1
|
Feng T, Zhang L, Wu Y, Tang L, Chen X, Li Y, Shan C. Exploring the Therapeutic Effects and Mechanisms of Transcranial Alternating Current Stimulation on Improving Walking Ability in Stroke Patients via Modulating Cerebellar Gamma Frequency Band-a Narrative Review. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1593-1603. [PMID: 37962773 PMCID: PMC11269344 DOI: 10.1007/s12311-023-01632-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
The cerebellum plays an important role in maintaining balance, posture control, muscle tone, and lower limb coordination in healthy individuals and stroke patients. At the same time, the relationship between cerebellum and motor learning has been widely concerned in recent years. Due to the relatively intact structure preservation and high plasticity after supratentorial stroke, non-invasive neuromodulation targeting the cerebellum is increasingly used to treat abnormal gait in stroke patients. The gamma frequency of transcranial alternating current stimulation (tACS) is commonly used to improve motor learning. It is an essential endogenous EEG oscillation in the gamma range during the swing phase, and rhythmic movement changes in the gait cycle. However, the effect of cerebellar tACS in the gamma frequency band on balance and walking after stroke remains unknown and requires further investigation.
Collapse
Affiliation(s)
- Tingyi Feng
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lichao Zhang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuwei Wu
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lin Tang
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xixi Chen
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuanli Li
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, China
- Department of Rehabilitation, Shanghai Seventh People's Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chunlei Shan
- Department of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
- Institute of Rehabilitation, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Tarrano C, Galléa C, Delorme C, McGovern EM, Atkinson-Clement C, Barnham IJ, Brochard V, Thobois S, Tranchant C, Grabli D, Degos B, Corvol JC, Pedespan JM, Krystkowiak P, Houeto JL, Degardin A, Defebvre L, Valabrègue R, Beranger B, Apartis E, Vidailhet M, Roze E, Worbe Y. Association of abnormal explicit sense of agency with cerebellar impairment in myoclonus-dystonia. Brain Commun 2024; 6:fcae105. [PMID: 38601915 PMCID: PMC11004927 DOI: 10.1093/braincomms/fcae105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 02/20/2024] [Accepted: 03/26/2024] [Indexed: 04/12/2024] Open
Abstract
Non-motor aspects in dystonia are now well recognized. The sense of agency, which refers to the experience of controlling one's own actions, has been scarcely studied in dystonia, even though its disturbances can contribute to movement disorders. Among various brain structures, the cerebral cortex, the cerebellum, and the basal ganglia are involved in shaping the sense of agency. In myoclonus dystonia, resulting from a dysfunction of the motor network, an altered sense of agency may contribute to the clinical phenotype of the condition. In this study, we compared the explicit and implicit sense of agency in patients with myoclonus dystonia caused by a pathogenic variant of SGCE (DYT-SGCE) and control participants. We utilized behavioural tasks to assess the sense of agency and performed neuroimaging analyses, including structural, resting-state functional connectivity, and dynamic causal modelling, to explore the relevant brain regions involved in the sense of agency. Additionally, we examined the relationship between behavioural performance, symptom severity, and neuroimaging findings. We compared 19 patients with DYT-SGCE and 24 healthy volunteers. Our findings revealed that patients with myoclonus-dystonia exhibited a specific impairment in explicit sense of agency, particularly when implicit motor learning was involved. However, their implicit sense of agency remained intact. These patients also displayed grey-matter abnormalities in the motor cerebellum, as well as increased functional connectivity between the cerebellum and pre-supplementary motor area. Dynamic causal modelling analysis further identified reduced inhibitory effects of the cerebellum on the pre-supplementary motor area, decreased excitatory effects of the pre-supplementary motor area on the cerebellum, and increased self-inhibition within the pre-supplementary motor area. Importantly, both cerebellar grey-matter alterations and functional connectivity abnormalities between the cerebellum and pre-supplementary motor area were found to correlate with explicit sense of agency impairment. Increased self-inhibition within the pre-supplementary motor area was associated with less severe myoclonus symptoms. These findings highlight the disruption of higher-level cognitive processes in patients with myoclonus-dystonia, further expanding the spectrum of neurological and psychiatric dysfunction already identified in this disorder.
Collapse
Affiliation(s)
- Clément Tarrano
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Cécile Galléa
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Cécile Delorme
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Eavan M McGovern
- Department of Neurology, Beaumont Hospital, Dublin 9, D09 VY21, Ireland
- School of Medicine, Royal College of Surgeons in Ireland, Dublin 2, D02 YN77, Ireland
| | - Cyril Atkinson-Clement
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- School of Medicine, University of Nottingham, Nottingham NG7 2RD, UK
| | | | - Vanessa Brochard
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Stéphane Thobois
- Department of Neurology, Hospices Civils de Lyon, Lyon 69000, France
| | - Christine Tranchant
- Département de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg 67098, France
- INSERM-U964/CNRS-UMR7104, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, Illkirch 67404, France
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg 67000, France
| | - David Grabli
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Bertrand Degos
- Department of Neurology, Assistance Publique-Hôpitaux de Paris, Avicenne Hospital, Sorbonne Paris Nord, Bobigny 93000, France
| | - Jean Christophe Corvol
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Jean-Michel Pedespan
- Department of Neuropediatry, Universitary Hospital of Pellegrin, Bordeaux 33076, France
| | - Pierre Krystkowiak
- Department of Neurology, Abu Dhabi Stem Cells Centre, Abu Dhabi, United Arab Emirates
| | - Jean-Luc Houeto
- Department of Neurology CHU Limoges, Inserm U1094, IRD U270, Univ. Limoges, EpiMaCT—Epidemiology of chronic diseases in tropical zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges 87000, France
| | - Adrian Degardin
- Department of Neurology, Tourcoing Hospital, Tourcoing 59599, France
| | - Luc Defebvre
- Department of Neurology, University of Lille, Lille 59000, France
- Department of Neurology, Lille Centre of Excellence for Neurodegenerative Diseases » (LiCEND), Lille F-59000, France
| | - Romain Valabrègue
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Benoit Beranger
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Research Neuroimaging, Centre de NeuroImagerie de Recherche (CENIR), Sorbonne Université, Paris 75013, France
| | - Emmanuelle Apartis
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris 75012, France
| | - Marie Vidailhet
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Emmanuel Roze
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Assistance Publique-Hôpitaux de Paris, Pitié-Salpêtrière Hospital, Department of Neurology, Clinical Investigation Center for Neurosciences, Paris 75013, France
| | - Yulia Worbe
- CNRS UMR 7225, Sorbonne Université, Paris Brain Institute—Institut du Cerveau et de la Moelle épinière, Inserm U1127, Paris 75013, France
- Department of Neurophysiology, Saint-Antoine Hospital, Paris 75012, France
| |
Collapse
|
3
|
Gavazzi G, Giovannelli F, Noferini C, Cincotta M, Cavaliere C, Salvatore M, Mascalchi M, Viggiano MP. Subregional prefrontal cortex recruitment as a function of inhibitory demand: an fMRI metanalysis. Neurosci Biobehav Rev 2023; 152:105285. [PMID: 37327836 DOI: 10.1016/j.neubiorev.2023.105285] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 05/26/2023] [Accepted: 06/11/2023] [Indexed: 06/18/2023]
Abstract
Convergent studies corroborated the idea that the right prefrontal cortex is the crucial brain region responsible for inhibiting our actions. However, which sub-regions of the right prefrontal cortex are involved is still a matter of debate. To map the inhibitory function of the sub-regions of the right prefrontal cortex, we performed Activation Likelihood Estimation (ALE) meta-analyses and meta-regressions (ES-SDM) of fMRI studies exploring inhibitory control. Sixty-eight studies (1684 subjects, 912 foci) were identified and divided in three groups depending on the incremental demand. Overall, our results showed that higher was the inhibitory demand based on the individual differences in performances, more the upper portion of the right prefrontal cortex was activated to achieve a successful inhibition. Conversely, a lower demand of the inhibitory function, was associated with the inferior portions of the right prefrontal cortex recruitment. Notably, in the latter case, we also observed activation of areas associated with working memory and responsible for cognitive strategies.
Collapse
Affiliation(s)
- Gioele Gavazzi
- Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy
| | - Fabio Giovannelli
- Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy
| | - Chiara Noferini
- Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy
| | - Massimo Cincotta
- Unit of Neurology of Florence, Central Tuscany Local Health Authority, Firenze, Italy
| | | | | | - Mario Mascalchi
- "Mario Serio" Department of Experimental and Clinical Biomedical Sciences, University of Florence, Italy; Division of Epidemiology, Institute for Study, Prevention and network in Oncology (ISPRO), Florence, Italy
| | - Maria Pia Viggiano
- Department of Neuroscience, Psychology, Drug Research, Child Health, University of Florence, Florence, Italy.
| |
Collapse
|
4
|
De Benedictis A, Rossi-Espagnet MC, de Palma L, Carai A, Marras CE. Networking of the Human Cerebellum: From Anatomo-Functional Development to Neurosurgical Implications. Front Neurol 2022; 13:806298. [PMID: 35185765 PMCID: PMC8854219 DOI: 10.3389/fneur.2022.806298] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
In the past, the cerebellum was considered to be substantially involved in sensory-motor coordination. However, a growing number of neuroanatomical, neuroimaging, clinical and lesion studies have now provided converging evidence on the implication of the cerebellum in a variety of cognitive, affective, social, and behavioral processes as well. These findings suggest a complex anatomo-functional organization of the cerebellum, involving a dense network of cortical territories and reciprocal connections with many supra-tentorial association areas. The final architecture of cerebellar networks results from a complex, highly protracted, and continuous development from childhood to adulthood, leading to integration between short-distance connections and long-range extra-cerebellar circuits. In this review, we summarize the current evidence on the anatomo-functional organization of the cerebellar connectome. We will focus on the maturation process of afferent and efferent neuronal circuitry, and the involvement of these networks in different aspects of neurocognitive processing. The final section will be devoted to identifying possible implications of this knowledge in neurosurgical practice, especially in the case of posterior fossa tumor resection, and to discuss reliable strategies to improve the quality of approaches while reducing postsurgical morbidity.
Collapse
Affiliation(s)
- Alessandro De Benedictis
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Camilla Rossi-Espagnet
- Neuroradiology Unit, Imaging Department, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Luca de Palma
- Neurology Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Carlo Efisio Marras
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
5
|
Chen Z, Zhang R, Huo H, Liu P, Zhang C, Feng T. Functional connectome of human cerebellum. Neuroimage 2022; 251:119015. [DOI: 10.1016/j.neuroimage.2022.119015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 01/26/2022] [Accepted: 02/17/2022] [Indexed: 10/19/2022] Open
|
6
|
Evidence of graphomotor dysfunction in children with dyslexia A combined behavioural and fMRI experiment. Cortex 2022; 148:68-88. [DOI: 10.1016/j.cortex.2021.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 08/19/2021] [Accepted: 11/26/2021] [Indexed: 01/02/2023]
|
7
|
Belkhiria C, Peysakhovich V. Electro-Encephalography and Electro-Oculography in Aeronautics: A Review Over the Last Decade (2010-2020). FRONTIERS IN NEUROERGONOMICS 2020; 1:606719. [PMID: 38234309 PMCID: PMC10790927 DOI: 10.3389/fnrgo.2020.606719] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2024]
Abstract
Electro-encephalography (EEG) and electro-oculography (EOG) are methods of electrophysiological monitoring that have potentially fruitful applications in neuroscience, clinical exploration, the aeronautical industry, and other sectors. These methods are often the most straightforward way of evaluating brain oscillations and eye movements, as they use standard laboratory or mobile techniques. This review describes the potential of EEG and EOG systems and the application of these methods in aeronautics. For example, EEG and EOG signals can be used to design brain-computer interfaces (BCI) and to interpret brain activity, such as monitoring the mental state of a pilot in determining their workload. The main objectives of this review are to, (i) offer an in-depth review of literature on the basics of EEG and EOG and their application in aeronautics; (ii) to explore the methodology and trends of research in combined EEG-EOG studies over the last decade; and (iii) to provide methodological guidelines for beginners and experts when applying these methods in environments outside the laboratory, with a particular focus on human factors and aeronautics. The study used databases from scientific, clinical, and neural engineering fields. The review first introduces the characteristics and the application of both EEG and EOG in aeronautics, undertaking a large review of relevant literature, from early to more recent studies. We then built a novel taxonomy model that includes 150 combined EEG-EOG papers published in peer-reviewed scientific journals and conferences from January 2010 to March 2020. Several data elements were reviewed for each study (e.g., pre-processing, extracted features and performance metrics), which were then examined to uncover trends in aeronautics and summarize interesting methods from this important body of literature. Finally, the review considers the advantages and limitations of these methods as well as future challenges.
Collapse
|
8
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
9
|
Pinheiro AP, Schwartze M, Kotz SA. Cerebellar circuitry and auditory verbal hallucinations: An integrative synthesis and perspective. Neurosci Biobehav Rev 2020; 118:485-503. [DOI: 10.1016/j.neubiorev.2020.08.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 06/30/2020] [Accepted: 08/07/2020] [Indexed: 02/06/2023]
|
10
|
Saidane Y, Parry R, Belkhiria C, Jebara SB, Driss T, de Marco G. Effects of Mental Effort on Premotor Muscle Activity and Maximal Grip Force. J Mot Behav 2020; 53:234-242. [PMID: 32468962 DOI: 10.1080/00222895.2020.1770179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The present study sought to evaluate how mental effort modulates premotor activity within forearm muscles in the context of an isometric grasping task. Muscle activity of the flexor digitorum superficialis (FDS) and extensor digitorum communis (EDC) was recorded during the application of maximum grip forces in nineteen healthy adult subjects. Each subject was examined under two experimental conditions: 1) spontaneous initiation of grasp (SI) and 2) focused concentration preceding the initiation of grasp (CA). Two novel parameters, the mean premotor duration (MPD) and the mean premotor power (MPP) were used to distinguish patterns of muscle activity. Here we tested the hypothesis was maximal grip strength is primed by muscle activity during the premotor phase. Our results demonstrate that MPD for each muscle group was significantly longer in the CA condition than for the SI condition (BF10 = 491497) and that MPP was significantly greater in EDC than in FDS (BF10 = 4305). Furthermore, both the MPD and MPP of the EDC were significantly correlated with maximum grip force. These results suggest that the increase of premotor activity consequent to the mental effort (focused concentration) may support internal biomechanical and physiological mechanisms which serve to enhance patterns of neuromuscular synergies.
Collapse
Affiliation(s)
- Yosra Saidane
- Laboratoire COSIM, Ecole Supérieure de Communication de Tunis, Université de Carthage Route de Raoued, Cite El Ghazala, Ariana, Tunisie
| | - Ross Parry
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France.,COMUE, Université Paris Lumières, Paris, France
| | - Chama Belkhiria
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France
| | - Sofia Ben Jebara
- Laboratoire COSIM, Ecole Supérieure de Communication de Tunis, Université de Carthage Route de Raoued, Cite El Ghazala, Ariana, Tunisie
| | - Tarak Driss
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France.,COMUE, Université Paris Lumières, Paris, France
| | - Giovanni de Marco
- Centre de Recherches sur le Sport et le Mouvement, UFR STAPS, UPL, Université Paris Nanterre, Nanterre, France.,COMUE, Université Paris Lumières, Paris, France
| |
Collapse
|
11
|
Huang X, Zhang D, Chen Y, Wang P, Mao C, Miao Z, Liu C, Xu C, Wu X, Yin X. Altered functional connectivity of the red nucleus and substantia nigra in migraine without aura. J Headache Pain 2019; 20:104. [PMID: 31711434 PMCID: PMC6849177 DOI: 10.1186/s10194-019-1058-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 10/31/2019] [Indexed: 12/16/2022] Open
Abstract
Background Functional connectivity (FC) has been used to investigate the pathophysiology of migraine. Accumulating evidence is pointing toward malfunctioning of brainstem structures, i.e., the red nucleus (RN) and substantia nigra (SN), as an important factor in migraine without aura (MwoA). We aimed to identify atypical FC between the RN and SN and other brain areas in patients with MwoA and to explore the association between RN and SN connectivity changes and performance on neuropsychological tests in these patients. Methods Resting-state functional magnetic resonance imaging (fMRI) data were obtained from 30 patients with MwoA and 22 age-, sex-, and years of education-matched healthy controls (HC). The FC of the brainstem structures was analyzed using a standard seed-based whole-brain correlation method. The results of the brainstem structure FC were assessed for correlations with other clinical features. Results Patients with MwoA exhibited reduced left RN-based FC with the left middle frontal gyrus, reduced right RN-based FC with the ipsilateral superior parietal lobe, and increased FC with the ipsilateral cerebellum. Additionally, patients with MwoA demonstrated significantly decreased right SN-based FC with the right postcentral gyrus, left parietal lobule, and left superior frontal gyrus. Hypo-connectivity between the right SN and right postcentral gyrus was negatively correlated with disease duration (r = − 0.506, P = 0.004). Additionally, increased connectivity of the right RN to the ipsilateral cerebellar lobes was positively correlated with the Headache Impact Test-6 scores (r = 0.437, P = 0.016). Conclusions The present study suggested that patients with MwoA have disruption in their RN and SN resting-state networks, which are associated with specific clinical characteristics. The changes focus on the regions associated with cognitive evaluation, multisensory integration, and modulation of perception and pain, which may be associated with migraine production, feedback, and development. Taken together, these results may improve our understanding of the neuropathological mechanism of migraine.
Collapse
Affiliation(s)
- Xiaobin Huang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Di Zhang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Yuchen Chen
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Peng Wang
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Cunnan Mao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Zhengfei Miao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Chunmei Liu
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Chenjie Xu
- Department of Pain Treatment, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China
| | - Xinying Wu
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China.
| | - Xindao Yin
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University, No.68, Changle Road, Nanjing, 210006, Jiangsu Province, China.
| |
Collapse
|
12
|
The cortico-rubral and cerebello-rubral pathways are topographically organized within the human red nucleus. Sci Rep 2019; 9:12117. [PMID: 31431648 PMCID: PMC6702172 DOI: 10.1038/s41598-019-48164-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/11/2019] [Indexed: 02/03/2023] Open
Abstract
The Red Nucleus (RN) is a large nucleus located in the ventral midbrain: it is subdivided into a small caudal magnocellular part (mRN) and a large rostral parvocellular part (pRN). These distinct structural regions are part of functionally different networks and show distinctive connectivity features: the mRN is connected to the interposed nucleus, whilst the pRN is mainly connected to dentate nucleus, cortex and inferior olivary complex. Despite functional neuroimaging studies suggest RN involvement in complex motor and higher order functions, the pRN and mRN cannot be distinguished using conventional MRI. Herein, we employ high-quality structural and diffusion MRI data of 100 individuals from the Human Connectome Project repository and constrained spherical deconvolution tractography to perform connectivity-based segmentation of the human RN. In particular, we tracked connections of RN with the inferior olivary complex, the interposed nucleus, the dentate nucleus and the cerebral cortex. We found that the RN can be subdivided according to its connectivity into two clusters: a large ventrolateral one, mainly connected with the cerebral cortex and the inferior olivary complex, and a smaller dorsomedial one, mainly connected with the interposed nucleus. This structural topography strongly reflects the connectivity patterns of pRN and mRN respectively. Structural connectivity-based segmentation could represent a useful tool for the identification of distinct subregions of the human red nucleus on 3T MRI thus allowing a better evaluation of this subcortical structure in healthy and pathological conditions.
Collapse
|