavioral, and motor deficits experienced by preterm subjects.
Collapse
|
10
|
Joyner AL, Bayin NS. Cerebellum lineage allocation, morphogenesis and repair: impact of interplay amongst cells. Development 2022; 149:dev185587. [PMID: 36172987 PMCID: PMC9641654 DOI: 10.1242/dev.185587] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The cerebellum has a simple cytoarchitecture consisting of a folded cortex with three cell layers that surrounds a nuclear structure housing the output neurons. The excitatory neurons are generated from a unique progenitor zone, the rhombic lip, whereas the inhibitory neurons and astrocytes are generated from the ventricular zone. The growth phase of the cerebellum is driven by lineage-restricted progenitor populations derived from each zone. Research during the past decade has uncovered the importance of cell-to-cell communication between the lineages through largely unknown signaling mechanisms for regulating the scaling of cell numbers and cell plasticity during mouse development and following injury in the neonatal (P0-P14) cerebellum. This Review focuses on how the interplay between cell types is key to morphogenesis, production of robust neural circuits and replenishment of cells after injury, and ends with a discussion of the implications of the greater complexity of the human cerebellar progenitor zones for development and disease.
Collapse
Affiliation(s)
- Alexandra L. Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Biochemistry Cell and Molecular Biology Program, Weill Cornell Graduate School of Medical Sciences, Cornell University, New York, NY 10065, USA
| | - N. Sumru Bayin
- Wellcome Trust/Cancer Research UK Gurdon Institute, Cambridge University, Cambridge CB2 1NQ, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, CB2 3DY, UK
| |
Collapse
|
11
|
Khouri-Farah N, Guo Q, Morgan K, Shin J, Li JYH. Integrated single-cell transcriptomic and epigenetic study of cell state transition and lineage commitment in embryonic mouse cerebellum. SCIENCE ADVANCES 2022; 8:eabl9156. [PMID: 35363520 PMCID: PMC10938588 DOI: 10.1126/sciadv.abl9156] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Recent studies using single-cell RNA-sequencing have revealed cellular heterogeneity in the developing mammalian cerebellum, yet the regulatory logic underlying this cellular diversity remains to be elucidated. Using integrated single-cell RNA and ATAC analyses, we resolved developmental trajectories of cerebellar progenitors and identified putative trans- and cis-elements that control cell state transition. We reverse engineered gene regulatory networks (GRNs) of each cerebellar cell type. Through in silico simulations and in vivo experiments, we validated the efficacy of GRN analyses and uncovered the molecular control of a posterior transitory zone (PTZ), a distinct progenitor zone residing immediately anterior to the morphologically defined rhombic lip (RL). We showed that perturbing cell fate specification in the PTZ and RL causes posterior cerebellar vermis hypoplasia, the most common cerebellar birth defect in humans. Our study provides a foundation for comprehensive studies of developmental programs of the mammalian cerebellum.
Collapse
Affiliation(s)
- Nagham Khouri-Farah
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Qiuxia Guo
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Kerry Morgan
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - Jihye Shin
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
| | - James Y. H. Li
- Department of Genetics and Genome Sciences, University of Connecticut School of Medicine, 263 Farmington Avenue, Farmington, CT 06030-6403, USA
- Institute for Systems Genomics, University of Connecticut, 400 Farmington Avenue, Farmington, CT 06030-6403, USA
| |
Collapse
|
12
|
Chen X, Chen T, Dong C, Chen H, Dong X, Yang L, Hu L, Wang H, Wu B, Yao Y, Xiong Y, Xiong M, Lin Y, Zhou W. Deletion of CHD8 in cerebellar granule neuron progenitors leads to severe cerebellar hypoplasia, ataxia and psychiatric behavior in mice. J Genet Genomics 2022; 49:859-869. [DOI: 10.1016/j.jgg.2022.02.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/13/2022] [Accepted: 02/16/2022] [Indexed: 12/22/2022]
|
13
|
Buzoianu-Anguiano V, Torres-Llacsa M, Doncel-Pérez E. Role of Aldynoglia Cells in Neuroinflammatory and Neuroimmune Responses after Spinal Cord Injury. Cells 2021; 10:2783. [PMID: 34685763 PMCID: PMC8534338 DOI: 10.3390/cells10102783] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/07/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Aldynoglia are growth-promoting cells with a morphology similar to radial glia and share properties and markers with astrocytes and Schwann cells. They are distributed in several locations throughout the adult central nervous system, where the cells of the aldynoglia interact and respond to the signals of the immune cells. After spinal cord injury (SCI), the functions of resident aldynoglia, identified as ependymocytes, tanycytes, and ependymal stem cells (EpSCs) of the spinal cord are crucial for the regeneration of spinal neural tissue. These glial cells facilitate axonal regrowth and remyelination of injured axons. Here, we review the influence of M1 or M2 macrophage/microglia subpopulations on the fate of EpSCs during neuroinflammation and immune responses in the acute, subacute, and chronic phases after SCI.
Collapse
Affiliation(s)
| | - Mabel Torres-Llacsa
- Servicio de Radiología, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| | - Ernesto Doncel-Pérez
- Grupo de Química Neuro-Regenerativa, Hospital Nacional de Parapléjicos, SESCAM, 45071 Toledo, Spain;
| |
Collapse
|
14
|
Chen S, Zhang K, Zhang B, Jiang M, Zhang X, Guo Y, Yu Y, Qin T, Li H, Chen Q, Cai Z, Luo S, Huang Y, Hu J, Mo W. Temporarily Epigenetic Repression in Bergmann Glia Regulates the Migration of Granule Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003164. [PMID: 34026436 PMCID: PMC8132163 DOI: 10.1002/advs.202003164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 02/10/2021] [Indexed: 06/12/2023]
Abstract
Forming tight interaction with both Purkinje and granule cells (GCs), Bergmann glia (BG) are essential for cerebellar morphogenesis and neuronal homeostasis. However, how BG act in this process is unclear without comprehensive transcriptome landscape of BG. Here, high temporal-resolution investigation of transcriptomes with FACS-sorted BG revealed the dynamic expression of genes within given functions and pathways enabled BG to assist neural migration and construct neuron-glia network. It is found that the peak time of GCs migration (P7-10) strikingly coincides with the downregulation of extracellular matrix (ECM) related genes, and the disruption of which by Setdb1 ablation at P7-10 in BG leads to significant migration defect of GCs emphasizing the criticality of Nfix-Setdb1 mediated H3K9me3 repressive complex for the precise regulation of GCs migration in vivo. Thus, BG's transcriptomic landscapes offer an insight into the mechanism by which BG are in depth integrated in cerebellar neural network.
Collapse
Affiliation(s)
- Shaoxuan Chen
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- The Department of NeuroscienceSchool of MedicineXiamen UniversityXiamen361102China
| | - Kunkun Zhang
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- The Department of NeuroscienceSchool of MedicineXiamen UniversityXiamen361102China
| | - Boxin Zhang
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Mengyun Jiang
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Xue Zhang
- Xiang'an Hospital of Xiamen UniversitySchool of MedicineXiamen361102China
| | - Yi Guo
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Yingying Yu
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102China
| | - Tianyu Qin
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102China
| | - Hongda Li
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Qiang Chen
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Zhiyu Cai
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Site Luo
- Key Laboratory of Ministry of Education for Coast and Wetland EcosystemsCollege of the Environment and EcologyXiamen UniversityXiamen361102China
| | - Yi Huang
- Department of Clinical LaboratoryFujian Provincial HospitalFuzhou350001China
- Provincial Clinical CollegeFujian Medical UniversityFuzhou350001China
| | - Jin Hu
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
| | - Wei Mo
- State Key Laboratory of Cellular Stress BiologyThe First Affiliated Hospital of Xiamen UniversitySchool of Life SciencesXiamen UniversityXiamen361102China
- The Department of NeuroscienceSchool of MedicineXiamen UniversityXiamen361102China
- National Institute for Data Science in Health and MedicineXiamen UniversityXiamen361102China
| |
Collapse
|
15
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
16
|
El-Andari R, Cunha F, Tschirren B, Iwaniuk AN. Selection for Divergent Reproductive Investment Affects Neuron Size and Foliation in the Cerebellum. BRAIN, BEHAVIOR AND EVOLUTION 2020; 95:69-77. [PMID: 32784306 DOI: 10.1159/000509068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/02/2020] [Indexed: 11/19/2022]
Abstract
The cerebellum has a highly conserved internal circuitry, but varies greatly in size and morphology within and across species. Despite this variation, the underlying volumetric changes among the layers of the cerebellar cortex or their association with Purkinje cell numbers and sizes is poorly understood. Here, we examine intraspecific scaling relationships and variation in the quantitative neuroanatomy of the cerebellum in Japanese quail (Coturnix japonica) selected for high or low reproductive investment. As predicted by the circuitry of the cerebellum, the volumes of the constituent layers of the cerebellar cortex were strongly and positively correlated with one another and with total cerebellar volume. The number of Purkinje cells also significantly and positively co-varied with total cerebellar volume and the molecular layer, but not the granule cell layer or white matter volumes. Purkinje cell size and cerebellar foliation did not significantly covary with any cerebellar measures, but differed significantly between the selection lines. Males and females from the high-investment lines had smaller Purkinje cells than males and females from the low-investment lines and males from the high-investment lines had less folded cerebella than quail from the low-investment lines. These results suggest that within species, the layers of the cerebellum increase in a coordinated fashion, but Purkinje cell size and cerebellar foliation do not increase proportionally with overall cerebellum size. In contrast, selection for differential reproductive investment affects Purkinje cell size and cerebellar foliation, but not other quantitative measures of cerebellar anatomy.
Collapse
Affiliation(s)
- Ryaan El-Andari
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Felipe Cunha
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada
| | - Barbara Tschirren
- Centre for Ecology and Conservation, University of Exeter, Penryn, United Kingdom
| | - Andrew N Iwaniuk
- Department of Neuroscience, University of Lethbridge, Lethbridge, Alberta, Canada,
| |
Collapse
|
17
|
Effects of Phosphatidylserine Source of Docosahexaenoic Acid on Cerebellar Development in Preterm Pigs. Brain Sci 2020; 10:brainsci10080475. [PMID: 32718081 PMCID: PMC7464467 DOI: 10.3390/brainsci10080475] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/15/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Preterm birth, a major contributor to infant mortality and morbidity, impairs development of the cerebellum, the brain region involved in cognitive processing and motor function. Previously, we showed that at term-equivalent age, preterm pigs that received formula supplemented with docosahexaenoic acid (DHA) esterified to phosphatidylserine (PS) had cerebellar weights similar to those of newborn term pigs and were heavier than control preterm pigs. However, whether PS-DHA promotes the development of specific cerebellar cell populations or enhances key developmental processes remains unknown. Here we investigated the effects of the PS-DHA on development of the cerebellum in preterm pigs delivered via caesarean section and reared for ten days on a milk replacer with either PS-DHA (experimental group) or sunflower oil (control group). Upon necropsy, key cerebellar populations were analyzed using immunohistochemistry. Consumption of PS-DHA was associated with the expansion of undifferentiated granule cell precursors and increased proliferation in the external granule cell layer (EGL). Preterm pigs that received PS-DHA also had significantly fewer apoptotic cells in the internal granule cell layer (IGL) that contains differentiated granule neurons. PS-DHA did not affect the number of differentiating granule cells in the inner EGL, thickness of the inner EGL, density of Purkinje cells, or Bergmann glial fibers, or diameter of Purkinje cells. Thus, PS-DHA may support cerebellar development in preterm subjects by enhancing proliferation of granule cells, a process specifically inhibited by preterm birth, and increasing the survival of granule cells in the IGL. These findings suggest that PS-DHA is a promising candidate for clinical studies directed at enhancing brain development.
Collapse
|
18
|
Bowie E, Goetz SC. TTBK2 and primary cilia are essential for the connectivity and survival of cerebellar Purkinje neurons. eLife 2020; 9:51166. [PMID: 31934864 PMCID: PMC7028366 DOI: 10.7554/elife.51166] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Primary cilia are vital signaling organelles that extend from most types of cells, including neurons and glia. These structures are essential for development of many tissues and organs; however, their function in adult tissues, particularly neurons in the brain, remains largely unknown. Tau tubulin kinase 2 (TTBK2) is a critical regulator of ciliogenesis, and is also mutated in a hereditary neurodegenerative disorder, spinocerebellar ataxia type 11 (SCA11). Here, we show that conditional knockout of Ttbk2 in adult mice results in degenerative cerebellar phenotypes that recapitulate aspects of SCA11 including motor coordination deficits and defects to Purkinje cell (PC) integrity. We also find that the Ttbk2 conditional mutant mice quickly lose cilia throughout the brain. We show that conditional knockout of the key ciliary trafficking gene Ift88 in adult mice results in nearly identical cerebellar phenotypes to those of the Ttbk2 knockout, indicating that disruption of ciliary signaling is a key driver of these phenotypes. Our data suggest that primary cilia play an integral role in maintaining the function of PCs in the adult cerebellum and reveal novel insights into mechanisms involved in neurodegeneration.
Collapse
Affiliation(s)
- Emily Bowie
- University Program in Genetics and Genomics, Duke University, Durham, United States
| | - Sarah C Goetz
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| |
Collapse
|
19
|
Hughes LJ, Park R, Lee MJ, Terry BK, Lee DJ, Kim H, Cho SH, Kim S. Yap/Taz are required for establishing the cerebellar radial glia scaffold and proper foliation. Dev Biol 2019; 457:150-162. [PMID: 31586559 DOI: 10.1016/j.ydbio.2019.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 09/09/2019] [Accepted: 10/02/2019] [Indexed: 01/20/2023]
Abstract
Yap/Taz are well-established downstream effectors of the Hippo pathway, known to regulate organ size by directing proliferation and apoptosis. Although the functions of Yap/Taz have been extensively studied, little is known about their role in brain development. Here, through genetic ablation, we show that Yap/Taz are required for cerebellar morphogenesis. Yap/Taz deletion in neural progenitors causes defects in secondary fissure formation, leading to abnormal folia development. Although they seemed very likely to serve an important function in the development of cerebellar granule cell precursors, Yap/Taz are dispensable for their proliferation. Furthermore, Yap/Taz loss does not rescue the medulloblastoma phenotype caused by constitutively active Smoothened. Importantly, Yap/Taz are highly expressed in radial glia and play a crucial role in establishing the radial scaffold and cellular polarity of neural progenitors during embryogenesis. We found that Yap/Taz are necessary to establish and maintain junctional integrity of cerebellar neuroepithelium as prominent junction proteins are not maintained at the apical junction in the absence of Yap/Taz. Our study identifies a novel function of Yap/Taz in cerebellar foliation and finds that they are required to establish the radial glia scaffold and junctional stability.
Collapse
Affiliation(s)
- Lucinda J Hughes
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Graduate Program of Biomedical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Raehee Park
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Min Jung Lee
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Bethany K Terry
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA; Graduate Program of Biomedical Sciences, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - David J Lee
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Hansol Kim
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Seo-Hee Cho
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA
| | - Seonhee Kim
- Shriners Hospitals Pediatrics Research Center, Department of Anatomy and Cell Biology, Temple University Lewis Katz School of Medicine, Philadelphia, PA, 19140, USA.
| |
Collapse
|
20
|
Lawton AK, Engstrom T, Rohrbach D, Omura M, Turnbull DH, Mamou J, Zhang T, Schwarz JM, Joyner AL. Cerebellar folding is initiated by mechanical constraints on a fluid-like layer without a cellular pre-pattern. eLife 2019; 8:e45019. [PMID: 30990415 PMCID: PMC6467563 DOI: 10.7554/elife.45019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/30/2019] [Indexed: 12/28/2022] Open
Abstract
Models based in differential expansion of elastic material, axonal constraints, directed growth, or multi-phasic combinations have been proposed to explain brain folding. However, the cellular and physical processes present during folding have not been defined. We used the murine cerebellum to challenge folding models with in vivo data. We show that at folding initiation differential expansion is created by the outer layer of proliferating progenitors expanding faster than the core. However, the stiffness differential, compressive forces, and emergent thickness variations required by elastic material models are not present. We find that folding occurs without an obvious cellular pre-pattern, that the outer layer expansion is uniform and fluid-like, and that the cerebellum is under radial and circumferential constraints. Lastly, we find that a multi-phase model incorporating differential expansion of a fluid outer layer and radial and circumferential constraints approximates the in vivo shape evolution observed during initiation of cerebellar folding.
Collapse
Affiliation(s)
- Andrew K Lawton
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
| | - Tyler Engstrom
- Department of PhysicsSyracuse UniversitySyracuseUnited States
| | - Daniel Rohrbach
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
| | - Masaaki Omura
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
- Department of Radiology, Skirball Institute of Biomolecular MedicineNYU School of MedicineNew YorkUnited States
- Graduate School of Science and EngineeringChiba UniversityChibaJapan
| | - Daniel H Turnbull
- Department of Radiology, Skirball Institute of Biomolecular MedicineNYU School of MedicineNew YorkUnited States
| | - Jonathan Mamou
- Lizzi Center for Biomedical EngineeringRiverside ResearchNew YorkUnited States
| | - Teng Zhang
- Department of Mechanical & Aerospace EngineeringSyracuse UniversitySyracuseUnited States
| | - J M Schwarz
- Department of PhysicsSyracuse UniversitySyracuseUnited States
| | - Alexandra L Joyner
- Developmental Biology ProgramSloan Kettering InstituteNew YorkUnited States
- Biochemistry, Cell and Molecular Biology Program, Weill Graduate School of Medical SciencesCornell UniversityNew YorkUnited States
| |
Collapse
|
21
|
Rahimi-Balaei M, Bergen H, Kong J, Marzban H. Neuronal Migration During Development of the Cerebellum. Front Cell Neurosci 2018; 12:484. [PMID: 30618631 PMCID: PMC6304365 DOI: 10.3389/fncel.2018.00484] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 01/19/2023] Open
Abstract
Neuronal migration is a fundamental process in central nervous system (CNS) development. The assembly of functioning neuronal circuits relies on neuronal migration occurring in the appropriate spatio-temporal pattern. A defect in the neuronal migration may result in a neurological disorder. The cerebellum, as a part of the CNS, plays a pivotal role in motor coordination and non-motor functions such as emotion, cognition and language. The excitatory and inhibitory neurons within the cerebellum originate from different distinct germinal zones and migrate through complex routes to assemble in a well-defined neuronal organization in the cerebellar cortex and nuclei. In this review article, the neuronal migration modes and pathways from germinal zones to the final position in the cerebellar cortex and nuclei will be described. The cellular and molecular mechanisms involved in cerebellar neuronal migration during development will also be reviewed. Finally, some diseases and animal models associated with defects in neuronal migration will be presented.
Collapse
Affiliation(s)
- Maryam Rahimi-Balaei
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hugo Bergen
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Jiming Kong
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Hassan Marzban
- Department of Human Anatomy and Cell Science, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,The Children's Hospital Research Institute of Manitoba (CHRIM), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
22
|
Cerrato V, Parmigiani E, Figueres-Oñate M, Betizeau M, Aprato J, Nanavaty I, Berchialla P, Luzzati F, de’Sperati C, López-Mascaraque L, Buffo A. Multiple origins and modularity in the spatiotemporal emergence of cerebellar astrocyte heterogeneity. PLoS Biol 2018; 16:e2005513. [PMID: 30260948 PMCID: PMC6178385 DOI: 10.1371/journal.pbio.2005513] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 10/09/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
The morphological, molecular, and functional heterogeneity of astrocytes is under intense scrutiny, but how this diversity is ontogenetically achieved remains largely unknown. Here, by quantitative in vivo clonal analyses and proliferation studies, we demonstrate that the major cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program comprising (i) a time-dependent decline in both clone size and progenitor multipotency, associated with clone allocation first to the hemispheres and then to the vermis(ii) distinctive clonal relationships among astrocyte types, revealing diverse lineage potentials of embryonic and postnatal progenitors; and (iii) stereotyped clone architectures and recurrent modularities that correlate to layer-specific dynamics of postnatal proliferation/differentiation. In silico simulations indicate that the sole presence of a unique multipotent progenitor at the source of the whole astrogliogenic program is unlikely and rather suggest the involvement of additional committed components. Astrocytes are abundant cells of the brain essential to support and shape neuronal activity. They can be grouped in different subclasses based on their remarkable variety of morphologies, molecular profiles, and specialized functions. Although different astrocyte types likely display specialized interactions with distinct neuron categories, the different classes of astrocytes have only partially been unmasked. How astrocyte heterogeneity is ontogenetically achieved remains largely unknown. Here we approached this question by studying the development of the main astrocyte types of the cerebellum. The reconstruction of developmental lineages in the mouse embryo combined with proliferation studies and computational modeling demonstrate that cerebellar astrocyte types emerge according to an unprecedented and remarkably orderly developmental program. Embryonic progenitor cells produce either only a single astrocyte type or more types. These distinct astrocyte lineages display stereotyped architectures and recurrent modularities. Moreover, the generation of astrocytes follows a well-defined spatiotemporal pattern, defined by a time-dependent allocation of astrocytes to distinct cerebellar territories and an inside-out sequence of differentiation, coupled with a decline over time in both progenitor amplification and capability to produce distinct astrocyte types. These results provide the first evidence that an ontogenetic program, tightly regulated in space and time, determines astrocyte heterogeneity.
Collapse
Affiliation(s)
- Valentina Cerrato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
| | - Elena Parmigiani
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - María Figueres-Oñate
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute -CSIC-, Spanish National Research Council, Madrid, Spain
| | - Marion Betizeau
- Brain Research Institute, University of Zurich Irchel, Zurich, Switzerland
| | - Jessica Aprato
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - Ishira Nanavaty
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
| | - Paola Berchialla
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Federico Luzzati
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
- Department of Life Sciences and System Biology, University of Turin, Turin, Italy
| | - Claudio de’Sperati
- Laboratory of Action, Perception and Cognition, Vita-Salute San Raffaele University, Milan, Italy
- Experimental Psychology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Laura López-Mascaraque
- Department of Molecular, Cellular, and Developmental Neurobiology, Cajal Institute -CSIC-, Spanish National Research Council, Madrid, Spain
| | - Annalisa Buffo
- Department of Neuroscience Rita Levi-Montalcini, University of Turin, Turin, Italy
- Neuroscience Institute Cavalieri Ottolenghi, Orbassano, Turin, Italy
- * E-mail:
| |
Collapse
|
23
|
Cerebellum: from Development to Disease-the 8th International Symposium of the Society for Research on the Cerebellum and Ataxias. THE CEREBELLUM 2018; 17:1-3. [PMID: 29349629 DOI: 10.1007/s12311-018-0919-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there has been tremendous growth in research on cerebellar motor and non-motor functions. Cerebellum is particularly involved in the spectrum of neurodevelopmental diseases. The 8th International Symposium of the Society for Research on the Cerebellum and Ataxia (SRCA) was held in Winnipeg, Manitoba, (Canada) on May 24-26, 2017. The main theme of the 8th International Symposium was "Development of the Cerebellum and Neurodevelopmental Disorders." Advances in genetics, epigenetic, cerebellar neurogenesis, axonogenesis and gliogenesis, cerebellar developmental disorders including autism spectrum disorders (ASD), neuroimaging, cerebellar ataxias, medulloblastoma, and clinical investigation of cerebellar diseases were presented. The goal of this symposium was to provide a platform to discuss cutting-edge knowledge while allowing researchers and trainees the opportunity to share and discuss their front-line research and ideas with others in the field, make connections, and strengthen international collaborations. The Ferdinando Rossi lecture was delivered by Dr. Richard Hawkes on the topic of patterning of the cerebellar cortex. This symposium emphasized the major importance of the involvement of the cerebellum in neurodevelopmental diseases from the clinical, radiological, biological, and genetic standpoint.
Collapse
|