1
|
Bianco KM, Fuelscher I, Lum JAG, Singh M, Barhoun P, Silk TJ, Caeyenberghs K, Williams J, Enticott PG, Mukherjee M, Kumar G, Waugh J, Hyde C. Procedural learning is associated with microstructure of basal ganglia-cerebellar circuitry in children. Brain Cogn 2024; 180:106204. [PMID: 39053201 DOI: 10.1016/j.bandc.2024.106204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
In adults, individual differences in procedural learning (PL) are associated with white matter organization within the basal ganglia-cerebellar circuit. However, no research has examined whether this circuitry is related to individual differences in PL during childhood. Here, 28 children (Mage = 10.00 ± 2.31, 10 female) completed the serial reaction time (SRT) task to measure PL, and underwent structural magnetic resonance imaging (MRI). Fixel-Based Analysis was performed to extract specific measures of white matter fiber density (FD) and fiber cross-section (FC) from the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), which underlie the fronto-basal ganglia-cerebellar system. These fixel metrics were correlated with the 'rebound effect' from the SRT task - a measure of PL proficiency which compares reaction times associated with generating a sequence, to random trials. While no significant associations were observed at the fixel level, a significant positive association was observed between average FD in the right SCP and the rebound effect, with a similar trend observed in the left SCP. No significant effects were detected in the STPMT. Our results indicate that, like in adults, microstructure of the basal ganglia-cerebellar circuit may explain individual differences in childhood PL.
Collapse
Affiliation(s)
- Kaila M Bianco
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia.
| | - Ian Fuelscher
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jarrad A G Lum
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mervyn Singh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Pamela Barhoun
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Timothy J Silk
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia; Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jacqueline Williams
- Institute for Health and Sport, College of Sport and Exercise Science, Victoria University, Melbourne, Australia
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Mugdha Mukherjee
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Gayatri Kumar
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Jessica Waugh
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| | - Christian Hyde
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, Australia
| |
Collapse
|
2
|
Individual differences in procedural learning are associated with fiber specific white matter microstructure of the superior cerebellar peduncles in healthy adults. Cortex 2023; 161:1-12. [PMID: 36871479 DOI: 10.1016/j.cortex.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 11/13/2022] [Accepted: 01/10/2023] [Indexed: 02/18/2023]
Abstract
Functional neuroimaging has consistently implicated the fronto-basal ganglia-cerebellar circuit in procedural learning-defined as the incidental acquisition of sequence information through repetition. Limited work has probed the role of white matter fiber pathways that connect the regions in this network, such as the superior cerebellar peduncles (SCP) and the striatal premotor tracts (STPMT), in explaining individual differences in procedural learning. High angular diffusion weighted imaging was acquired from 20 healthy adults aged 18-45 years. Fixel-based analysis was performed to extract specific measures of white matter microstructure (fiber density; FD) and macrostructure (fiber cross-section; FC), from the SCP and STPMT. These fixel metrics were correlated with performance on the serial reaction time (SRT) task, and sensitivity to the sequence was indexed by the difference in reaction time between the final block of sequence trials and the randomized block (namely, the 'rebound effect'). Analyses revealed a significant positive relationship between FD and the rebound effect in segments of both the left and right SCP (pFWE < .05). That is, increased FD in these tracts was associated with greater sensitivity to the sequence on the SRT task. No significant associations were detected between fixel metrics in the STPMT and the rebound effect. Our results support the likely role of white matter organization in the basal ganglia-cerebellar circuit in explaining individual differences in procedural learning.
Collapse
|
3
|
Ma Q, Pu M, Haihambo N, Baetens K, Heleven E, Deroost N, Baeken C, Van Overwalle F. Effective cerebello-cerebral connectivity during implicit and explicit social belief sequence learning using dynamic causal modeling. Soc Cogn Affect Neurosci 2023; 18:6633246. [PMID: 35796503 PMCID: PMC9951265 DOI: 10.1093/scan/nsac044] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/14/2022] [Accepted: 07/06/2022] [Indexed: 11/14/2022] Open
Abstract
To study social sequence learning, earlier functional magnetic resonance imaging (fMRI) studies investigated the neural correlates of a novel Belief Serial Reaction Time task in which participants learned sequences of beliefs held by protagonists. The results demonstrated the involvement of the mentalizing network in the posterior cerebellum and cerebral areas (e.g. temporoparietal junction, precuneus and temporal pole) during implicit and explicit social sequence learning. However, little is known about the neural functional interaction between these areas during this task. Dynamic causal modeling analyses for both implicit and explicit belief sequence learning revealed that the posterior cerebellar Crus I & II were effectively connected to cerebral mentalizing areas, especially the bilateral temporoparietal junction, via closed loops (i.e. bidirectional functional connections that initiate and terminate at the same cerebellar and cerebral areas). There were more closed loops during implicit than explicit learning, which may indicate that the posterior cerebellum may be more involved in implicitly learning sequential social information. Our analysis supports the general view that the posterior cerebellum receives incoming signals from critical mentalizing areas in the cerebrum to identify sequences of social actions and then sends signals back to the same cortical mentalizing areas to better prepare for others' social actions and one's responses to it.
Collapse
Affiliation(s)
- Qianying Ma
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Min Pu
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Naem Haihambo
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Kris Baetens
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Elien Heleven
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Natacha Deroost
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Chris Baeken
- Faculty of Medicine and Health Sciences, Department of Head and Skin, Ghent Experimental Psychiatry (GHEP) Lab, Ghent Experimental, Ghent University, Ghent 9000, Belgium.,Department of Psychiatry, University Hospital (UZBrussel), Brussels 1090, Belgium.,Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven 5600, The Netherlands
| | - Frank Van Overwalle
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Brussels 1050, Belgium
| |
Collapse
|
4
|
Siciliano L, Olivito G, Lupo M, Urbini N, Gragnani A, Saettoni M, Delle Chiaie R, Leggio M. The role of the cerebellum in sequencing and predicting social and non-social events in patients with bipolar disorder. Front Cell Neurosci 2023; 17:1095157. [PMID: 36874211 PMCID: PMC9974833 DOI: 10.3389/fncel.2023.1095157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/31/2023] [Indexed: 02/17/2023] Open
Abstract
Introduction Advances in the operational mode of the cerebellum indicate a role in sequencing and predicting non-social and social events, crucial for individuals to optimize high-order functions, such as Theory of Mind (ToM). ToM deficits have been described in patients with remitted bipolar disorders (BD). The literature on BD patients' pathophysiology reports cerebellar alterations; however, sequential abilities have never been investigated and no study has previously focused on prediction abilities, which are needed to properly interpret events and to adapt to changes. Methods To address this gap, we compared the performance of BD patients in the euthymic phase with healthy controls using two tests that require predictive processing: a ToM test that require implicit sequential processing and a test that explicitly assesses sequential abilities in non-ToM functions. Additionally, patterns of cerebellar gray matter (GM) alterations were compared between BD patients and controls using voxel-based morphometry. Results Impaired ToM and sequential skills were detected in BD patients, specifically when tasks required a greater predictive load. Behavioral performances might be consistent with patterns of GM reduction in cerebellar lobules Crus I-II, which are involved in advanced human functions. Discussion These results highlight the importance of deepening the cerebellar role in sequential and prediction abilities in patients with BD.
Collapse
Affiliation(s)
- Libera Siciliano
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Giusy Olivito
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Michela Lupo
- Servizio di Tutela della Salute Mentale e Riabilitazione dell'Età Evolutiva ASL, Rome, Italy
| | - Nicole Urbini
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Andrea Gragnani
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Associazione Psicologia Cognitiva (APC)/Scuola di Psicoterapia Cognitiva (SPC), Rome, Italy
| | - Marco Saettoni
- Scuola di Psicoterapia Cognitiva SPC, Grosseto, Italy.,Unità Funzionale Salute Mentale Adulti ASL Toscana Nord-Ovest Valle del Serchio, Pisa, Italy
| | - Roberto Delle Chiaie
- Department of Neuroscience and Mental Health-Policlinico Umberto I Hospital, Sapienza University of Rome, Rome, Italy
| | - Maria Leggio
- Department of Psychology, Sapienza University of Rome, Rome, Italy.,Ataxia Laboratory, Fondazione Santa Lucia IRCCS, Rome, Italy
| |
Collapse
|
5
|
Manto M. The underpinnings of cerebellar ataxias. Clin Neurophysiol Pract 2022; 7:372-387. [PMID: 36504687 PMCID: PMC9731828 DOI: 10.1016/j.cnp.2022.11.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 10/07/2022] [Accepted: 11/06/2022] [Indexed: 11/18/2022] Open
Abstract
The human cerebellum contains more than 60% of all neurons of the brain. Anatomically, the cerebellum is divided into 10 lobules (I-X). The cerebellar cortex is arranged into three layers: the molecular layer (external), the Purkinje cell layer and the granular layer (internal). Purkinje neurons and interneurons are inhibitory, except for granule cells. The layer of Purkinje neurons inhibit cerebellar nuclei, the sole output of the cerebellar circuitry, as well as vestibular nuclei. The cerebellum is arranged into a series of olivo-cortico-nuclear modules arranged longitudinally in the rostro-caudal plane. The cerebro-cerebellar connectivity is organized into multiple loops running in parallel. From the clinical standpoint, it is now considered that cerebellar symptoms can be gathered into 3 cerebellar syndromes: a cerebellar motor syndrome (CMS), a vestibulocerebellar syndrome (VCS) and a cerebellar cognitive affective syndrome/Schmahmann syndrome (CCAS/SS). CMS remains a cornerstone of modern clinical ataxiology, and relevant lesions involve lobules I-V, VI and VIII. The core feature of cerebellar symptoms is dysmetria, covering motor dysmetria (errors in the metrics of motion) and dysmetria of thought. The cerebellar circuitry plays a key-role in the generation and maintenance of internal models which correspond to neural representations reproducing the dynamic properties of the body. These models allow predictive computations for motor, cognitive, social, and affective operations. Cerebellar circuitry is endowed with noticeable plasticity properties.
Collapse
|
6
|
Cherif A, Zenzeri J, Loram I. What is the contribution of voluntary and reflex processes to sensorimotor control of balance? Front Bioeng Biotechnol 2022; 10:973716. [PMID: 36246368 PMCID: PMC9557221 DOI: 10.3389/fbioe.2022.973716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/18/2022] [Indexed: 11/24/2022] Open
Abstract
The contribution to balance of spinal and transcortical processes including the long-latency reflex is well known. The control of balance has been modelled previously as a continuous, state feedback controller representing, long-latency reflexes. However, the contribution of slower, variable delay processes has not been quantified. Compared with fixed delay processes (spinal, transcortical), we hypothesize that variable delay processes provide the largest contribution to balance and are sensitive to historical context as well as current states. Twenty-two healthy participants used a myoelectric control signal from their leg muscles to maintain balance of their own body while strapped to an actuated, inverted pendulum. We study the myoelectric control signal (u) in relation to the independent disturbance (d) comprising paired, discrete perturbations of varying inter-stimulus-interval (ISI). We fit the closed loop response, u from d, using one linear and two non-linear non-parametric (many parameter) models. Model M1 (ARX) is a generalized, high-order linear-time-invariant (LTI) process with fixed delay. Model M1 is equivalent to any parametric, closed-loop, continuous, linear-time-invariant (LTI), state feedback model. Model M2, a single non-linear process (fixed delay, time-varying amplitude), adds an optimized response amplitude to each stimulus. Model M3, two non-linear processes (one fixed delay, one variable delay, each of time-varying amplitude), add a second process of optimized delay and optimized response amplitude to each stimulus. At short ISI, the myoelectric control signals deviated systematically both from the fixed delay LTI process (M1), and also from the fixed delay, time-varying amplitude process (M2) and not from the two-process model (M3). Analysis of M3 (all fixed delay and variable delay response amplitudes) showed the variable (compared with fixed) delay process 1) made the largest contribution to the response, 2) exhibited refractoriness (increased delay related to short ISI) and 3) was sensitive to stimulus history (stimulus direction 2 relative to stimulus 1). For this whole-body balance task and for these impulsive stimuli, non-linear processes at variable delay are central to control of balance. Compared with fixed delay processes (spinal, transcortical), variable delay processes provided the largest contribution to balance and were sensitive to historical context as well as current states.
Collapse
Affiliation(s)
- Amel Cherif
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
- *Correspondence: Amel Cherif, ; Ian Loram,
| | - Jacopo Zenzeri
- Department of Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Ian Loram
- Cognitive Motor Function Research Group, Research Centre for Musculoskeletal Science & Sports Medicine, Dept of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, Manchester, United Kingdom
- *Correspondence: Amel Cherif, ; Ian Loram,
| |
Collapse
|
7
|
Marvel CL, Chen L, Joyce MR, Morgan OP, Iannuzzelli KG, LaConte SM, Lisinski JM, Rosenthal LS, Li X. Quantitative susceptibility mapping of basal ganglia iron is associated with cognitive and motor functions that distinguish spinocerebellar ataxia type 6 and type 3. Front Neurosci 2022; 16:919765. [PMID: 36061587 PMCID: PMC9433989 DOI: 10.3389/fnins.2022.919765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 07/26/2022] [Indexed: 11/13/2022] Open
Abstract
Background In spinocerebellar ataxia type 3 (SCA3), volume loss has been reported in the basal ganglia, an iron-rich brain region, but iron content has not been examined. Recent studies have reported that patients with SCA6 have markedly decreased iron content in the cerebellar dentate, coupled with severe volume loss. Changing brain iron levels can disrupt cognitive and motor functions, yet this has not been examined in the SCAs, a disease in which iron-rich regions are affected. Methods In the present study, we used quantitative susceptibility mapping (QSM) to measure tissue magnetic susceptibility (indicating iron concentration), structural volume, and normalized susceptibility mass (indicating iron content) in the cerebellar dentate and basal ganglia in people with SCA3 (n = 10) and SCA6 (n = 6) and healthy controls (n = 9). Data were acquired using a 7T Philips MRI scanner. Supplemental measures assessed motor, cognitive, and mood domains. Results Putamen volume was lower in both SCA groups relative to controls, replicating prior findings. Dentate susceptibility mass and volume in SCA6 was lower than in SCA3 or controls, also replicating prior findings. The novel finding was that higher basal ganglia susceptibility mass in SCA6 correlated with lower cognitive performance and greater motor impairment, an association that was not observed in SCA3. Cerebellar dentate susceptibility mass, however, had the opposite relationship with cognition and motor function in SCA6, suggesting that, as dentate iron is depleted, it relocated to the basal ganglia, which contributed to cognitive and motor decline. By contrast, basal ganglia volume loss, rather than iron content, appeared to drive changes in motor function in SCA3. Conclusion The associations of higher basal ganglia iron with lower motor and cognitive function in SCA6 but not in SCA3 suggest the potential for using brain iron deposition profiles beyond the cerebellar dentate to assess disease states within the cerebellar ataxias. Moreover, the role of the basal ganglia deserves greater attention as a contributor to pathologic and phenotypic changes associated with SCA.
Collapse
Affiliation(s)
- Cherie L. Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Lin Chen
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Michelle R. Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Owen P. Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Katherine G. Iannuzzelli
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Stephen M. LaConte
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
- Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Jonathan M. Lisinski
- Fralin Biomedical Research Institute at VTC, Virginia Tech, Roanoke, VA, United States
| | - Liana S. Rosenthal
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Xu Li
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, United States
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Quality of Life Changes Following the Onset of Cerebellar Ataxia: Symptoms and Concerns Self-reported by Ataxia Patients and Informants. CEREBELLUM (LONDON, ENGLAND) 2022; 21:592-605. [PMID: 35334077 DOI: 10.1007/s12311-022-01393-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/07/2022] [Indexed: 12/29/2022]
Abstract
Semi-structured interviews of patient accounts and caregiver, or informant, perspectives are a beneficial resource for patients suffering from diseases with complex symptomatology, such as cerebellar ataxia. The aim of this study was to identify, quantify, and compare the ways in which cerebellar ataxia patients' and informants' quality of life had changed as a result of living with ataxia. Using a semi-structured interview, responses were collected from patients and informants regarding motor, cognitive, and psychosocial variables. Responses were also collected from patients and informants to open-ended questions that were subsequently categorized into 15 quality of life themes that best represented changes experienced by the patients and informants. Ataxia patients and informants agreed as to the severity of posture/gait, daily activities/fine motor tasks, speech/feeding/swallowing, and oculomotor/vision impairment. It was also demonstrated that severity ratings for specific motor-related functions strongly correlated with corresponding functions within the International Cooperative Ataxia Rating Scale (ICARS), and that this interview identified frequency associations between motor impairments and specific psychosocial difficulties, which could be useful for prognostic purposes. Overall, the information obtained from this study characterized the symptoms and challenges to ataxia patients and their caregivers, which could serve as a useful educational resource for those affected by ataxia, clinicians, and researchers.
Collapse
|
9
|
Ma Q, Pu M, Haihambo NP, Baetens K, Heleven E, Deroost N, Baeken C, Van Overwalle F. The posterior cerebellum and temporoparietal junction support explicit learning of social belief sequences. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2022; 22:467-491. [PMID: 34811709 DOI: 10.3758/s13415-021-00966-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
This study tests the hypothesis that the posterior cerebellum is involved in social cognition by identifying and automatizing sequences of social actions. We applied a belief serial reaction time task (Belief SRT task), which requires mentalizing about two protagonists' beliefs about how many flowers they receive. The protagonists' beliefs could either be true or false depending on their orientation (true belief: oriented towards and directly observing the flowers; or false belief: oriented away and knowing only prior information about flowers). A Control SRT task was created by replacing protagonists and their beliefs with shapes and colors. Participants were explicitly told that there was a standard sequence related to the two protagonists' belief orientations (Belief SRT task) or the shapes' colors (Control SRT task). Both tasks included a Training phase where the standard sequence was repeated and a Test phase where this standard sequence was interrupted by random sequences. As hypothesized, compared with the Control SRT task, the Belief SRT task recruited the posterior cerebellar Crus II and the temporoparietal junction (TPJ) more. Faster response times were correlated with less Crus II activation and with more TPJ activation, suggesting that the Crus II supported automatizing the belief sequence while the TPJ supported inferring the protagonists' beliefs. Also as hypothesized, compared with an implicit version of the Belief SRT task (i.e., participants did not know about the existence of sequences; Ma, Pu, et al., 2021b), the cerebellar Crus I &II was engaged less during initial training and automatic application of the sequence, and the cortical TPJ was activated more in processing random sequences.
Collapse
Affiliation(s)
- Qianying Ma
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| | - Min Pu
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Naem P Haihambo
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Kris Baetens
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Elien Heleven
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Natacha Deroost
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium
| | - Chris Baeken
- Department of Head and Skin, Faculty of Medicine and Health Sciences, Ghent Experimental, Ghent, Belgium
- Psychiatry (GHEP) Laboratory, Ghent University, Ghent, Belgium
- Department of Psychiatry, University Hospital (UZBrussel), Brussels, Belgium
- Department of Electrical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - Frank Van Overwalle
- Department of Psychology, Center for Neuroscience, Vrije Universiteit Brussel, Pleinlaan 2, B -, 1050, Brussels, Belgium.
| |
Collapse
|
10
|
Li H, Yuan Q, Luo YJ, Tao W. A new perspective for understanding the contributions of the cerebellum to reading: The cerebro-cerebellar mapping hypothesis. Neuropsychologia 2022; 170:108231. [DOI: 10.1016/j.neuropsychologia.2022.108231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/07/2023]
|
11
|
Monick AJ, Joyce MR, Chugh N, Creighton JA, Morgan OP, Strain EC, Marvel CL. Characterization of basal ganglia volume changes in the context of HIV and polysubstance use. Sci Rep 2022; 12:4357. [PMID: 35288604 PMCID: PMC8921181 DOI: 10.1038/s41598-022-08364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 03/04/2022] [Indexed: 11/10/2022] Open
Abstract
HIV and psychoactive substances can impact the integrity of the basal ganglia (BG), a neural substrate of cognition, motor control, and reward-seeking behaviors. This study assessed BG gray matter (GM) volume as a function of polysubstance (stimulant and opioid) use and HIV status. We hypothesized that comorbid polysubstance use and HIV seropositivity would alter BG GM volume differently than would polysubstance use or HIV status alone. We collected structural MRI scans, substance use history, and HIV diagnoses. Participants who had HIV (HIV +), a history of polysubstance dependence (POLY +), both, or neither completed assessments for cognition, motor function, and risk-taking behaviors (N = 93). All three clinical groups showed a left-lateralized pattern of GM reduction in the BG relative to controls. However, in the HIV + /POLY + group, stimulant use was associated with increased GM volume within the globus pallidus and putamen. This surpassed the effects from opioid use, as indicated by decreased GM volume throughout the BG in the HIV-/POLY + group. Motor learning was impaired in all three clinical groups, and in the HIV + /POLY + group, motor learning was associated with increased caudate and putamen GM volume. We also observed associations between BG GM volume and risk-taking behaviors in the HIV + /POLY- and HIV-/POLY + groups. The effects of substance use on the BG differed as a function of substance type used, HIV seropositivity, and BG subregion. Although BG volume decreased in association with HIV and opioid use, stimulants can, inversely, lead to BG volume increases within the context of HIV.
Collapse
Affiliation(s)
- Andrew J Monick
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - Michelle R Joyce
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Natasha Chugh
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Jason A Creighton
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
| | - Owen P Morgan
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA
- Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| | - Eric C Strain
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Cherie L Marvel
- Department of Neurology, Johns Hopkins University School of Medicine, 1620 McElderry St., Reed Hall W102A, Baltimore, MD, 21205, USA.
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Critically appraised paper: Implicit motor learning is not superior to explicit motor learning for improving gait speed in chronic stroke [commentary]. J Physiother 2021; 67:311. [PMID: 34535414 DOI: 10.1016/j.jphys.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/21/2022] Open
|