1
|
Ku CC, Pan JB, Wuputra K, Hsu WL, Kato K, Noguchi M, Nakamura Y, Saito S, Tsai CY, Lin YC, Wu DC, Lin CS, Yokoyama KK. Trans-differentiation of Jdp2-depleted Gaba-receptor-positive cerebellar granule cells to Purkinje cells. Cell Death Discov 2024; 10:500. [PMID: 39695141 DOI: 10.1038/s41420-024-02262-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 11/20/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
The Jun dimerization protein (Jdp2) gene is active in mouse cerebellar granule cells and its protein product plays a crucial role in the formation of the cerebellum lobes through programmed cell death. However, the role of Jdp2 in cellular differentiation and pluripotency in the cerebellum, and the effect of the antioxidation reaction on cell plasticity, remain unknown. N-acetyl-L-cysteine (NAC) induced the early commitment of the differentiation of granule cell precursors (GCPs) to neurons, especially Purkinje cells, via the γ-aminobutyric acid type A receptor α6 subunit (Gabra6) axis; moreover, Jdp2 depletion enhanced this differentiation program of GCPs. The antioxidative effect of NAC was the main driving force of this decision toward the neural differentiation of the GCP population in the presence of Gabra6 in vitro. This implies that antioxidative drugs are effective agents for rescuing oxidative-stress-induced GCP damages in the cerebellum and commit this Gabra6-positive cell population toward differentiation into Purkinje cells.
Collapse
Affiliation(s)
- Chia-Chen Ku
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Pan
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Kenly Wuputra
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wen-Li Hsu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Dermatology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- National Center for Geriatrics and Welfare Research, National Health Research Institutes, Yunlin County, Taiwan
| | - Kohsuke Kato
- Department of Infection Biology, Graduate School of Comprehensive Human Sciences, the University of Tsukuba, Tsukuba, Japan
| | - Michiya Noguchi
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Tsukuba, Ibaraki, Japan
| | - Shigeo Saito
- Saito Laboratory of Cell Technology, Yaita, Tochigi, Japan
| | - Cheng-Yu Tsai
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
- Division of Neurosurgery, Department of Surgery, Kaohsiung Medical University Gangshan Hospital, Kaohsiung, Taiwan
- Department of Post-Baccalaureate Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Ying-Chu Lin
- School of Dentistry, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Deng-Chyang Wu
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| | - Chang-Shen Lin
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kazunari K Yokoyama
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
- Cell Therapy and Research Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
2
|
Wang X, Zheng R, Dukhinova M, Wang L, Shen Y, Lin Z. Perspectives in the investigation of Cockayne syndrome group B neurological disease: the utility of patient-derived brain organoid models. J Zhejiang Univ Sci B 2024; 25:878-889. [PMID: 39420523 PMCID: PMC11494160 DOI: 10.1631/jzus.b2300712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/16/2024] [Indexed: 10/19/2024]
Abstract
Cockayne syndrome (CS) group B (CSB), which results from mutations in the excision repair cross-complementation group 6 (ERCC6) genes, which produce CSB protein, is an autosomal recessive disease characterized by multiple progressive disorders including growth failure, microcephaly, skin photosensitivity, and premature aging. Clinical data show that brain atrophy, demyelination, and calcification are the main neurological manifestations of CS, which progress with time. Neuronal loss and calcification occur in various brain areas, particularly the cerebellum and basal ganglia, resulting in dyskinesia, ataxia, and limb tremors in CSB patients. However, the understanding of neurodevelopmental defects in CS has been constrained by the lack of significant neurodevelopmental and functional abnormalities observed in CSB-deficient mice. In this review, we focus on elucidating the protein structure and distribution of CSB and delve into the impact of CSB mutations on the development and function of the nervous system. In addition, we provide an overview of research models that have been instrumental in exploring CS disorders, with a forward-looking perspective on the substantial contributions that brain organoids are poised to further advance this field.
Collapse
Affiliation(s)
- Xintai Wang
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Rui Zheng
- The Children's Hospital, National Clinical Research Center for Child Health, Zhejiang University School of Medicine, Hangzhou 310052, China
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Marina Dukhinova
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
- Center for Brain Health, the Fourth Affiliated Hospital of School of Medicine / International School of Medicine, International Institutes of Medicine, Zhejiang University, Yiwu 322001, China
| | - Luxi Wang
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Ying Shen
- Department of Physiology, Zhejiang University School of Medicine, Hangzhou 310058, China. ,
| | - Zhijie Lin
- Zhejiang Key Laboratory of Organ Development and Regeneration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
3
|
Wang Y, Liu W, Jiao Y, Yang Y, Shan D, Ji X, Zhang R, Zhan Z, Tang Y, Guo D, Yan C, Liu F. Advances in the Differentiation of hiPSCs into Cerebellar Neuronal Cells. Stem Cell Rev Rep 2024; 20:1782-1794. [PMID: 39023738 DOI: 10.1007/s12015-024-10763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2024] [Indexed: 07/20/2024]
Abstract
The cerebellum has historically been primarily associated with the regulation of precise motor functions. However, recent findings suggest that it also plays a pivotal role in the development of advanced cognitive functions, including learning, memory, and emotion regulation. Pathological changes in the cerebellum, whether congenital hereditary or acquired degenerative, can result in a diverse spectrum of disorders, ranging from genetic spinocerebellar ataxias to psychiatric conditions such as autism, and schizophrenia. While studies in animal models have significantly contributed to our understanding of the genetic networks governing cerebellar development, it is important to note that the human cerebellum follows a protracted developmental timeline compared to the neocortex. Consequently, employing animal models to uncover human-specific molecular events in cerebellar development presents significant challenges. The emergence of human induced pluripotent stem cells (hiPSCs) has provided an invaluable tool for creating human-based culture systems, enabling the modeling and analysis of cerebellar physiology and pathology. hiPSCs and their differentiated progenies can be derived from patients with specific disorders or carrying distinct genetic variants. Importantly, they preserve the unique genetic signatures of the individuals from whom they originate, allowing for the elucidation of human-specific molecular and cellular processes involved in cerebellar development and related disorders. This review focuses on the technical advancements in the utilization of hiPSCs for the generation of both 2D cerebellar neuronal cells and 3D cerebellar organoids.
Collapse
Affiliation(s)
- Yingxin Wang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Wenzhu Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yichang Jiao
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yitong Yang
- School of Nursing, Jining Medical University, Jining, Shandong, 272067, China
| | - Didi Shan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Xinbo Ji
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Rui Zhang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Zexin Zhan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Yao Tang
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Dandan Guo
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China
| | - Chuanzhu Yan
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266103, China.
| | - Fuchen Liu
- Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital, Cheeloo College of Medicine, Shandong University, No. 107 West Wenhua Road, Jinan, Shandong, 250012, China.
- Brain Science Research Institute, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
4
|
Bock M, Hong SJ, Zhang S, Yu Y, Lee S, Shin H, Choi BH, Han I. Morphogenetic Designs, and Disease Models in Central Nervous System Organoids. Int J Mol Sci 2024; 25:7750. [PMID: 39062993 PMCID: PMC11276855 DOI: 10.3390/ijms25147750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Since the emergence of the first cerebral organoid (CO) in 2013, advancements have transformed central nervous system (CNS) research. Initial efforts focused on studying the morphogenesis of COs and creating reproducible models. Numerous methodologies have been proposed, enabling the design of the brain organoid to represent specific regions and spinal cord structures. CNS organoids now facilitate the study of a wide range of CNS diseases, from infections to tumors, which were previously difficult to investigate. We summarize the major advancements in CNS organoids, concerning morphogenetic designs and disease models. We examine the development of fabrication procedures and how these advancements have enabled the generation of region-specific brain organoids and spinal cord models. We highlight the application of these organoids in studying various CNS diseases, demonstrating the versatility and potential of organoid models in advancing our understanding of complex conditions. We discuss the current challenges in the field, including issues related to reproducibility, scalability, and the accurate recapitulation of the in vivo environment. We provide an outlook on prospective studies and future directions. This review aims to provide a comprehensive overview of the state-of-the-art CNS organoid research, highlighting key developments, current challenges, and prospects in the field.
Collapse
Affiliation(s)
- Minsung Bock
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Sung Jun Hong
- Research Competency Milestones Program, School of Medicine, CHA University, Seongnam-si 13488, Republic of Korea;
- Department of Medicine, School of Medicine, CHA University, Seongnam-si 13496, Republic of Korea
| | - Songzi Zhang
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Yerin Yu
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Somin Lee
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Haeeun Shin
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
| | - Byung Hyune Choi
- Department of Biomedical Science, Inha University College of Medicine, Incheon 22212, Republic of Korea;
| | - Inbo Han
- Department of Neurosurgery, CHA Bundang Medical Center, CHA University, Seongnam-si 13496, Republic of Korea; (M.B.); (S.Z.); (Y.Y.); (S.L.); (H.S.)
- Advanced Regenerative Medicine Research Center, CHA Future Medicine Research Institute, Seongnam-si 13488, Republic of Korea
| |
Collapse
|
5
|
Osaki D, Ouji Y, Sakagami M, Kitamura T, Misu M, Kitahara T, Yoshikawa M. Culture of organoids with vestibular cell-derived factors promotes differentiation of embryonic stem cells into inner ear vestibular hair cells. J Biosci Bioeng 2023; 135:143-150. [PMID: 36503871 DOI: 10.1016/j.jbiosc.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 12/13/2022]
Abstract
Vestibular hair cells (V-HCs) residing in the inner ear have important roles related to balance. Although differentiation of pluripotent stem cells into HCs has been shown, an effective method has yet to be established. We previously reported that use of vestibular cell-derived conditioned medium (V-CM) was helpful to induce embryonic stem (ES) cells to differentiate into V-HC-like cells in two-dimensional (2D) cultures of ES-derived embryoid bodies (EBs). In the present report, V-CM was used with three-dimensional (3D) cultures of EBs, which resulted in augmented expression of V-HC-related markers (Math1, Myosin6, Brn3c, Dnah5), but not of the cochlear HC-related marker Lmod3. Gene expression analyses of both 2D and 3D EBs cultured for two weeks revealed a greater level of augmented induction of HC-related markers in the 3D-cultured EBs. These results indicate that a 3D culture in combination with use of V-CM is an effective method for producing V-HCs.
Collapse
Affiliation(s)
- Daisuke Osaki
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Yukiteru Ouji
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masaharu Sakagami
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan; Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Tomotaka Kitamura
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masayasu Misu
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Tadashi Kitahara
- Department of Otolaryngology - Head and Neck Surgery, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| | - Masahide Yoshikawa
- Department of Pathogen, Infection and Immunity, Nara Medical University, 840 Shijo-cho, Kashihara, Nara 634-8521, Japan.
| |
Collapse
|
6
|
Louit A, Beaudet MJ, Blais M, Gros-Louis F, Dupré N, Berthod F. In Vitro Characterization of Motor Neurons and Purkinje Cells Differentiated from Induced Pluripotent Stem Cells Generated from Patients with Autosomal Recessive Spastic Ataxia of Charlevoix-Saguenay. Stem Cells Int 2023; 2023:1496597. [PMID: 37096129 PMCID: PMC10122584 DOI: 10.1155/2023/1496597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is an early-onset neurodegenerative disease mainly characterized by spasticity in the lower limbs and poor muscle control. The disease is caused by mutations in the SACS gene leading in most cases to a loss of function of the sacsin protein, which is highly expressed in motor neurons and Purkinje cells. To investigate the impact of the mutated sacsin protein in these cells in vitro, induced pluripotent stem cell- (iPSC-) derived motor neurons and iPSC-derived Purkinje cells were generated from three ARSACS patients. Both types of iPSC-derived neurons expressed the characteristic neuronal markers β3-tubulin, neurofilaments M and H, as well as specific markers like Islet-1 for motor neurons, and parvalbumin or calbindin for Purkinje cells. Compared to controls, iPSC-derived mutated SACS neurons expressed lower amounts of sacsin. In addition, characteristic neurofilament aggregates were detected along the neurites of both iPSC-derived neurons. These results indicate that it is possible to recapitulate in vitro, at least in part, the ARSACS pathological signature in vitro using patient-derived motor neurons and Purkinje cells differentiated from iPSCs. Such an in vitro personalized model of the disease could be useful for the screening of new drugs for the treatment of ARSACS.
Collapse
Affiliation(s)
- Aurélie Louit
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Marie-Josée Beaudet
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - Mathieu Blais
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
| | - François Gros-Louis
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - Nicolas Dupré
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Medicine, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| | - François Berthod
- LOEX, Centre de recherche du CHU de Québec-Université Laval, Quebec City, Quebec, Canada
- Department of Surgery, Faculty of Medicine, Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
7
|
Phenotypic, metabolic, and biogenesis properties of human stem cell-derived cerebellar spheroids. Sci Rep 2022; 12:12880. [PMID: 35896708 PMCID: PMC9329474 DOI: 10.1038/s41598-022-16970-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Human cerebellum consists of high density and complexity of neurons. Thus, it is challenging to differentiate cerebellar-like organoids with similar cellular markers and function to the human brain. Our previous study showed that the combination of retinoic acid (RA), Wingless/integrated (Wnt) activator, and Sonic Hedgehog (SHH) activator promotes cerebellar differentiation from human induced pluripotent stem cells (hiPSCs). This study examined phenotypic, metabolic, and biogenesis in early cerebellar development. Cerebellum spheroids were differentiated from human iPSK3 cells. During day 7–14, RA and Wnt activator CHIR99021 were used and SHH activator purmorphamine (PMR) was added later to promote ventralization. Gene expression for early cerebellar layer markers, metabolism, and extracellular vesicle (EV) biogenesis were characterized. Zinc-induced neurotoxicity was investigated as a proof-of-concept of neurotoxicity study. Flow cytometry results showed that there was no significant difference in NEPH3, PTF1A, OLIG2, and MATH1 protein expression between RCP (RA-CHIR-PMR) versus the control condition. However, the expression of cerebellar genes for the molecular layer (BHLE22), the granule cell layer (GABRB2, PAX6, TMEM266, KCNIP4), the Bergmann glial cells (QK1, DAO), and the Purkinje cell layer (ARHGEF33, KIT, MX1, MYH10, PPP1R17, SCGN) was significantly higher in the RCP condition than the control. The shift in metabolic pathways toward glycolysis was observed for RCP condition. The EV biogenesis marker expression was retained. Mild zinc-induced neurotoxicity may exist when zinc exposure exceeds 1.0 µM. RCP treatment can promote specific cerebellar-like differentiation from hiPSCs indicated by gene expression of early cerebellar markers and regionally enriched genes. The higher cerebellar marker expression is accompanied by the elevated glycolysis with the retained EV biogenesis. This study should advance the understanding of biomarkers during early cerebellar development for cerebellum organoid engineering and neurotoxicity study.
Collapse
|
8
|
Matt SM. Targeting neurotransmitter-mediated inflammatory mechanisms of psychiatric drugs to mitigate the double burden of multimorbidity and polypharmacy. Brain Behav Immun Health 2021; 18:100353. [PMID: 34647105 PMCID: PMC8495104 DOI: 10.1016/j.bbih.2021.100353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/12/2022] Open
Abstract
The increased incidence of multimorbidities and polypharmacy is a major concern, particularly in the growing aging population. While polypharmacy can be beneficial, in many cases it can be more harmful than no treatment, especially in individuals suffering from psychiatric disorders, who have elevated risks of multimorbidity and polypharmacy. Age-related chronic inflammation and immunopathologies might contribute to these increased risks in this population, but the optimal clinical management of drug-drug interactions and the neuro-immune mechanisms that are involved warrants further investigation. Given that neurotransmitter systems, which psychiatric medications predominantly act on, can influence the development of inflammation and the regulation of immune function, it is important to better understand these interactions to develop more successful strategies to manage these comorbidities and complicated polypharmacy. I propose that expanding upon research in translationally relevant human in vitro models, in tandem with other preclinical models, is critical to defining the neurotransmitter-mediated mechanisms by which psychiatric drugs alter immune function. This will define more precisely the interactions of psychiatric drugs and other immunomodulatory drugs, used in combination, enabling identification of novel targets to be translated into more efficacious diagnostic, preventive, and therapeutic interventions. This interdisciplinary approach will aid in better precision polypharmacy for combating adverse events associated with multimorbidity and polypharmacy in the future.
Collapse
Affiliation(s)
- Stephanie M. Matt
- Drexel University College of Medicine, Department of Pharmacology and Physiology, Philadelphia, PA, USA
| |
Collapse
|
9
|
McTague A, Rossignoli G, Ferrini A, Barral S, Kurian MA. Genome Editing in iPSC-Based Neural Systems: From Disease Models to Future Therapeutic Strategies. Front Genome Ed 2021; 3:630600. [PMID: 34713254 PMCID: PMC8525405 DOI: 10.3389/fgeed.2021.630600] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/19/2021] [Indexed: 12/14/2022] Open
Abstract
Therapeutic advances for neurological disorders are challenging due to limited accessibility of the human central nervous system and incomplete understanding of disease mechanisms. Many neurological diseases lack precision treatments, leading to significant disease burden and poor outcome for affected patients. Induced pluripotent stem cell (iPSC) technology provides human neuronal cells that facilitate disease modeling and development of therapies. The use of genome editing, in particular CRISPR-Cas9 technology, has extended the potential of iPSCs, generating new models for a number of disorders, including Alzheimers and Parkinson Disease. Editing of iPSCs, in particular with CRISPR-Cas9, allows generation of isogenic pairs, which differ only in the disease-causing mutation and share the same genetic background, for assessment of phenotypic differences and downstream effects. Moreover, genome-wide CRISPR screens allow high-throughput interrogation for genetic modifiers in neuronal phenotypes, leading to discovery of novel pathways, and identification of new therapeutic targets. CRISPR-Cas9 has now evolved beyond altering gene expression. Indeed, fusion of a defective Cas9 (dCas9) nuclease with transcriptional repressors or activation domains allows down-regulation or activation of gene expression (CRISPR interference, CRISPRi; CRISPR activation, CRISPRa). These new tools will improve disease modeling and facilitate CRISPR and cell-based therapies, as seen for epilepsy and Duchenne muscular dystrophy. Genome engineering holds huge promise for the future understanding and treatment of neurological disorders, but there are numerous barriers to overcome. The synergy of iPSC-based model systems and gene editing will play a vital role in the route to precision medicine and the clinical translation of genome editing-based therapies.
Collapse
Affiliation(s)
- Amy McTague
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| | - Giada Rossignoli
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Arianna Ferrini
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Serena Barral
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Manju A Kurian
- Developmental Neurosciences, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom.,Department of Neurology, Great Ormond Street Hospital, London, United Kingdom
| |
Collapse
|
10
|
He J, Zhang X, Xia X, Han M, Li F, Li C, Li Y, Gao D. Organoid technology for tissue engineering. J Mol Cell Biol 2021; 12:569-579. [PMID: 32249317 PMCID: PMC7683016 DOI: 10.1093/jmcb/mjaa012] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/11/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022] Open
Abstract
For centuries, attempts have been continuously made to artificially reconstitute counterparts of in vivo organs from their tissues or cells. Only in the recent decade has organoid technology as a whole technological field systematically emerged and been shown to play important roles in tissue engineering. Based on their self-organizing capacities, stem cells of versatile organs, both harvested and induced, can form 3D structures that are structurally and functionally similar to their in vivo counterparts. These organoid models provide a powerful platform for elucidating the development mechanisms, modeling diseases, and screening drug candidates. In this review, we will summarize the advances of this technology for generating various organoids of tissues from the three germ layers and discuss their drawbacks and prospects for tissue engineering.
Collapse
Affiliation(s)
- Juan He
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoyu Zhang
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Xinyi Xia
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Fei Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Chunfeng Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yunguang Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
11
|
McGrath-Morrow SA, Rothblum-Oviatt CC, Wright J, Schlechter H, Lefton-Greif MA, Natale VA, Crawford TO, Lederman HM. Multidisciplinary Management of Ataxia Telangiectasia: Current Perspectives. J Multidiscip Healthc 2021; 14:1637-1644. [PMID: 34234451 PMCID: PMC8253936 DOI: 10.2147/jmdh.s295486] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 06/10/2021] [Indexed: 12/27/2022] Open
Abstract
Ataxia telangiectasia (A-T) is a rare autosomal recessive disease caused by mutations in the ataxia telangiectasia mutated (ATM) gene. In the absence of a family history, the diagnosis of A-T is usually not made until the child is older and symptomatic. Classic A-T is characterized by a constellation of clinical symptoms including progressive ataxia, oculocutaneous telangiectasias and sinopulmonary disease and is usually associated with absence of ATM protein. Other laboratory features associated with A-T include elevated serum levels of alpha-fetoprotein (AFP) and increased chromosomal breakage with in vitro exposure to ionizing radiation. Sinopulmonary symptoms can occur to varying degrees across the lifespan. Some children will also have hypogammaglobulinemia and impaired antibody responses requiring supplemental gamma globulin. People with hypomorphic ATM mutations are often considered to have mild A-T with onset of ataxia and neurological progression occurring later in life with less impairment of the immune system. The risk of malignancy, however, is significantly increased in people with either classic or mild A-T. While hematological malignancies are most common in the first two decades of life, solid organ malignancies become increasingly common during young adulthood. Deterioration of neurologic function with age is associated with dysphagia with aspiration, growth faltering, loss of ambulation and decline in pulmonary function, morbidities that contribute to shortened life expectancy and decreased quality of life. Premature death is often due to malignancies or chronic respiratory insufficiency. A-T is currently managed with supportive care and symptomatic treatment. Current clinical trials, however, represent progress and hope towards disease-modifying therapies for A-T.
Collapse
Affiliation(s)
- Sharon A McGrath-Morrow
- Division of Pulmonary and Sleep, Children’s Hospital of Philadelphia, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Jennifer Wright
- Division of Pediatric Allergy and Immunology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| | - Haley Schlechter
- Institute for Clinical and Translational Research, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Maureen A Lefton-Greif
- Eudowood Division of Pediatric Respiratory Sciences, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | | | - Thomas O Crawford
- Departments of Pediatrics and Neurology, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Howard M Lederman
- Division of Pediatric Allergy and Immunology, The Johns Hopkins Medical Institutions, Baltimore, MD, USA
| |
Collapse
|
12
|
Burman RJ, Watson LM, Smith DC, Raimondo JV, Ballo R, Scholefield J, Cowley SA, Wood MJA, Kidson SH, Greenberg LJ. Molecular and electrophysiological features of spinocerebellar ataxia type seven in induced pluripotent stem cells. PLoS One 2021; 16:e0247434. [PMID: 33626063 PMCID: PMC7904216 DOI: 10.1371/journal.pone.0247434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 02/07/2021] [Indexed: 11/19/2022] Open
Abstract
Spinocerebellar ataxia type 7 (SCA7) is an inherited neurodegenerative disease caused by a polyglutamine repeat expansion in the ATXN7 gene. Patients with this disease suffer from a degeneration of their cerebellar Purkinje neurons and retinal photoreceptors that result in a progressive ataxia and loss of vision. As with many neurodegenerative diseases, studies of pathogenesis have been hindered by a lack of disease-relevant models. To this end, we have generated induced pluripotent stem cells (iPSCs) from a cohort of SCA7 patients in South Africa. First, we differentiated the SCA7 affected iPSCs into neurons which showed evidence of a transcriptional phenotype affecting components of STAGA (ATXN7 and KAT2A) and the heat shock protein pathway (DNAJA1 and HSP70). We then performed electrophysiology on the SCA7 iPSC-derived neurons and found that these cells show features of functional aberrations. Lastly, we were able to differentiate the SCA7 iPSCs into retinal photoreceptors that also showed similar transcriptional aberrations to the SCA7 neurons. Our findings give technical insights on how iPSC-derived neurons and photoreceptors can be derived from SCA7 patients and demonstrate that these cells express molecular and electrophysiological differences that may be indicative of impaired neuronal health. We hope that these findings will contribute towards the ongoing efforts to establish the cell-derived models of neurodegenerative diseases that are needed to develop patient-specific treatments.
Collapse
Affiliation(s)
- Richard J. Burman
- Department of Human Biology, University of Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, South Africa
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Lauren M. Watson
- Department of Pathology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Danielle C. Smith
- Department of Pathology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Joseph V. Raimondo
- Department of Human Biology, University of Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Robea Ballo
- Department of Human Biology, University of Cape Town, South Africa
| | - Janine Scholefield
- Gene Expression & Biophysics Group, Synthetic Biology ERA, CSIR Biosciences, Pretoria, Gauteng, South Africa
| | - Sally A. Cowley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Matthew J. A. Wood
- Department of Paediatrics, University of Oxford, Oxford, Oxfordshire, United Kingdom
| | - Susan H. Kidson
- Department of Human Biology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| | - Leslie J. Greenberg
- Department of Pathology, University of Cape Town, South Africa
- Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa
| |
Collapse
|
13
|
Reis de Assis D, Szabo A, Requena Osete J, Puppo F, O’Connell KS, A. Akkouh I, Hughes T, Frei E, A. Andreassen O, Djurovic S. Using iPSC Models to Understand the Role of Estrogen in Neuron-Glia Interactions in Schizophrenia and Bipolar Disorder. Cells 2021; 10:209. [PMID: 33494281 PMCID: PMC7909800 DOI: 10.3390/cells10020209] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/08/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Schizophrenia (SCZ) and bipolar disorder (BIP) are severe mental disorders with a considerable disease burden worldwide due to early age of onset, chronicity, and lack of efficient treatments or prevention strategies. Whilst our current knowledge is that SCZ and BIP are highly heritable and share common pathophysiological mechanisms associated with cellular signaling, neurotransmission, energy metabolism, and neuroinflammation, the development of novel therapies has been hampered by the unavailability of appropriate models to identify novel targetable pathomechanisms. Recent data suggest that neuron-glia interactions are disturbed in SCZ and BIP, and are modulated by estrogen (E2). However, most of the knowledge we have so far on the neuromodulatory effects of E2 came from studies on animal models and human cell lines, and may not accurately reflect many processes occurring exclusively in the human brain. Thus, here we highlight the advantages of using induced pluripotent stem cell (iPSC) models to revisit studies of mechanisms underlying beneficial effects of E2 in human brain cells. A better understanding of these mechanisms opens the opportunity to identify putative targets of novel therapeutic agents for SCZ and BIP. In this review, we first summarize the literature on the molecular mechanisms involved in SCZ and BIP pathology and the beneficial effects of E2 on neuron-glia interactions. Then, we briefly present the most recent developments in the iPSC field, emphasizing the potential of using patient-derived iPSCs as more relevant models to study the effects of E2 on neuron-glia interactions.
Collapse
Affiliation(s)
- Denis Reis de Assis
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Attila Szabo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Jordi Requena Osete
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Francesca Puppo
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Neurosciences, University of California San Diego, La Jolla, CA 92093, USA
| | - Kevin S. O’Connell
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
| | - Ibrahim A. Akkouh
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Timothy Hughes
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Evgeniia Frei
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Department of Medical Genetics, Oslo University Hospital, 0450 Oslo, Norway
| | - Ole A. Andreassen
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- Division of Mental Health and Addiction, Oslo University Hospital, 0372 Oslo, Norway
| | - Srdjan Djurovic
- NORMENT, Institute of Clinical Medicine, University of Oslo & Division of Mental Health and Addiction, Oslo University Hospital, 0450 Oslo, Norway; (A.S.); (J.R.O.); (F.P.); (K.S.O.); (I.A.A.); (T.H.); (E.F.); (O.A.A.)
- NORMENT, Department of Clinical Science, University of Bergen, 5020 Bergen, Norway
| |
Collapse
|
14
|
The self-organized differentiation from MSCs into SMCs with manipulated micro/Nano two-scale arrays on TiO2 surfaces for biomimetic construction of vascular endothelial substratum. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111179. [DOI: 10.1016/j.msec.2020.111179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/08/2020] [Accepted: 06/08/2020] [Indexed: 01/26/2023]
|
15
|
Yadav A, Seth B, Chaturvedi RK. Brain Organoids: Tiny Mirrors of Human Neurodevelopment and Neurological Disorders. Neuroscientist 2020; 27:388-426. [PMID: 32723210 DOI: 10.1177/1073858420943192] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Unravelling the complexity of the human brain is a challenging task. Nowadays, modern neurobiologists have developed 3D model systems called "brain organoids" to overcome the technical challenges in understanding human brain development and the limitations of animal models to study neurological diseases. Certainly like most model systems in neuroscience, brain organoids too have limitations, as these minuscule brains lack the complex neuronal circuitry required to begin the operational tasks of human brain. However, researchers are hopeful that future endeavors with these 3D brain tissues could provide mechanistic insights into the generation of circuit complexity as well as reproducible creation of different regions of the human brain. Herein, we have presented the contemporary state of brain organoids with special emphasis on their mode of generation and their utility in modelling neurological disorders, drug discovery, and clinical trials.
Collapse
Affiliation(s)
- Anuradha Yadav
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Brashket Seth
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Rajnish Kumar Chaturvedi
- Developmental Toxicology Laboratory, Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
16
|
Kruth KA, Grisolano TM, Ahern CA, Williams AJ. SCN2A channelopathies in the autism spectrum of neuropsychiatric disorders: a role for pluripotent stem cells? Mol Autism 2020; 11:23. [PMID: 32264956 PMCID: PMC7140374 DOI: 10.1186/s13229-020-00330-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 03/25/2020] [Indexed: 12/12/2022] Open
Abstract
Efforts to identify the causes of autism spectrum disorders have highlighted the importance of both genetics and environment, but the lack of human models for many of these disorders limits researchers' attempts to understand the mechanisms of disease and to develop new treatments. Induced pluripotent stem cells offer the opportunity to study specific genetic and environmental risk factors, but the heterogeneity of donor genetics may obscure important findings. Diseases associated with unusually high rates of autism, such as SCN2A syndromes, provide an opportunity to study specific mutations with high effect sizes in a human genetic context and may reveal biological insights applicable to more common forms of autism. Loss-of-function mutations in the SCN2A gene, which encodes the voltage-gated sodium channel NaV1.2, are associated with autism rates up to 50%. Here, we review the findings from experimental models of SCN2A syndromes, including mouse and human cell studies, highlighting the potential role for patient-derived induced pluripotent stem cell technology to identify the molecular and cellular substrates of autism.
Collapse
Affiliation(s)
- Karina A Kruth
- Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2326 PBDB, Iowa City, IA, 52242, USA
| | - Tierney M Grisolano
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2312 PBDB, Iowa City, IA, 52242, USA
| | - Christopher A Ahern
- Department of Molecular Physiology and Biophysics, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2312 PBDB, Iowa City, IA, 52242, USA
| | - Aislinn J Williams
- Department of Psychiatry, Iowa Neuroscience Institute, University of Iowa, 169 Newton Rd, 2326 PBDB, Iowa City, IA, 52242, USA.
| |
Collapse
|
17
|
Groveman BR, Foliaki ST, Orru CD, Zanusso G, Carroll JA, Race B, Haigh CL. Sporadic Creutzfeldt-Jakob disease prion infection of human cerebral organoids. Acta Neuropathol Commun 2019; 7:90. [PMID: 31196223 PMCID: PMC6567389 DOI: 10.1186/s40478-019-0742-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 05/16/2019] [Indexed: 12/25/2022] Open
Abstract
For the transmissible, neurogenerative family of prion diseases, few human models of infection exist and none represent structured neuronal tissue. Human cerebral organoids are self-organizing, three-dimensional brain tissues that can be grown from induced pluripotent stem cells. Organoids can model aspects of neurodegeneration in Alzheimer's Disease and Down's Syndrome, reproducing tau hyperphosphorylation and amyloid plaque pathology. To determine whether organoids could be used to reproduce human prion infection and pathogenesis, we inoculated organoids with two sporadic Creutzfeldt-Jakob Disease prion subtypes. Organoids showed uptake, followed by clearance, of the infectious inoculum. Subsequent re-emergence of prion self-seeding activity indicated de novo propagation. Organoid health assays, prion titer, prion protein electrophoretic mobility and immunohistochemistry demonstrated inoculum-specific differences. Our study shows, for the first time, that cerebral organoids can model aspects of human prion disease and thus offer a powerful system for investigating different human prion subtype pathologies and testing putative therapeutics.
Collapse
|
18
|
Jiang C, Zeng X, Xue B, Campbell D, Wang Y, Sun H, Xu Y, Wen X. Screening of pure synthetic coating substrates for induced pluripotent stem cells and iPSC-derived neuroepithelial progenitors with short peptide based integrin array. Exp Cell Res 2019; 380:90-99. [PMID: 30981669 DOI: 10.1016/j.yexcr.2019.04.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 01/27/2023]
Abstract
Simple and pure synthetic coating substrates are needed to overcome the disadvantages of traditional coating products like animal derived Matrigel in stem cell research. Since integrins are of great importance in cell adhesion and cell-ECM communication, in this study, a commercially available integrin array established by synthetic integrin binding peptides is used to screen coating substrates for iPSCs and NEPs. The results showed that binding peptides of integrin α5β1, αVβ1, αMβ2 and αIIbβ3 supported cell adhesion of iPSCs, while α5β1, αVβ1 and αIIbβ3 binding peptides supported NEPs adhesion. Additionally, integrin α5β1 binding peptide was revealed to support rapid expansion of iPSCs and iPSC-derived NEPs, as well as the process of NEPs generation, with equal efficiency as Matrigel. In this work, we demonstrated that by supporting stem cell growth in an integrin dependent manner, the integrin array and coating system has the potential to develop more precise and efficient systems in neurological disease modeling.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Xiaomei Zeng
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Bo Xue
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Debbie Campbell
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China.
| | - Xuejun Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, 450052, China; Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA, 23220, USA; School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, China; Shanghai East Hospital, Institute for Biomedical Engineering and Nano Science, School of Medicine, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
19
|
Bejoy J, Wang Z, Bijonowski B, Yang M, Ma T, Sang QX, Li Y. Differential Effects of Heparin and Hyaluronic Acid on Neural Patterning of Human Induced Pluripotent Stem Cells. ACS Biomater Sci Eng 2018; 4:4354-4366. [PMID: 31572767 PMCID: PMC6768405 DOI: 10.1021/acsbiomaterials.8b01142] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A lack of well-established animal models that can efficiently represent human brain pathology has led to the development of human induced pluripotent stem cell (hiPSC)-derived brain tissues. Brain organoids have enhanced our ability to understand the developing human brain and brain disorders (e.g., Schizophrenia, microcephaly), but the organoids still do not accurately recapitulate the anatomical organization of the human brain. Therefore, it is important to evaluate and optimize induction and signaling factors in order to engineer the next generation of brain organoids. In this study, the impact of hyaluronic acid (HA), a major brain extracellular matrix (ECM) component that interacts with cells through ligand-binding receptors, on the patterning of brain organoids from hiPSCs was evaluated. To mediate HA- binding capacity of signaling molecules, heparin was added in addition to HA or conjugated to HA to form hydrogels (with two different moduli). The neural cortical spheroids derived from hiPSCs were treated with either HA or heparin plus HA (Hep- HA) and were analyzed for ECM impacts on neural patterning. The results indicate that Hep-HA has a caudalizing effect on hiPSC-derived neural spheroids, in particular for stiff Hep-HA hydrogels. Wnt and Hippo/Yes-associated protein (YAP) signaling was modulated (using Wnt inhibitor IWP4 or actin disruption agent Cytochalasin D respectively) to understand the underlying mechanism. IWP4 and cytochalasin D promote forebrain identity. The results from this study should enhance the understanding of influence of biomimetic ECM factors for brain organoid generation.
Collapse
Affiliation(s)
- Julie Bejoy
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Zhe Wang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Brent Bijonowski
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Mo Yang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
| | - Teng Ma
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
| | - Qing-Xiang Sang
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| | - Yan Li
- Department of Chemical and Biomedical Engineering, FAMU-FSU College of Engineering, Florida State University, Tallahassee, Florida, United States
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States
| |
Collapse
|
20
|
Cerebellum: from Development to Disease-the 8th International Symposium of the Society for Research on the Cerebellum and Ataxias. THE CEREBELLUM 2018; 17:1-3. [PMID: 29349629 DOI: 10.1007/s12311-018-0919-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
In recent years, there has been tremendous growth in research on cerebellar motor and non-motor functions. Cerebellum is particularly involved in the spectrum of neurodevelopmental diseases. The 8th International Symposium of the Society for Research on the Cerebellum and Ataxia (SRCA) was held in Winnipeg, Manitoba, (Canada) on May 24-26, 2017. The main theme of the 8th International Symposium was "Development of the Cerebellum and Neurodevelopmental Disorders." Advances in genetics, epigenetic, cerebellar neurogenesis, axonogenesis and gliogenesis, cerebellar developmental disorders including autism spectrum disorders (ASD), neuroimaging, cerebellar ataxias, medulloblastoma, and clinical investigation of cerebellar diseases were presented. The goal of this symposium was to provide a platform to discuss cutting-edge knowledge while allowing researchers and trainees the opportunity to share and discuss their front-line research and ideas with others in the field, make connections, and strengthen international collaborations. The Ferdinando Rossi lecture was delivered by Dr. Richard Hawkes on the topic of patterning of the cerebellar cortex. This symposium emphasized the major importance of the involvement of the cerebellum in neurodevelopmental diseases from the clinical, radiological, biological, and genetic standpoint.
Collapse
|