1
|
Wang J, Lin Y, Xu Z, Yan C, Zhao Y, Ji K. Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures. CEREBELLUM (LONDON, ENGLAND) 2024; 23:1824-1838. [PMID: 38429489 DOI: 10.1007/s12311-024-01671-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/15/2024] [Indexed: 03/03/2024]
Abstract
COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.
Collapse
Affiliation(s)
- Jiayin Wang
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Yan Lin
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Zhihong Xu
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Chuanzhu Yan
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Mitochondrial Medicine Laboratory, Qilu Hospital (Qingdao), Shandong University, Qingdao, 266035, Shandong, China
- Brain Science Research Institute, Shandong University, Jinan, 250012, Shandong, China
| | - Yuying Zhao
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| | - Kunqian Ji
- Research Institute of Neuromuscular and Neurodegenerative Diseases and Department of Neurology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
2
|
Mantle D, Hargreaves IP. Efficacy and Safety of Coenzyme Q10 Supplementation in Neonates, Infants and Children: An Overview. Antioxidants (Basel) 2024; 13:530. [PMID: 38790635 PMCID: PMC11117623 DOI: 10.3390/antiox13050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/13/2024] [Accepted: 04/23/2024] [Indexed: 05/26/2024] Open
Abstract
To date, there have been no review articles specifically relating to the general efficacy and safety of coenzyme Q10 (CoQ10) supplementation in younger subjects. In this article, we therefore reviewed the efficacy and safety of CoQ10 supplementation in neonates (less than 1 month of age), infants (up to 1 year of age) and children (up to 12 years of age). As there is no rationale for the supplementation of CoQ10 in normal younger subjects (as there is in otherwise healthy older subjects), all of the articles in the medical literature reviewed in the present article therefore refer to the supplementation of CoQ10 in younger subjects with a variety of clinical disorders; these include primary CoQ10 deficiency, acyl CoA dehydrogenase deficiency, Duchenne muscular dystrophy, migraine, Down syndrome, ADHD, idiopathic cardiomyopathy and Friedreich's ataxia.
Collapse
Affiliation(s)
- David Mantle
- Pharma Nord (UK) Ltd., Morpeth, Northumberland NE61 2DB, UK
| | - Iain Parry Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK;
| |
Collapse
|
3
|
Lopriore P, Vista M, Tessa A, Giuntini M, Caldarazzo Ienco E, Mancuso M, Siciliano G, Santorelli FM, Orsucci D. Primary Coenzyme Q10 Deficiency-Related Ataxias. J Clin Med 2024; 13:2391. [PMID: 38673663 PMCID: PMC11050807 DOI: 10.3390/jcm13082391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
Cerebellar ataxia is a neurological syndrome characterized by the imbalance (e.g., truncal ataxia, gait ataxia) and incoordination of limbs while executing a task (dysmetria), caused by the dysfunction of the cerebellum or its connections. It is frequently associated with other signs of cerebellar dysfunction, including abnormal eye movements, dysmetria, kinetic tremor, dysarthria, and/or dysphagia. Among the so-termed mitochondrial ataxias, variants in genes encoding steps of the coenzyme Q10 biosynthetic pathway represent a common cause of autosomal recessive primary coenzyme Q10 deficiencies (PCoQD)s. PCoQD is a potentially treatable condition; therefore, a correct and timely diagnosis is essential. After a brief presentation of the illustrative case of an Italian woman with this condition (due to a novel homozygous nonsense mutation in COQ8A), this article will review ataxias due to PCoQD.
Collapse
Affiliation(s)
- Piervito Lopriore
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Marco Vista
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Alessandra Tessa
- Molecular Medicine, IRCCS Stella Maris Foundation, 56122 Pisa, Italy; (A.T.); (F.M.S.)
| | - Martina Giuntini
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Elena Caldarazzo Ienco
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| | - Michelangelo Mancuso
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | - Gabriele Siciliano
- Neurological Institute, Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy; (M.M.); (G.S.)
| | | | - Daniele Orsucci
- Unit of Neurology, San Luca Hospital, Via Lippi-Francesconi, 55100 Lucca, Italy; (P.L.); (M.V.); (M.G.); (E.C.I.)
| |
Collapse
|
4
|
Sonuç Kartal G, Koç Yekedüz M, Köse E, Eminoğlu FT. Two Turkish patients with Primary Coenzyme Q10 Deficiency-7: case report and literature review. J Pediatr Endocrinol Metab 2024; 37:260-270. [PMID: 38353291 DOI: 10.1515/jpem-2023-0490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/18/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVES Primary Coenzyme Q10 Deficiency-7 (OMIM 616276) results from bi-allelic pathogenic variants in the COQ4 gene. Common clinical findings include hypotonia, seizures, respiratory distress, and cardiomyopathy. In this report, we present two patients diagnosed with Primary Coenzyme Q10 Deficiency-7 along with a review of previously published cases, with the aim being to provide a better understanding of the clinical and laboratory manifestations of the disease. CASE PRESENTATION A 3-month-and-22-day-old male was admitted to our outpatient clinic due to poor feeding and restlessness. He was born following an uneventful pregnancy to a nonconsanguineous marriage. A physical examination revealed hypotonia, a dolichocephaly, periorbital edema, and long eyelashes. Blood tests revealed metabolic acidosis and elevated serum lactate levels, while the genetic analysis revealed a variant previously reported as pathogenic, c.437T>G (p.Phe146Cys), in the COQ4 gene. Genetic tests were also conducted on both mother and father, and it revealed heterozygous variant, 0.437T>G (p.Phe146Cys), in the COQ4 gene. As a result of these findings, the patient was diagnosed with neonatal encephalomyopathy-cardiomyopathy-respiratory distress syndrome (Primary Coenzyme Q10 Deficiency-7). A 1-year-old male was admitted to our clinic with complaints of hypotonia, seizures, and feeding difficulties. He was born following an uneventful pregnancy to a nonconsanguineous marriage. On his first day of life, he was admitted to the neonatal intensive care unit due to poor feeding and hypotonia. A physical examination revealed microcephaly, a high palate, poor feeding, weak crying, hypotonia, bilateral horizontal nystagmus, and inability to maintain eye contact. Laboratory findings were within normal limits, while a whole exome sequencing analysis revealed a homozygous variant previously reported as pathogenic, c.458C>T (p.A153V), in the COQ4 gene. The patient was diagnosed with Primary Coenzyme Q10 Deficiency-7. CONCLUSIONS Primary Coenzyme Q10 Deficiency-7 should be considered in the differential diagnosis of infants presenting with neurological and dysmorphic manifestations.
Collapse
Affiliation(s)
| | - Merve Koç Yekedüz
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Engin Köse
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| | - Fatma Tuba Eminoğlu
- Department of Pediatric Metabolism, Ankara University Faculty of Medicine, Ankara, Türkiye
| |
Collapse
|
5
|
Lopergolo D, Rosini F, Pretegiani E, Bargagli A, Serchi V, Rufa A. Autosomal recessive cerebellar ataxias: a diagnostic classification approach according to ocular features. Front Integr Neurosci 2024; 17:1275794. [PMID: 38390227 PMCID: PMC10883068 DOI: 10.3389/fnint.2023.1275794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/10/2023] [Indexed: 02/24/2024] Open
Abstract
Autosomal recessive cerebellar ataxias (ARCAs) are a heterogeneous group of neurodegenerative disorders affecting primarily the cerebellum and/or its afferent tracts, often accompanied by damage of other neurological or extra-neurological systems. Due to the overlap of clinical presentation among ARCAs and the variety of hereditary, acquired, and reversible etiologies that can determine cerebellar dysfunction, the differential diagnosis is challenging, but also urgent considering the ongoing development of promising target therapies. The examination of afferent and efferent visual system may provide neurophysiological and structural information related to cerebellar dysfunction and neurodegeneration thus allowing a possible diagnostic classification approach according to ocular features. While optic coherence tomography (OCT) is applied for the parametrization of the optic nerve and macular area, the eye movements analysis relies on a wide range of eye-tracker devices and the application of machine-learning techniques. We discuss the results of clinical and eye-tracking oculomotor examination, the OCT findings and some advancing of computer science in ARCAs thus providing evidence sustaining the identification of robust eye parameters as possible markers of ARCAs.
Collapse
Affiliation(s)
- Diego Lopergolo
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Francesca Rosini
- UOC Stroke Unit, Department of Emergenza-Urgenza, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
| | - Elena Pretegiani
- Unit of Neurology, Centre Hospitalier Universitaire Vaudoise Lausanne, Unit of Neurology and Cognitive Neurorehabilitation, Universitary Hospital of Fribourg, Fribourg, Switzerland
| | - Alessia Bargagli
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Valeria Serchi
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Alessandra Rufa
- Department of Medicine, Surgery and Neurosciences, University of Siena, Siena, Italy
- UOC Neurologia e Malattie Neurometaboliche, Azienda Ospedaliero-Universitaria Senese, Siena, Italy
- Evalab-Neurosense, Department of Medicine Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
6
|
Lin X, Jiang JY, Hong DJ, Lin KJ, Li JJ, Chen YJ, Qiu YS, Wang Z, Liao YC, Yang K, Shi Y, Wang MW, Hsu SL, Hong S, Zeng YH, Chen XC, Wang N, Lee YC, Chen WJ. Biallelic COQ4 Variants in Hereditary Spastic Paraplegia: Clinical and Molecular Characterization. Mov Disord 2024; 39:152-163. [PMID: 38014483 DOI: 10.1002/mds.29664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND Hereditary spastic paraplegias (HSP) are neurologic disorders characterized by progressive lower-extremity spasticity. Despite the identification of several HSP-related genes, many patients lack a genetic diagnosis. OBJECTIVES The aims were to confirm the pathogenic role of biallelic COQ4 mutations in HSP and elucidate the clinical, genetic, and functional molecular features of COQ4-associated HSP. METHODS Whole exome sequences of 310 index patients with HSP of unknown cause from three distinct populations were analyzed to identify potential HSP causal genes. Clinical data obtained from patients harboring candidate causal mutations were examined. Functional characterization of COQ4 variants was performed using bioinformatic tools, single-cell RNA sequencing, biochemical assays in cell lines, primary fibroblasts, induced pluripotent stem cell-derived pyramidal neurons, and zebrafish. RESULTS Compound heterozygous variants in COQ4, which cosegregated with HSP in pedigrees, were identified in 7 patients from six unrelated families. Patients from four of the six families presented with pure HSP, whereas probands of the other two families exhibited complicated HSP with epilepsy or with cerebellar ataxia. In patient-derived fibroblasts and COQ4 knockout complementation lines, stable expression of these missense variants exerted loss-of-function effects, including mitochondrial reactive oxygen species accumulation, decreased mitochondrial membrane potential, and lower ubiquinone biosynthesis. Whereas differentiated pyramidal neurons expressed high COQ4 levels, coq4 knockdown zebrafish displayed severe motor dysfunction, reflecting motor neuron dysregulation. CONCLUSIONS Our study confirms that loss-of-function, compound heterozygous, pathogenic COQ4 variants are causal for autosomal recessive pure and complicated HSP. Moreover, reduced COQ4 levels attributable to variants correspond with decreased ubiquinone biosynthesis, impaired mitochondrial function, and higher phenotypic disease severity. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Xiang Lin
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jun-Yi Jiang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Dao-Jun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai-Jun Lin
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Jin-Jing Li
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Jun Chen
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yu-Sen Qiu
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Zishuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yi-Chu Liao
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Kang Yang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yan Shi
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Meng-Wen Wang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Shao-Lun Hsu
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Shunyan Hong
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Heng Zeng
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Xiao-Chun Chen
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou, China
| | - Ning Wang
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| | - Yi-Chung Lee
- Department of Neurology, Taipei Veterans General Hospital, Taipei, Taiwan
- Department of Neurology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Wan-Jin Chen
- Department of Neurology, Department of Rare Diseases, Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
7
|
Hsu CJ, Lee WT. Epilepsy and Coenzyme Q10 deficiency with COQ4 variants. Epilepsy Behav 2023; 149:109498. [PMID: 37948995 DOI: 10.1016/j.yebeh.2023.109498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 10/14/2023] [Accepted: 10/17/2023] [Indexed: 11/12/2023]
Abstract
Coenzyme Q10 (CoQ10) is one of the essential substances for mitochondrial energy synthesis and extra-mitochondrial vital function. Primary CoQ10 deficiency is a rare disease resulting from interruption of CoQ10 biosynthetic pathway and biallelic COQ4 variants are one of the genetic etiologies recognized in this hereditary disorder. The clinical heterogenicity is broad with wide onset age from prenatal period to adulthood. The typical manifestations include early pharmacoresistant seizure, severe cognition and/or developmental delay, dystonia, ataxia, and spasticity. Patients may also have multisystemic involvements such as cardiomyopathy, lactic acidosis or gastro-esophageal regurgitation disease. Oral CoQ10 supplement is the major therapeutic medication currently. Among those patients, c.370G > A variant is the most common pathogenic variant detected, especially in Asian population. This phenomenon also suggests that this specific allele may be the founder variants in Asia. In this article, we report two siblings with infantile onset seizures, developmental delay, cardiomyopathy, and diffuse brain atrophy. Genetic analysis of both two cases revealed homozygous COQ4 c.370G > A (p.Gly124Ser) variants. We also review the clinical manifestations of primary CoQ10 deficiency patients and possible treatment categories, which are still under survey. As oral CoQ10 supplement may improve or stabilize disease severity, early precise diagnosis of primary CoQ10 deficiency and early treatment are the most important issues. This review article helps to further understand clinical spectrum and treatment categories of primary CoQ10 deficiency with COQ4 variant.
Collapse
Affiliation(s)
- Chia-Jui Hsu
- Department of Pediatrics, National Taiwan University Hsin-Chu Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Wang-Tso Lee
- Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Pediatric Neurology, National Taiwan University Children's Hospital, Taipei, Taiwan; Department of Pediatrics, National Taiwan University College of Medicine, Taipei, Taiwan.
| |
Collapse
|
8
|
Mantle D, Millichap L, Castro-Marrero J, Hargreaves IP. Primary Coenzyme Q10 Deficiency: An Update. Antioxidants (Basel) 2023; 12:1652. [PMID: 37627647 PMCID: PMC10451954 DOI: 10.3390/antiox12081652] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/18/2023] [Accepted: 08/19/2023] [Indexed: 08/27/2023] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of vital functions in all cells, both mitochondrial and extra-mitochondrial. In addition to its key role in mitochondrial oxidative phosphorylation, CoQ10 serves as a lipid soluble antioxidant and plays an important role in fatty acid beta-oxidation and pyrimidine and lysosomal metabolism, as well as directly mediating the expression of a number of genes, including those involved in inflammation. Due to the multiplicity of roles in cell function, it is not surprising that a deficiency in CoQ10 has been implicated in the pathogenesis of a wide range of disorders. CoQ10 deficiency is broadly divided into primary and secondary types. Primary CoQ10 deficiency results from mutations in genes involved in the CoQ10 biosynthetic pathway. In man, at least 10 genes are required for the biosynthesis of functional CoQ10, a mutation in any one of which can result in a deficit in CoQ10 status. Patients may respond well to oral CoQ10 supplementation, although the condition must be recognised sufficiently early, before irreversible tissue damage has occurred. In this article, we have reviewed clinical studies (up to March 2023) relating to the identification of these deficiencies, and the therapeutic outcomes of CoQ10 supplementation; we have attempted to resolve the disparities between previous review articles regarding the usefulness or otherwise of CoQ10 supplementation in these disorders. In addition, we have highlighted several of the potential problems relating to CoQ10 supplementation in primary CoQ10 deficiency, as well as identifying unresolved issues relating to these disorders that require further research.
Collapse
Affiliation(s)
| | - Lauren Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Jesus Castro-Marrero
- Rheumatology Research Group, ME/CFS Research Unit, Vall d’Hebron Research Institute, Universitat Autonoma de Barcelona, 08035 Barcelona, Spain;
| | - Iain P. Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
9
|
Staiano C, García-Corzo L, Mantle D, Turton N, Millichap LE, Brea-Calvo G, Hargreaves I. Biosynthesis, Deficiency, and Supplementation of Coenzyme Q. Antioxidants (Basel) 2023; 12:1469. [PMID: 37508007 PMCID: PMC10375973 DOI: 10.3390/antiox12071469] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Originally identified as a key component of the mitochondrial respiratory chain, Coenzyme Q (CoQ or CoQ10 for human tissues) has recently been revealed to be essential for many different redox processes, not only in the mitochondria, but elsewhere within other cellular membrane types. Cells rely on endogenous CoQ biosynthesis, and defects in this still-not-completely understood pathway result in primary CoQ deficiencies, a group of conditions biochemically characterised by decreased tissue CoQ levels, which in turn are linked to functional defects. Secondary CoQ deficiencies may result from a wide variety of cellular dysfunctions not directly linked to primary synthesis. In this article, we review the current knowledge on CoQ biosynthesis, the defects leading to diminished CoQ10 levels in human tissues and their associated clinical manifestations.
Collapse
Affiliation(s)
- Carmine Staiano
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Laura García-Corzo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | | | - Nadia Turton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Lauren E Millichap
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA, 41013 Sevilla, Spain
- Centro de Investigación Biomédica en Red en Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Departamento de Fisiología, Anatomía y Biología Celular, Universidad Pablo de Olavide, 41013 Sevilla, Spain
| | - Iain Hargreaves
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Merseyside L3 5UX, UK
| |
Collapse
|
10
|
Wang S, Jain A, Novales NA, Nashner AN, Tran F, Clarke CF. Predicting and Understanding the Pathology of Single Nucleotide Variants in Human COQ Genes. Antioxidants (Basel) 2022; 11:antiox11122308. [PMID: 36552517 PMCID: PMC9774615 DOI: 10.3390/antiox11122308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/23/2022] Open
Abstract
Coenzyme Q (CoQ) is a vital lipid that functions as an electron carrier in the mitochondrial electron transport chain and as a membrane-soluble antioxidant. Deficiencies in CoQ lead to metabolic diseases with a wide range of clinical manifestations. There are currently few treatments that can slow or stop disease progression. Primary CoQ10 deficiency can arise from mutations in any of the COQ genes responsible for CoQ biosynthesis. While many mutations in these genes have been identified, the clinical significance of most of them remains unclear. Here we analyzed the structural and functional impact of 429 human missense single nucleotide variants (SNVs) that give rise to amino acid substitutions in the conserved and functional regions of human genes encoding a high molecular weight complex known as the CoQ synthome (or Complex Q), consisting of the COQ3-COQ7 and COQ9 gene products. Using structures of COQ polypeptides, close homologs, and AlphaFold models, we identified 115 SNVs that are potentially pathogenic. Further biochemical characterizations in model organisms such as Saccharomyces cerevisiae are required to validate the pathogenicity of the identified SNVs. Collectively, our results will provide a resource for clinicians during patient diagnosis and guide therapeutic efforts toward combating primary CoQ10 deficiency.
Collapse
|
11
|
Cordts I, Semmler L, Prasuhn J, Seibt A, Herebian D, Navaratnarajah T, Park J, Deininger N, Laugwitz L, Göricke SL, Lingor P, Brüggemann N, Münchau A, Synofzik M, Timmann D, Mayr JA, Haack TB, Distelmaier F, Deschauer M. Bi-Allelic COQ4 Variants Cause Adult-Onset Ataxia-Spasticity Spectrum Disease. Mov Disord 2022; 37:2147-2153. [PMID: 36047608 DOI: 10.1002/mds.29167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/11/2022] [Accepted: 06/21/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND COQ4 codes for a mitochondrial protein required for coenzyme Q10 (CoQ10 ) biosynthesis. Autosomal recessive COQ4-associated CoQ10 deficiency leads to an early-onset mitochondrial multi-organ disorder. METHODS In-house exome and genome datasets (n = 14,303) were screened for patients with bi-allelic variants in COQ4. Work-up included clinical characterization and functional studies in patient-derived cell lines. RESULTS Six different COQ4 variants, three of them novel, were identified in six adult patients from four different families. Three patients had a phenotype of hereditary spastic paraparesis, two sisters showed a predominant cerebellar ataxia, and one patient had mild signs of both. Studies in patient-derived fibroblast lines revealed significantly reduced amounts of COQ4 protein, decreased CoQ10 concentrations, and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION We report bi-allelic variants in COQ4 causing an adult-onset ataxia-spasticity spectrum phenotype and a disease course much milder than previously reported. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Isabell Cordts
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Luisa Semmler
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Jannik Prasuhn
- Department of Neurology, Center for Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Institute of Neurogenetics, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Tharsini Navaratnarajah
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Joohyun Park
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Natalie Deininger
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Neuropediatrics, Developmental Neurology, and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Sophia L Göricke
- Institute of Diagnostic and Interventional Radiology and Neuroradiology, Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Paul Lingor
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Norbert Brüggemann
- Department of Neurology, Center for Brain, Behavior, and Metabolism, University Medical Center Schleswig-Holstein, Lübeck, Germany.,Institute of Neurogenetics, University Medical Center Schleswig-Holstein, Lübeck, Germany
| | - Alexander Münchau
- Institute of Systems Motor Science, University of Lübeck, Lübeck, Germany
| | - Matthis Synofzik
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research (HIH), University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, Essen, Germany
| | - Johannes A Mayr
- University Children's Hospital, Salzburger Landeskliniken and Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Centre for Rare Diseases, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Marcus Deschauer
- Department of Neurology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
12
|
Laugwitz L, Seibt A, Herebian D, Peralta S, Kienzle I, Buchert R, Falb R, Gauck D, Müller A, Grimmel M, Beck-Woedel S, Kern J, Daliri K, Katibeh P, Danhauser K, Leiz S, Alesi V, Baertling F, Vasco G, Steinfeld R, Wagner M, Caglayan AO, Gumus H, Burmeister M, Mayatepek E, Martinelli D, Tamhankar PM, Tamhankar V, Joset P, Steindl K, Rauch A, Bonnen PE, Froukh T, Groeschel S, Krägeloh-Mann I, Haack TB, Distelmaier F. Human COQ4 deficiency: delineating the clinical, metabolic and neuroimaging phenotypes. J Med Genet 2022; 59:878-887. [PMID: 34656997 PMCID: PMC9807242 DOI: 10.1136/jmedgenet-2021-107729] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
BACKGROUND Human coenzyme Q4 (COQ4) is essential for coenzyme Q10 (CoQ10) biosynthesis. Pathogenic variants in COQ4 cause childhood-onset neurodegeneration. We aimed to delineate the clinical spectrum and the cellular consequences of COQ4 deficiency. METHODS Clinical course and neuroradiological findings in a large cohort of paediatric patients with COQ4 deficiency were analysed. Functional studies in patient-derived cell lines were performed. RESULTS We characterised 44 individuals from 36 families with COQ4 deficiency (16 newly described). A total of 23 different variants were identified, including four novel variants in COQ4. Correlation analyses of clinical and neuroimaging findings revealed three disease patterns: type 1: early-onset phenotype with neonatal brain anomalies and epileptic encephalopathy; type 2: intermediate phenotype with distinct stroke-like lesions; and type 3: moderate phenotype with non-specific brain pathology and a stable disease course. The functional relevance of COQ4 variants was supported by in vitro studies using patient-derived fibroblast lines. Experiments revealed significantly decreased COQ4 protein levels, reduced levels of cellular CoQ10 and elevated levels of the metabolic intermediate 6-demethoxyubiquinone. CONCLUSION Our study describes the heterogeneous clinical presentation of COQ4 deficiency and identifies phenotypic subtypes. Cell-based studies support the pathogenic characteristics of COQ4 variants. Due to the insufficient clinical response to oral CoQ10 supplementation, alternative treatment strategies are warranted.
Collapse
Affiliation(s)
- Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Annette Seibt
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diran Herebian
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Susana Peralta
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Imke Kienzle
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Rebecca Buchert
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Ruth Falb
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Darja Gauck
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Amelie Müller
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Mona Grimmel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Stefanie Beck-Woedel
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Karim Daliri
- Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran,Institute for Neurophysiology, University of Cologne, Medical Faculty, Cologne, Germany
| | - Pegah Katibeh
- Child Developmental Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Katharina Danhauser
- Institute of Human Genetics, Technische Universität München, Munich, Germany,Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Steffen Leiz
- Pediatric Neurology, Department of Pediatrics, Klinikum Dritter Orden, Munich, Germany
| | - Viola Alesi
- Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Fabian Baertling
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gessica Vasco
- Department of Neuroscience and Neurorehabilitation, Unit of Neurorehabilitation, IRCCS Bambino Gesù Children’s Hospital, Rome, Italy
| | | | - Matias Wagner
- Institute of Human Genetics, Technische Universität München, Munich, Germany,Helmholtz Zentrum Muenchen, Deutsches Forschungszentrum fuer Gesundheit und Umwelt (GmbH), Neuherberg, Germany
| | - Ahmet Okay Caglayan
- Department of Medical Genetics, School of Medicine, Dokuz Eylul University, Izmir, Turkey
| | - Hakan Gumus
- Department of Pediatrics, Erciyes University School of Medicine, Kayseri, Turkey
| | - Margit Burmeister
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Ertan Mayatepek
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Diego Martinelli
- Division of Metabolism, Bambino Gesù Children’s Hospital IRCCS, Rome, Italy
| | | | | | - Pascal Joset
- Medical Genetics, Institute of Medical Genetics and Pathology, University Hospital Basel, 4056 Basel, Switzerland
| | - Katharina Steindl
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Penelope E Bonnen
- Human Genome Sequencing Center, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Tawfiq Froukh
- Department of Biotechnology and Genetic Engineering, Philadelphia University, Amman, Jordan
| | - Samuel Groeschel
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Ingeborg Krägeloh-Mann
- Department of Neuropediatrics, Developmental Neurology and Social Pediatrics, University of Tübingen, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany,Center for Rare Disease, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology and Pediatric Cardiology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| |
Collapse
|
13
|
Pisanti S, Rimondi E, Pozza E, Melloni E, Zauli E, Bifulco M, Martinelli R, Marcuzzi A. Prenylation Defects and Oxidative Stress Trigger the Main Consequences of Neuroinflammation Linked to Mevalonate Pathway Deregulation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159061. [PMID: 35897423 PMCID: PMC9332440 DOI: 10.3390/ijerph19159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/20/2022] [Accepted: 07/21/2022] [Indexed: 12/10/2022]
Abstract
The cholesterol biosynthesis represents a crucial metabolic pathway for cellular homeostasis. The end products of this pathway are sterols, such as cholesterol, which are essential components of cell membranes, precursors of steroid hormones, bile acids, and other molecules such as ubiquinone. Furthermore, some intermediates of this metabolic system perform biological activity in specific cellular compartments, such as isoprenoid molecules that can modulate different signal proteins through the prenylation process. The defects of prenylation represent one of the main causes that promote the activation of inflammation. In particular, this mechanism, in association with oxidative stress, induces a dysfunction of the mitochondrial activity. The purpose of this review is to describe the pleiotropic role of prenylation in neuroinflammation and to highlight the consequence of the defects of prenylation.
Collapse
Affiliation(s)
- Simona Pisanti
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Erika Rimondi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Elena Pozza
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Elisabetta Melloni
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
- LTTA Centre, University of Ferrara, 44121 Ferrara, Italy
- Correspondence: (E.R.); (E.M.)
| | - Enrico Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| | - Maurizio Bifulco
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples “Federico II”, 80131 Naples, Italy;
| | - Rosanna Martinelli
- Department of Medicine, Surgery and Dentistry ′Scuola Medica Salernitana′, University of Salerno, 84081 Baronissi, Italy; (S.P.); (R.M.)
| | - Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.P.); (E.Z.); (A.M.)
| |
Collapse
|
14
|
Xie J, Jiang J, Guo Q. Primary Coenzyme Q10 Deficiency-7 and Pathogenic COQ4 Variants: Clinical Presentation, Biochemical Analyses, and Treatment. Front Genet 2022; 12:776807. [PMID: 35154243 PMCID: PMC8826242 DOI: 10.3389/fgene.2021.776807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 12/14/2021] [Indexed: 11/13/2022] Open
Abstract
Primary Coenzyme Q10 Deficiency-7 (COQ10D7) is a rare mitochondrial disorder caused by pathogenic COQ4 variants. In this review, we discuss the correlation of COQ4 genotypes, particularly the East Asian-specific c.370G > A variant, with the clinical presentations and therapeutic effectiveness of coenzyme Q10 supplementation from an exon-dependent perspective. Pathogenic COQ4 variants in exons 1–4 are associated with less life-threating presentations, late onset, responsiveness to CoQ10 therapy, and a relatively long lifespan. In contrast, pathogenic COQ4 variants in exons 5–7 are associated with early onset, unresponsiveness to CoQ10 therapy, and early death and are more fatal. Patients with the East Asian-specific c.370G > A variant displays intermediate disease severity with multi-systemic dysfunction, which is between that of the patients with variants in exons 1–4 and 5–7. The mechanism underlying this exon-dependent genotype-phenotype correlation may be associated with the structure and function of COQ4. Sex is shown unlikely to be associated with disease severity. While point-of-care high-throughput sequencing would be useful for the rapid diagnosis of pathogenic COQ4 variants, whereas biochemical analyses of the characteristic impairments in CoQ10 biosynthesis and mitochondrial respiratory chain activity, as well as the phenotypic rescue of the CoQ10 treatment, are necessary to confirm the pathogenicity of suspicious variants. In addition to CoQ10 derivatives, targeted drugs and gene therapy could be useful treatments for COQ10D7 depending on the in-depth functional investigations and the development of gene editing technologies. This review provides a fundamental reference for the sub-classification of COQ10D7 and aim to advance our knowledge of the pathogenesis, clinical diagnosis, and prognosis of this disease and possible interventions.
Collapse
Affiliation(s)
- Jieqiong Xie
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| | - Jiayang Jiang
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China.,School of Medicine, Huaqiao University, Quanzhou, China
| | - Qiwei Guo
- United Diagnostic and Research Center for Clinical Genetics, Women and Children's Hospital, School of Medicine and School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
15
|
Cellular Models for Primary CoQ Deficiency Pathogenesis Study. Int J Mol Sci 2021; 22:ijms221910211. [PMID: 34638552 PMCID: PMC8508219 DOI: 10.3390/ijms221910211] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 02/07/2023] Open
Abstract
Primary coenzyme Q10 (CoQ) deficiency includes a heterogeneous group of mitochondrial diseases characterized by low mitochondrial levels of CoQ due to decreased endogenous biosynthesis rate. These diseases respond to CoQ treatment mainly at the early stages of the disease. The advances in the next generation sequencing (NGS) as whole-exome sequencing (WES) and whole-genome sequencing (WGS) have increased the discoveries of mutations in either gene already described to participate in CoQ biosynthesis or new genes also involved in this pathway. However, these technologies usually provide many mutations in genes whose pathogenic effect must be validated. To functionally validate the impact of gene variations in the disease’s onset and progression, different cell models are commonly used. We review here the use of yeast strains for functional complementation of human genes, dermal skin fibroblasts from patients as an excellent tool to demonstrate the biochemical and genetic mechanisms of these diseases and the development of human-induced pluripotent stem cells (hiPSCs) and iPSC-derived organoids for the study of the pathogenesis and treatment approaches.
Collapse
|
16
|
Mitochondrial Coenzyme Q10 Determination Via Isotope Dilution Liquid Chromatography -Tandem Mass Spectrometry. Methods Mol Biol 2021. [PMID: 34118048 DOI: 10.1007/978-1-0716-1262-0_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Coenzyme Q10 (CoQ10) is an essential part of the mitochondrial respiratory chain . Here, we describe an accurate and sensitive liquid chromatography tandem mass spectrometry (LC-MS/MS) method for determination of mitochondrial CoQ10 in isolated mitochondria . In the assay, mitochondrial suspensions are spiked with CoQ10-[2H9] internal standard (IS), extracted with organic solvents and CoQ10 quantified by LC-MS/MS using multiple reaction monitoring (MRM).
Collapse
|
17
|
Alcázar-Fabra M, Rodríguez-Sánchez F, Trevisson E, Brea-Calvo G. Primary Coenzyme Q deficiencies: A literature review and online platform of clinical features to uncover genotype-phenotype correlations. Free Radic Biol Med 2021; 167:141-180. [PMID: 33677064 DOI: 10.1016/j.freeradbiomed.2021.02.046] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/13/2022]
Abstract
Primary Coenzyme Q (CoQ) deficiencies are clinically heterogeneous conditions and lack clear genotype-phenotype correlations, complicating diagnosis and prognostic assessment. Here we present a compilation of all the symptoms and patients with primary CoQ deficiency described in the literature so far and analyse the most common clinical manifestations associated with pathogenic variants identified in the different COQ genes. In addition, we identified new associations between the age of onset of symptoms and different pathogenic variants, which could help to a better diagnosis and guided treatment. To make these results useable for clinicians, we created an online platform (https://coenzymeQbiology.github.io/clinic-CoQ-deficiency) about clinical manifestations of primary CoQ deficiency that will be periodically updated to incorporate new information published in the literature. Since CoQ primary deficiency is a rare disease, the available data are still limited, but as new patients are added over time, this tool could become a key resource for a more efficient diagnosis of this pathology.
Collapse
Affiliation(s)
- María Alcázar-Fabra
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain
| | | | - Eva Trevisson
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padova, Padova, 35128, Italy; Istituto di Ricerca Pediatrica, Fondazione Città della Speranza, Padova, 35128, Italy.
| | - Gloria Brea-Calvo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide-CSIC-JA and CIBERER, Instituto de Salud Carlos III, Seville, 41013, Spain.
| |
Collapse
|
18
|
Mero S, Salviati L, Leuzzi V, Rubegni A, Calderan C, Nardecchia F, Galatolo D, Desbats MA, Naef V, Gemignani F, Novelli M, Tessa A, Battini R, Santorelli FM, Marchese M. New pathogenic variants in COQ4 cause ataxia and neurodevelopmental disorder without detectable CoQ 10 deficiency in muscle or skin fibroblasts. J Neurol 2021; 268:3381-3389. [PMID: 33704555 DOI: 10.1007/s00415-021-10509-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/13/2022]
Abstract
COQ4 is a component of an enzyme complex involved in the biosynthesis of coenzyme Q10 (CoQ10), a molecule with primary importance in cell metabolism. Mutations in the COQ4 gene are responsible for mitochondrial diseases showing heterogeneous age at onset, clinical presentations and association with CoQ10 deficiency. We herein expand the phenotypic and genetic spectrum of COQ4-related diseases, by reporting two patients harboring bi-allelic variants but not showing CoQ10 deficiency. One patient was found to harbor compound heterozygous mutations (specifically, c.577C>T/p.Pro193Ser and the previously reported c.718C>T/p.Arg240Cys) associated with progressive spasticity, while the other harbored two novel missense (c.284G>A/p.Gly95Asp and c.305G>A/p.Arg102His) associated with a neurodevelopmental disorder. Both patients presented motor impairment and ataxia. To further understand the role of COQ4, we performed functional studies in patient-derived fibroblasts, yeast and "crispant" zebrafish larvae. Micro-oxygraphy showed impaired oxygen consumption rates in one patient, while yeast complementation assays showed that all the mutations were presumably disease related. Moreover, characterization of the coq4 F0 CRISPR zebrafish line showed motor defects and cell reduction in a specific area of the hindbrain, a region reminiscent of the human cerebellum. Our expanded phenotype associated with COQ4 mutations allowed us to investigate, for the first time, the role of COQ4 in brain development in vivo.
Collapse
Affiliation(s)
- Serena Mero
- IRCCS Fondazione Stella Maris, Pisa, Italy
- Department of Biology, University of Pisa, Pisa, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Vincenzo Leuzzi
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Cristina Calderan
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | - Francesca Nardecchia
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women's and Children's Health, University of Padua, Padua, Italy
- Istituto Di Ricerca Pediatrica (IRP) Città della Speranza, Padua, Italy
| | | | | | - Maria Novelli
- Child Neurology, Department of Human Neuroscience, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
19
|
Villalba JM, Navas P. Regulation of coenzyme Q biosynthesis pathway in eukaryotes. Free Radic Biol Med 2021; 165:312-323. [PMID: 33549646 DOI: 10.1016/j.freeradbiomed.2021.01.055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/22/2021] [Accepted: 01/30/2021] [Indexed: 12/21/2022]
Abstract
Coenzyme Q (CoQ, ubiquinone/ubiquinol) is a ubiquitous and unique molecule that drives electrons in mitochondrial respiratory chain and an obligatory step for multiple metabolic pathways in aerobic metabolism. Alteration of CoQ biosynthesis or its redox stage are causing mitochondrial dysfunctions as hallmark of heterogeneous disorders as mitochondrial/metabolic, cardiovascular, and age-associated diseases. Regulation of CoQ biosynthesis pathway is demonstrated to affect all steps of proteins production of this pathway, posttranslational modifications and protein-protein-lipid interactions inside mitochondria. There is a bi-directional relationship between CoQ and the epigenome in which not only the CoQ status determines the epigenetic regulation of many genes, but CoQ biosynthesis is also a target for epigenetic regulation, which adds another layer of complexity to the many pathways by which CoQ levels are regulated by environmental and developmental signals to fulfill its functions in eukaryotic aerobic metabolism.
Collapse
Affiliation(s)
- José Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, Spain
| | - Plácido Navas
- Centro Andaluz de Biología del Desarrollo and CIBERER, Instituto de Salud Carlos III, Universidad Pablo de Olavide-CSIC-JA, Sevilla, 41013, Spain.
| |
Collapse
|
20
|
Koňaříková E, Marković A, Korandová Z, Houštěk J, Mráček T. Current progress in the therapeutic options for mitochondrial disorders. Physiol Res 2020; 69:967-994. [PMID: 33129249 PMCID: PMC8549882 DOI: 10.33549/physiolres.934529] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 10/02/2020] [Indexed: 12/20/2022] Open
Abstract
Mitochondrial disorders manifest enormous genetic and clinical heterogeneity - they can appear at any age, present with various phenotypes affecting any organ, and display any mode of inheritance. What mitochondrial diseases do have in common, is impairment of respiratory chain activity, which is responsible for more than 90% of energy production within cells. While diagnostics of mitochondrial disorders has been accelerated by introducing Next-Generation Sequencing techniques in recent years, the treatment options are still very limited. For many patients only a supportive or symptomatic therapy is available at the moment. However, decades of basic and preclinical research have uncovered potential target points and numerous compounds or interventions are now subjects of clinical trials. In this review, we focus on current and emerging therapeutic approaches towards the treatment of mitochondrial disorders. We focus on small compounds, metabolic interference, such as endurance training or ketogenic diet and also on genomic approaches.
Collapse
Affiliation(s)
- E Koňaříková
- Laboratory of Bioenergetics, Institute of Physiology Czech Acad. Sci., Prague, Czech Republic. ,
| | | | | | | | | |
Collapse
|
21
|
Human Mitochondrial Pathologies of the Respiratory Chain and ATP Synthase: Contributions from Studies of Saccharomyces cerevisiae. Life (Basel) 2020; 10:life10110304. [PMID: 33238568 PMCID: PMC7700678 DOI: 10.3390/life10110304] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 12/14/2022] Open
Abstract
The ease with which the unicellular yeast Saccharomyces cerevisiae can be manipulated genetically and biochemically has established this organism as a good model for the study of human mitochondrial diseases. The combined use of biochemical and molecular genetic tools has been instrumental in elucidating the functions of numerous yeast nuclear gene products with human homologs that affect a large number of metabolic and biological processes, including those housed in mitochondria. These include structural and catalytic subunits of enzymes and protein factors that impinge on the biogenesis of the respiratory chain. This article will review what is currently known about the genetics and clinical phenotypes of mitochondrial diseases of the respiratory chain and ATP synthase, with special emphasis on the contribution of information gained from pet mutants with mutations in nuclear genes that impair mitochondrial respiration. Our intent is to provide the yeast mitochondrial specialist with basic knowledge of human mitochondrial pathologies and the human specialist with information on how genes that directly and indirectly affect respiration were identified and characterized in yeast.
Collapse
|
22
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020; 88:251-263. [PMID: 32337771 PMCID: PMC7877690 DOI: 10.1002/ana.25751] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 04/16/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
- Department of Systems MedicineUniversity of Roma Tor VergataRomeItaly
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
- Department of Pediatric NeurologyUniversity Children’s HospitalTübingenGermany
| | - Nathan H. Murray
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Craig A. Bingman
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Jan Kern
- Department of Pediatric NeurologyUniversity Children’s HospitalTübingenGermany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of NeurosciencesIRCCS Bambino Gesù Children HospitalRomeItaly
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of NeurosciencesBambino Gesù Children’s Hospital, IRCCSRomeItaly
| | - Alexandra Durr
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
| | - Stefania Magri
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Franco Taroni
- Unit of Medical Genetics and NeurogeneticsFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and NeurosciencesUniversity of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria SeneseSienaItaly
| | - Jonathan Baets
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Peter de Jonghe
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Willem de Ridder
- Neurogenetics Group, University of AntwerpAntwerpBelgium
- Institute Born‐BungeUniversity of AntwerpAntwerpBelgium
- Department of NeurologyAntwerp University HospitalAntwerpBelgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche‐Comté, CHRU de BesançonBesançonFrance
- Unité Extrapyramidale, Département des Neurosciences CliniquesHUG, Faculté de Médecine, Université de GenèveGenevaSwitzerland
| | | | - Christos Ganos
- Department of NeurologyCharité University Medicine BerlinBerlinGermany
| | - A. Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research LaboratoryKUTTAM, Koç University School of MedicineIstanbulTurkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of NeurologyIstanbul Faculty of Medicine, Istanbul UniversityIstanbulTurkey
| | - Semra Hiz Kurul
- Departments of Pediatric NeurologyDokuz Eylül University Faculty of MedicineİzmirTurkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional NeuroradiologyUniversity of TübingenTübingenGermany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Thomas Klopstock
- Department of Neurology, Friedrich‐Baur‐InstituteLudwig‐Maximilians University of MunichMunichGermany
- German Center for Neurodegenerative Diseases (DZNE)MunichGermany
- Munich Cluster for Systems Neurology (SyNergy)MunichGermany
| | - Rita Horvath
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeUK
- Institute of Genetic MedicineNewcastle UniversityNewcastleUK
| | - Bart van de Warrenburg
- Department of NeurologyRadboud University Medical Centre, Donders Institute for Brain, Cognition and BehaviourNijmegenThe Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares “Malformations et Maladies Congénitales du Cervelet”Paris‐Lyon‐LilleFrance
- Département de Génétique et Embryologie MédicaleAPHP, GHUEP, Hôpital Armand TrousseauParisFrance
- Developmental Brain Disorders LaboratoryImagine Institute, INSERM UMR 1163ParisFrance
| | - Christelle Rougeot
- Centre de Référence Maladies Rares “Malformations et Maladies Congénitales du Cervelet”Paris‐Lyon‐LilleFrance
- Hôpital Femme Mère EnfantService de NeuropédiatrieBronFrance
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM)Sorbonne Université, Pitié‐Salpêtrière University HospitalParisFrance
- AP‐HP, Department of GeneticsPitié‐Salpêtrière University HospitalParisFrance
- Hôpitaux universitaires Pitié Salpêtrière ‐ Charles Foix, Service de GénétiqueParisFrance
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique MoléculaireCHU and Université de MontpellierMontpellierFrance
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de StrasbourgHôpital de HautepierreStrasbourgFrance
- Fédération de Médecine Translationnelle de Strasbourg (FMTS)Université de StrasbourgStrasbourgFrance
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)INSERM‐U964/CNRS‐UMR7104/Université de StrasbourgIllkirchFrance
| | - Renato P. Munhoz
- Movement Disorders Centre, Toronto Western HospitalUniversity of Toronto, Krembil Research InstituteTorontoOntarioCanada
| | - Tobias Haack
- Institute of Medical Genetics and Applied GenomicsUniversity of TübingenTübingenGermany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric CardiologyUniversity Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine UniversityDuesseldorfGermany
| | - David J. Pagliarini
- Morgridge Institute for ResearchMadisonWIUSA
- Department of BiochemistryUniversity of Wisconsin‐MadisonMadisonWIUSA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)IllkirchFrance
- INSERM, U1258IllkirchFrance
- CNRS, UMR7104IIllkirchFrance
- Université de StrasbourgStrasbourgFrance
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie‐Institute for Clinical Brain Research and Center of NeurologyUniversity of TübingenTübingenGermany
- German Center for Neurodegenerative Diseases (DZNE)University of TübingenTübingenGermany
| |
Collapse
|
23
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020. [PMID: 32337771 DOI: 10.1002/ana.25751 10.1002/ana.25751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nathan H Murray
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig A Bingman
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alexandra Durr
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Willem de Ridder
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche-Comté, CHRU de Besançon, Besançon, France.,Unité Extrapyramidale, Département des Neurosciences Cliniques, HUG, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | | | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - A Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Département de Génétique et Embryologie Médicale, APHP, GHUEP, Hôpital Armand Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Christelle Rougeot
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Bron, France
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.,Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Krembil Research Institute, Toronto, Ontario, Canada
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM, U1258, Illkirch, France.,CNRS, UMR7104, IIllkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
24
|
Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, Zanni G, Durr A, Magri S, Taroni F, Malandrini A, Baets J, de Jonghe P, de Ridder W, Bereau M, Demuth S, Ganos C, Basak AN, Hanagasi H, Kurul SH, Bender B, Schöls L, Grasshoff U, Klopstock T, Horvath R, van de Warrenburg B, Burglen L, Rougeot C, Ewenczyk C, Koenig M, Santorelli FM, Anheim M, Munhoz RP, Haack T, Distelmaier F, Pagliarini DJ, Puccio H, Synofzik M. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol 2020. [PMID: 32337771 DOI: 10.1002/ana.25751+10.1002/ana.25751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To foster trial-readiness of coenzyme Q8A (COQ8A)-ataxia, we map the clinicogenetic, molecular, and neuroimaging spectrum of COQ8A-ataxia in a large worldwide cohort, and provide first progression data, including treatment response to coenzyme Q10 (CoQ10). METHODS Cross-modal analysis of a multicenter cohort of 59 COQ8A patients, including genotype-phenotype correlations, 3D-protein modeling, in vitro mutation analyses, magnetic resonance imaging (MRI) markers, disease progression, and CoQ10 response data. RESULTS Fifty-nine patients (39 novel) with 44 pathogenic COQ8A variants (18 novel) were identified. Missense variants demonstrated a pleiotropic range of detrimental effects upon protein modeling and in vitro analysis of purified variants. COQ8A-ataxia presented as variable multisystemic, early-onset cerebellar ataxia, with complicating features ranging from epilepsy (32%) and cognitive impairment (49%) to exercise intolerance (25%) and hyperkinetic movement disorders (41%), including dystonia and myoclonus as presenting symptoms. Multisystemic involvement was more prevalent in missense than biallelic loss-of-function variants (82-93% vs 53%; p = 0.029). Cerebellar atrophy was universal on MRI (100%), with cerebral atrophy or dentate and pontine T2 hyperintensities observed in 28%. Cross-sectional (n = 34) and longitudinal (n = 7) assessments consistently indicated mild-to-moderate progression of ataxia (SARA: 0.45/year). CoQ10 treatment led to improvement by clinical report in 14 of 30 patients, and by quantitative longitudinal assessments in 8 of 11 patients (SARA: -0.81/year). Explorative sample size calculations indicate that ≥48 patients per arm may suffice to demonstrate efficacy for interventions that reduce progression by 50%. INTERPRETATION This study provides a deeper understanding of the disease, and paves the way toward large-scale natural history studies and treatment trials in COQ8A-ataxia. ANN NEUROL 2020;88:251-263.
Collapse
Affiliation(s)
- Andreas Traschütz
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Tommaso Schirinzi
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy.,Department of Systems Medicine, University of Roma Tor Vergata, Rome, Italy
| | - Lucia Laugwitz
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany.,Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Nathan H Murray
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Craig A Bingman
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Selina Reich
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Jan Kern
- Department of Pediatric Neurology, University Children's Hospital, Tübingen, Germany
| | - Anna Heinzmann
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Gessica Vasco
- Neurorehabilitation Unit, Department of Neurosciences, IRCCS Bambino Gesù Children Hospital, Rome, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Ginevra Zanni
- Unit of Neuromuscular and Neurodegenerative Diseases, Department of Neurosciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Alexandra Durr
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France
| | - Stefania Magri
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Franco Taroni
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandro Malandrini
- Department of Medicine, Surgery, and Neurosciences, University of Siena, Unit of Neurology and Neurometabolic Disorders, Azienda Ospedaliera Universitaria Senese, Siena, Italy
| | - Jonathan Baets
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter de Jonghe
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Willem de Ridder
- Neurogenetics Group, University of Antwerp, Antwerp, Belgium.,Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology, Antwerp University Hospital, Antwerp, Belgium
| | - Matthieu Bereau
- Service de Neurologie, Université de Franche-Comté, CHRU de Besançon, Besançon, France.,Unité Extrapyramidale, Département des Neurosciences Cliniques, HUG, Faculté de Médecine, Université de Genève, Geneva, Switzerland
| | | | - Christos Ganos
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany
| | - A Nazli Basak
- Suna and Inan Kıraç Foundation, Neurodegeneration Research Laboratory, KUTTAM, Koç University School of Medicine, Istanbul, Turkey
| | - Hasmet Hanagasi
- Behavioural Neurology and Movement Disorders Unit, Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Semra Hiz Kurul
- Departments of Pediatric Neurology, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University of Tübingen, Tübingen, Germany
| | - Ludger Schöls
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| | - Ute Grasshoff
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, Ludwig-Maximilians University of Munich, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Rita Horvath
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK.,Institute of Genetic Medicine, Newcastle University, Newcastle, UK
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Lydie Burglen
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Département de Génétique et Embryologie Médicale, APHP, GHUEP, Hôpital Armand Trousseau, Paris, France.,Developmental Brain Disorders Laboratory, Imagine Institute, INSERM UMR 1163, Paris, France
| | - Christelle Rougeot
- Centre de Référence Maladies Rares "Malformations et Maladies Congénitales du Cervelet", Paris-Lyon-Lille, France.,Hôpital Femme Mère Enfant, Service de Neuropédiatrie, Bron, France
| | - Claire Ewenczyk
- Brain and Spine Institute (ICM), Sorbonne Université, Pitié-Salpêtrière University Hospital, Paris, France.,AP-HP, Department of Genetics, Pitié-Salpêtrière University Hospital, Paris, France.,Hôpitaux universitaires Pitié Salpêtrière - Charles Foix, Service de Génétique, Paris, France
| | - Michel Koenig
- EA7402 Institut Universitaire de Recherche Clinique, and Laboratoire de Génétique Moléculaire, CHU and Université de Montpellier, Montpellier, France
| | | | - Mathieu Anheim
- Service de Neurologie, Hôpitaux Universitaires de Strasbourg, Hôpital de Hautepierre, Strasbourg, France.,Fédération de Médecine Translationnelle de Strasbourg (FMTS), Université de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM-U964/CNRS-UMR7104/Université de Strasbourg, Illkirch, France
| | - Renato P Munhoz
- Movement Disorders Centre, Toronto Western Hospital, University of Toronto, Krembil Research Institute, Toronto, Ontario, Canada
| | - Tobias Haack
- Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - Felix Distelmaier
- Department of General Pediatrics, Neonatology, and Pediatric Cardiology, University Children's Hospital Duesseldorf, Medical Faculty, Heinrich Heine University, Duesseldorf, Germany
| | - David J Pagliarini
- Morgridge Institute for Research, Madison, WI, USA.,Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hélène Puccio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Illkirch, France.,INSERM, U1258, Illkirch, France.,CNRS, UMR7104, IIllkirch, France.,Université de Strasbourg, Strasbourg, France
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Berardo A, Quinzii CM. Redefining infantile-onset multisystem phenotypes of coenzyme Q 10-deficiency in the next-generation sequencing era. JOURNAL OF TRANSLATIONAL GENETICS AND GENOMICS 2020; 4:22-35. [PMID: 33426503 PMCID: PMC7791541 DOI: 10.20517/jtgg.2020.02] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Primary coenzyme Q10 (CoQ10) deficiency encompasses a subset of mitochondrial diseases caused by mutations affecting proteins involved in the CoQ10 biosynthetic pathway. One of the most frequent clinical syndromes associated with primary CoQ10 deficiency is the severe infantile multisystemic form, which, until recently, was underdiagnosed. In the last few years, the availability of genetic screening through whole exome sequencing and whole genome sequencing has enabled molecular diagnosis in a growing number of patients with this syndrome and has revealed new disease phenotypes and molecular defects in CoQ10 biosynthetic pathway genes. Early genetic screening can rapidly and non-invasively diagnose primary CoQ10 deficiencies. Early diagnosis is particularly important in cases of CoQ10 deficient steroid-resistant nephrotic syndrome, which frequently improves with treatment. In contrast, the infantile multisystemic forms of CoQ10 deficiency, particularly when manifesting with encephalopathy, present therapeutic challenges, due to poor responses to CoQ10 supplementation. Administration of CoQ10 biosynthetic intermediate compounds is a promising alternative to CoQ10; however, further pre-clinical studies are needed to establish their safety and efficacy, as well as to elucidate the mechanism of actions of the intermediates. Here, we review the molecular defects causes of the multisystemic infantile phenotype of primary CoQ10 deficiency, genotype-phenotype correlations, and recent therapeutic advances.
Collapse
Affiliation(s)
- Andres Berardo
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| | - Catarina M Quinzii
- Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
26
|
Abstract
Cerebellar ataxia can be caused by a variety of disorders, including degenerative processes, autoimmune and paraneoplastic illness as well as by gene mutations inherited in autosomal dominant, autosomal recessive, or X-linked fashions. In this review, we highlight the treatments for cerebellar ataxia in a systematic way, to provide guidance for clinicians who treat patients with cerebellar ataxia. In addition, we review therapies currently under development for ataxia, which we feel is currently one of the most exciting fields in neurology.
Collapse
|
27
|
Ling TK, Law CY, Yan KW, Fong NC, Wong KC, Lee KL, Chu WCW, Brea-Calvo G, Lam CW. Clinical whole-exome sequencing reveals a common pathogenic variant in patients with CoQ10 deficiency: An underdiagnosed cause of mitochondriopathy. Clin Chim Acta 2019; 497:88-94. [DOI: 10.1016/j.cca.2019.07.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/02/2019] [Accepted: 07/14/2019] [Indexed: 12/17/2022]
|