1
|
Arleo A, Bareš M, Bernard JA, Bogoian HR, Bruchhage MMK, Bryant P, Carlson ES, Chan CCH, Chen LK, Chung CP, Dotson VM, Filip P, Guell X, Habas C, Jacobs HIL, Kakei S, Lee TMC, Leggio M, Misiura M, Mitoma H, Olivito G, Ramanoël S, Rezaee Z, Samstag CL, Schmahmann JD, Sekiyama K, Wong CHY, Yamashita M, Manto M. Consensus Paper: Cerebellum and Ageing. CEREBELLUM (LONDON, ENGLAND) 2024; 23:802-832. [PMID: 37428408 PMCID: PMC10776824 DOI: 10.1007/s12311-023-01577-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/08/2023] [Indexed: 07/11/2023]
Abstract
Given the key roles of the cerebellum in motor, cognitive, and affective operations and given the decline of brain functions with aging, cerebellar circuitry is attracting the attention of the scientific community. The cerebellum plays a key role in timing aspects of both motor and cognitive operations, including for complex tasks such as spatial navigation. Anatomically, the cerebellum is connected with the basal ganglia via disynaptic loops, and it receives inputs from nearly every region in the cerebral cortex. The current leading hypothesis is that the cerebellum builds internal models and facilitates automatic behaviors through multiple interactions with the cerebral cortex, basal ganglia and spinal cord. The cerebellum undergoes structural and functional changes with aging, being involved in mobility frailty and related cognitive impairment as observed in the physio-cognitive decline syndrome (PCDS) affecting older, functionally-preserved adults who show slowness and/or weakness. Reductions in cerebellar volume accompany aging and are at least correlated with cognitive decline. There is a strongly negative correlation between cerebellar volume and age in cross-sectional studies, often mirrored by a reduced performance in motor tasks. Still, predictive motor timing scores remain stable over various age groups despite marked cerebellar atrophy. The cerebello-frontal network could play a significant role in processing speed and impaired cerebellar function due to aging might be compensated by increasing frontal activity to optimize processing speed in the elderly. For cognitive operations, decreased functional connectivity of the default mode network (DMN) is correlated with lower performances. Neuroimaging studies highlight that the cerebellum might be involved in the cognitive decline occurring in Alzheimer's disease (AD), independently of contributions of the cerebral cortex. Grey matter volume loss in AD is distinct from that seen in normal aging, occurring initially in cerebellar posterior lobe regions, and is associated with neuronal, synaptic and beta-amyloid neuropathology. Regarding depression, structural imaging studies have identified a relationship between depressive symptoms and cerebellar gray matter volume. In particular, major depressive disorder (MDD) and higher depressive symptom burden are associated with smaller gray matter volumes in the total cerebellum as well as the posterior cerebellum, vermis, and posterior Crus I. From the genetic/epigenetic standpoint, prominent DNA methylation changes in the cerebellum with aging are both in the form of hypo- and hyper-methylation, and the presumably increased/decreased expression of certain genes might impact on motor coordination. Training influences motor skills and lifelong practice might contribute to structural maintenance of the cerebellum in old age, reducing loss of grey matter volume and therefore contributing to the maintenance of cerebellar reserve. Non-invasive cerebellar stimulation techniques are increasingly being applied to enhance cerebellar functions related to motor, cognitive, and affective operations. They might enhance cerebellar reserve in the elderly. In conclusion, macroscopic and microscopic changes occur in the cerebellum during the lifespan, with changes in structural and functional connectivity with both the cerebral cortex and basal ganglia. With the aging of the population and the impact of aging on quality of life, the panel of experts considers that there is a huge need to clarify how the effects of aging on the cerebellar circuitry modify specific motor, cognitive, and affective operations both in normal subjects and in brain disorders such as AD or MDD, with the goal of preventing symptoms or improving the motor, cognitive, and affective symptoms.
Collapse
Affiliation(s)
- Angelo Arleo
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
| | - Martin Bareš
- First Department of Neurology, Faculty of Medicine, Masaryk University and St. Anne's Teaching Hospital, Brno, Czech Republic
- Department of Neurology, School of Medicine, University of Minnesota, Minneapolis, USA
| | - Jessica A Bernard
- Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX, 77843, USA
- Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, USA
| | - Hannah R Bogoian
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Muriel M K Bruchhage
- Department of Psychology, Stavanger University, Institute of Social Sciences, Kjell Arholms Gate 41, 4021, Stavanger, Norway
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Centre for Neuroimaging Sciences, Box 89, De Crespigny Park, London, PO, SE5 8AF, UK
- Rhode Island Hospital, Department for Diagnostic Imaging, 1 Hoppin St, Providence, RI, 02903, USA
- Department of Paediatrics, Warren Alpert Medical School of Brown University, 222 Richmond St, Providence, RI, 02903, USA
| | - Patrick Bryant
- Freie Universität Berlin, Fachbereich Mathematik und Informatik, Arnimallee 12, 14195, Berlin, Germany
| | - Erik S Carlson
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Chetwyn C H Chan
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Liang-Kung Chen
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Center for Geriatric and Gerontology, Taipei Veterans General Hospital, Taipei, Taiwan
- Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital), Taipei, Taiwan
| | - Chih-Ping Chung
- Center for Healthy Longevity and Aging Sciences, National Yang Ming Chiao Tung University College of Medicine, Taipei, Taiwan
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Vonetta M Dotson
- Department of Psychology, Georgia State University, Atlanta, GA, USA
- Gerontology Institute, Georgia State University, Atlanta, GA, USA
| | - Pavel Filip
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Xavier Guell
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Christophe Habas
- CHNO Des Quinze-Vingts, INSERM-DGOS CIC 1423, 28 rue de Charenton, 75012, Paris, France
- Université Versailles St Quentin en Yvelines, Paris, France
| | - Heidi I L Jacobs
- School for Mental Health and Neuroscience, Alzheimer Centre Limburg, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Faculty of Psychology and Neuroscience, Department of Cognitive Neuroscience, Maastricht University, PO BOX 616, 6200, MD, Maastricht, The Netherlands
- Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tatia M C Lee
- State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
- Laboratory of Neuropsychology and Human Neuroscience, Department of Psychology, The University of Hong Kong, Hong Kong, China
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Misiura
- Department of Psychology, Georgia State University, Atlanta, GA, USA
| | - Hiroshi Mitoma
- Department of Medical Education, Tokyo Medical University, Tokyo, Japan
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Ataxia Laboratory, I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Stephen Ramanoël
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, 17 rue Moreau, F-75012, Paris, France
- Université Côte d'Azur, LAMHESS, Nice, France
| | - Zeynab Rezaee
- Noninvasive Neuromodulation Unit, Experimental Therapeutics & Pathophysiology Branch, National Institute of Mental Health, NIH, Bethesda, USA
| | - Colby L Samstag
- Department of Psychiatry and Behavioural Sciences, University of Washington, Seattle, WA, USA
- Geriatric Research, Education and Clinical Center, Veteran's Affairs Medical Center, Puget Sound, Seattle, WA, USA
| | - Jeremy D Schmahmann
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Laboratory for Neuroanatomy and Cerebellar Neurobiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Ataxia Center, Cognitive Behavioural neurology Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kaoru Sekiyama
- Graduate School of Advanced Integrated Studies in Human Survivability, Kyoto University, Kyoto, Japan
| | - Clive H Y Wong
- Department of Psychology, The Education University of Hong Kong, New Territories, Tai Po, Hong Kong, China
| | - Masatoshi Yamashita
- Research Center for Child Mental Development, University of Fukui, Fukui, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Mario Manto
- Service de Neurologie, Médiathèque Jean Jacquy, CHU-Charleroi, Charleroi, Belgium.
- Service des Neurosciences, University of Mons, Mons, Belgium.
| |
Collapse
|
2
|
Setiadi TM, Marsman JBC, Martens S, Tumati S, Opmeer EM, Reesink FE, De Deyn PP, Atienza M, Aleman A, Cantero JL. Alterations in Gray Matter Structural Networks in Amnestic Mild Cognitive Impairment: A Source-Based Morphometry Study. J Alzheimers Dis 2024; 101:61-73. [PMID: 39093069 PMCID: PMC11380280 DOI: 10.3233/jad-231196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Amnestic mild cognitive impairment (aMCI), considered as the prodromal stage of Alzheimer's disease, is characterized by isolated memory impairment and cerebral gray matter volume (GMV) alterations. Previous structural MRI studies in aMCI have been mainly based on univariate statistics using voxel-based morphometry. Objective We investigated structural network differences between aMCI patients and cognitively normal older adults by using source-based morphometry, a multivariate approach that considers the relationship between voxels of various parts of the brain. Methods Ninety-one aMCI patients and 80 cognitively normal controls underwent structural MRI and neuropsychological assessment. Spatially independent components (ICs) that covaried between participants were estimated and a multivariate analysis of covariance was performed with ICs as dependent variables, diagnosis as independent variable, and age, sex, education level, and site as covariates. Results aMCI patients exhibited reduced GMV in the precentral, temporo-cerebellar, frontal, and temporal network, and increased GMV in the left superior parietal network compared to controls (pFWER < 0.05, Holm-Bonferroni correction). Moreover, we found that diagnosis, more specifically aMCI, moderated the positive relationship between occipital network and Mini-Mental State Examination scores (pFWER < 0.05, Holm-Bonferroni correction). Conclusions Our results showed GMV alterations in temporo-fronto-parieto-cerebellar networks in aMCI, extending previous results obtained with univariate approaches.
Collapse
Affiliation(s)
- Tania M Setiadi
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jan-Bernard C Marsman
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sander Martens
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Shankar Tumati
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Neuropsychopharmacology Research Group, Sunnybrook Research Institute, University of Toronto, Toronto, ON, Canada
| | - Esther M Opmeer
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Health and Welfare, Windesheim University of Applied Sciences, Zwolle, The Netherlands
| | - Fransje E Reesink
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Laboratory of Neurochemistry and Behavior, Experimental Neurobiology Group, University of Antwerp, Antwerp, Belgium
| | - Mercedes Atienza
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - André Aleman
- Department of Biomedical Sciences of Cells & Systems, Cognitive Neuroscience Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Psychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jose L Cantero
- Laboratory of Functional Neuroscience, Pablo de Olavide University, Seville, Spain
- CIBER de Enfermedades Neurodegenerativas (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Salans M, Karunamuni R, Unnikrishnan S, Qian A, Connor M, Gudipati S, Yip A, Huynh-Le MP, Tibbs M, Reyes A, Stasenko A, Schadler A, McDonald C, Hattangadi-Gluth JA. Microstructural Cerebellar Injury Independently Associated With Processing Speed in Adult Patients With Primary Brain Tumors: Implications for Cognitive Preservation. Int J Radiat Oncol Biol Phys 2023; 117:1107-1117. [PMID: 37414262 DOI: 10.1016/j.ijrobp.2023.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 05/08/2023] [Accepted: 06/13/2023] [Indexed: 07/08/2023]
Abstract
PURPOSE The cerebellum's role in posttreatment neurocognitive decline is unexplored. This study investigated associations between cerebellar microstructural integrity using quantitative neuroimaging biomarkers and neurocognition among patients with primary brain tumors receiving partial-brain radiation therapy (RT). METHODS AND MATERIALS In a prospective trial, 65 patients underwent volumetric brain magnetic resonance imaging, diffusion tensor imaging, and memory, executive function, language, attention, and processing speed (PS) assessment before RT and at 3, 6, and 12 months after RT. Delis-Kaplan Executive Function System-Trail Making (D-KEFS-TM) visual scanning and number and letter sequencing and Wechsler Adult Intelligence Scale, Fourth Edition, coding were used to evaluate PS. The cerebellar cortex and white matter (WM) and supratentorial structures subserving the previously mentioned cognitive domains were autosegmented. Volume was measured within each structure at each time point along with diffusion biomarkers (fractional anisotropy and mean diffusivity) in WM structures. Linear mixed-effects models assessed cerebellar biomarkers as predictors of neurocognitive scores. If associated, cerebellar biomarkers were evaluated as independent predictors of cognitive scores controlling for domain-specific supratentorial biomarkers. RESULTS Left (P = .04) and right (P < .001) cerebellar WM volume declined significantly over time. Cerebellar biomarkers were not associated with memory, executive function, or language. Smaller left cerebellar cortex volume was associated with worse D-KEFS-TM number (P = .01) and letter (P = .01) sequencing scores. A smaller right cerebellar cortex volume correlated with worse D-KEFS-TM visual scanning (P = .02) and number (P = .03) and letter (P = .02) sequencing scores. Greater right cerebellar WM mean diffusivity, indicating WM injury, was associated with worse D-KEFS-TM visual scanning performance (P = .03). Associations remained significant after controlling for corpus callosum and intrahemispheric WM injury biomarkers. CONCLUSIONS Injury to the cerebellum as measured with quantitative biomarkers correlates with worse post-RT PS, independent of corpus callosum and intrahemispheric WM damage. Efforts to preserve cerebellar integrity may preserve PS.
Collapse
Affiliation(s)
- Mia Salans
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Roshan Karunamuni
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Soumya Unnikrishnan
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Alexander Qian
- Department of Radiation Oncology, University of California, San Francisco, California; Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Michael Connor
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Suma Gudipati
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anthony Yip
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | | | - Michelle Tibbs
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California
| | - Anny Reyes
- Department of Psychiatry, University of California, San Diego, California
| | - Alena Stasenko
- Department of Psychiatry, University of California, San Diego, California
| | - Adam Schadler
- Department of Psychiatry, University of California, San Diego, California
| | - Carrie McDonald
- Department of Psychiatry, University of California, San Diego, California
| | - Jona A Hattangadi-Gluth
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, California.
| |
Collapse
|
4
|
Cooper CP, Shafer AT, Armstrong NM, An Y, Erus G, Davatzikos C, Ferrucci L, Rapp PR, Resnick SM. Associations of baseline and longitudinal change in cerebellum volume with age-related changes in verbal learning and memory. Neuroimage 2023; 272:120048. [PMID: 36958620 DOI: 10.1016/j.neuroimage.2023.120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 03/17/2023] [Accepted: 03/20/2023] [Indexed: 03/25/2023] Open
Abstract
The cerebellum is involved in higher-order cognitive functions, e.g., learning and memory, and is susceptible to age-related atrophy. Yet, the cerebellum's role in age-related cognitive decline remains largely unknown. We investigated cross-sectional and longitudinal associations between cerebellar volume and verbal learning and memory. Linear mixed effects models and partial correlations were used to examine the relationship between changes in cerebellum volumes (total cerebellum, cerebellum white matter [WM], cerebellum hemisphere gray matter [GM], and cerebellum vermis subregions) and changes in verbal learning and memory performance among 549 Baltimore Longitudinal Study of Aging participants (2,292 visits). All models were adjusted by baseline demographic characteristics (age, sex, race, education), and APOE e4 carrier status. In examining associations between change with change, we tested an additional model that included either hippocampal (HC), cuneus, or postcentral gyrus (PoCG) volumes to assess whether cerebellar volumes were uniquely associated with verbal learning and memory. Cross-sectionally, the association of baseline cerebellum GM and WM with baseline verbal learning and memory was age-dependent, with the oldest individuals showing the strongest association between volume and performance. Baseline volume was not significantly associated with change in learning and memory. However, analysis of associations between change in volumes and changes in verbal learning and memory showed that greater declines in verbal memory were associated with greater volume loss in cerebellum white matter, and preserved GM volume in cerebellum vermis lobules VI-VII. The association between decline in verbal memory and decline in cerebellar WM volume remained after adjustment for HC, cuneus, and PoCG volume. Our findings highlight that associations between cerebellum volume and verbal learning and memory are age-dependent and regionally specific.
Collapse
Affiliation(s)
- C'iana P Cooper
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Andrea T Shafer
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Nicole M Armstrong
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland; Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, Providence, Rhode Island
| | - Yang An
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Guray Erus
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christos Davatzikos
- Section of Biomedical Image Analysis, Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luigi Ferrucci
- Translational Gerontology Branch, Longitudinal Studies Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Peter R Rapp
- Neurocognitive Aging Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland
| | - Susan M Resnick
- Brain Aging and Behavior Section, Laboratory of Behavioral Neuroscience, National Institute on Aging, Baltimore, Maryland.
| |
Collapse
|
5
|
Kokubun K, Nemoto K, Yamakawa Y. Brain conditions mediate the association between aging and happiness. Sci Rep 2022; 12:4290. [PMID: 35277535 PMCID: PMC8915763 DOI: 10.1038/s41598-022-07748-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Accepted: 02/21/2022] [Indexed: 11/09/2022] Open
Abstract
As the population ages, the realization of a long and happy life is becoming an increasingly important issue in many societies. Therefore, it is important to clarify how happiness and the brain change with aging. In this study, which was conducted with 417 healthy adults in Japan, the analysis showed that fractional anisotropy (FA) correlated with happiness, especially in the internal capsule, corona radiata, posterior thalamic radiation, cingulum, and superior longitudinal fasciculus. According to previous neuroscience studies, these regions are involved in emotional regulation. In psychological studies, emotional regulation has been associated with improvement in happiness. Therefore, this study is the first to show that FA mediates the relationship between age and subjective happiness in a way that bridges these different fields.
Collapse
Affiliation(s)
- Keisuke Kokubun
- Open Innovation Institute, Kyoto University, Kyoto, Japan. .,Smart-Aging Research Center, Tohoku University, Sendai, Japan.
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yoshinori Yamakawa
- Open Innovation Institute, Kyoto University, Kyoto, Japan.,ImPACT Program of Council for Science, Technology and Innovation (Cabinet Office, Government of Japan), Chiyoda, Tokyo, Japan.,Institute of Innovative Research, Tokyo Institute of Technology, Meguro, Tokyo, Japan.,Office for Academic and Industrial Innovation, Kobe University, Kobe, Japan.,Brain Impact, Kyoto, Japan
| |
Collapse
|