1
|
Öz G, Cocozza S, Henry PG, Lenglet C, Deistung A, Faber J, Schwarz AJ, Timmann D, Van Dijk KRA, Harding IH. MR Imaging in Ataxias: Consensus Recommendations by the Ataxia Global Initiative Working Group on MRI Biomarkers. CEREBELLUM (LONDON, ENGLAND) 2024; 23:931-945. [PMID: 37280482 PMCID: PMC11102392 DOI: 10.1007/s12311-023-01572-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 05/18/2023] [Indexed: 06/08/2023]
Abstract
With many viable strategies in the therapeutic pipeline, upcoming clinical trials in hereditary and sporadic degenerative ataxias will benefit from non-invasive MRI biomarkers for patient stratification and the evaluation of therapies. The MRI Biomarkers Working Group of the Ataxia Global Initiative therefore devised guidelines to facilitate harmonized MRI data acquisition in clinical research and trials in ataxias. Recommendations are provided for a basic structural MRI protocol that can be used for clinical care and for an advanced multi-modal MRI protocol relevant for research and trial settings. The advanced protocol consists of modalities with demonstrated utility for tracking brain changes in degenerative ataxias and includes structural MRI, magnetic resonance spectroscopy, diffusion MRI, quantitative susceptibility mapping, and resting-state functional MRI. Acceptable ranges of acquisition parameters are provided to accommodate diverse scanner hardware in research and clinical contexts while maintaining a minimum standard of data quality. Important technical considerations in setting up an advanced multi-modal protocol are outlined, including the order of pulse sequences, and example software packages commonly used for data analysis are provided. Outcome measures most relevant for ataxias are highlighted with use cases from recent ataxia literature. Finally, to facilitate access to the recommendations by the ataxia clinical and research community, examples of datasets collected with the recommended parameters are provided and platform-specific protocols are shared via the Open Science Framework.
Collapse
Affiliation(s)
- Gülin Öz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA.
| | - Sirio Cocozza
- UNINA Department of Advanced Biomedical Sciences, University of Naples Federico II , Naples, Italy
| | - Pierre-Gilles Henry
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, 2021 Sixth Street Southeast, Minneapolis, MN, 55455, USA
| | - Andreas Deistung
- Department for Radiation Medicine, University Clinic and Outpatient Clinic for Radiology, University Hospital Halle (Saale), Halle (Saale), Germany
| | - Jennifer Faber
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | | | - Dagmar Timmann
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), Essen University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Koene R A Van Dijk
- Digital Sciences and Translational Imaging, Early Clinical Development, Pfizer, Inc., Cambridge, MA, USA
| | - Ian H Harding
- Department of Neuroscience, Central Clinical School, Monash University, Melbourne, Australia
- Monash Biomedical Imaging, Monash University, Melbourne, Australia
| |
Collapse
|
2
|
Ii Y, Ishikawa H, Nishigaki A, Utsunomiya T, Nakamura N, Hirata Y, Matsuyama H, Kajikawa H, Matsuura K, Matsuda K, Shinohara M, Kishi S, Kogue R, Umino M, Maeda M, Tomimoto H, Shindo A. Superficial small cerebellar infarcts in cerebral amyloid angiopathy on 3 T MRI: A preliminary study. J Neurol Sci 2024; 459:122975. [PMID: 38527411 DOI: 10.1016/j.jns.2024.122975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
BACKGROUND Strictly superficial cerebellar microbleeds and cerebellar superficial siderosis have been considered markers of advanced cerebral amyloid angiopathy (CAA), but there are few studies on cerebellar ischemic lesions in CAA. We investigated the presence of superficial small cerebellar infarct (SCI) ≤15 mm and its relation to magnetic resonance imaging (MRI) markers in patients with probable CAA. METHODS Eighty patients with probable CAA were retrospectively evaluated. The presence of superficial SCIs was examined, along with cerebellar microbleeds and cerebellar superficial siderosis, using 3-T MRI. Lobar cerebral microbleeds, cortical superficial siderosis (cSS), enlargement of the perivascular space in the centrum semiovale, and white matter hyperintensity were assessed and the total CAA-small vessel disease (SVD) score was calculated. RESULTS Nine of the 80 patients (11.3%) had a total of 16 superficial SCIs. By tentatively defining SCI <4 mm as cerebellar microinfarcts, 8 out of 16 (50%) superficial SCIs corresponded to cerebellar microinfarcts. The total CAA-SVD score was significantly higher in patients with superficial SCIs (p = 0.01). The prevalence of cSS (p = 0.018), cortical cerebral microinfarct (p = 0.034), and superficial cerebellar microbleeds (p = 0.006) was significantly higher in patients with superficial SCIs. The number of superficial cerebellar microbleeds was also significantly higher in patients with superficial SCIs (p = 0.001). CONCLUSIONS Our results suggest that in patients with CAA, superficial SCIs (including microinfarcts) on MRI may indicate more severe, advanced-stage CAA. These preliminary findings should be verified by larger prospective studies in the future.
Collapse
Affiliation(s)
- Yuichiro Ii
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan; Department of Neuroimaging and Pathophysiology, Mie University School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan.
| | - Hidehiro Ishikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akisato Nishigaki
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Takaya Utsunomiya
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Naoko Nakamura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Yoshinori Hirata
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hirofumi Matsuyama
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hiroyuki Kajikawa
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Keita Matsuura
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Kana Matsuda
- Department of Dementia Prevention and Therapeutics, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| | - Masaki Shinohara
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Seiya Kishi
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Ryota Kogue
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Maki Umino
- Department of Radiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Masayuki Maeda
- Department of Neuroradiology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Hidekazu Tomimoto
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| | - Akihiro Shindo
- Department of Neurology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie 514-8507, Japan
| |
Collapse
|
3
|
Lyu W, Wu Y, Huynh KM, Ahmad S, Yap PT. A multimodal submillimeter MRI atlas of the human cerebellum. Sci Rep 2024; 14:5622. [PMID: 38453991 PMCID: PMC10920891 DOI: 10.1038/s41598-024-55412-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/23/2024] [Indexed: 03/09/2024] Open
Abstract
The human cerebellum is engaged in a broad array of tasks related to motor coordination, cognition, language, attention, memory, and emotional regulation. A detailed cerebellar atlas can facilitate the investigation of the structural and functional organization of the cerebellum. However, existing cerebellar atlases are typically limited to a single imaging modality with insufficient characterization of tissue properties. Here, we introduce a multifaceted cerebellar atlas based on high-resolution multimodal MRI, facilitating the understanding of the neurodevelopment and neurodegeneration of the cerebellum based on cortical morphology, tissue microstructure, and intra-cerebellar and cerebello-cerebral connectivity.
Collapse
Affiliation(s)
- Wenjiao Lyu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Ye Wu
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Khoi Minh Huynh
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Sahar Ahmad
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA
| | - Pew-Thian Yap
- Department of Radiology, University of North Carolina, Chapel Hill, NC, USA.
- Biomedical Research Imaging Center, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Heuer K, Traut N, de Sousa AA, Valk SL, Clavel J, Toro R. Diversity and evolution of cerebellar folding in mammals. eLife 2023; 12:e85907. [PMID: 37737580 PMCID: PMC10617990 DOI: 10.7554/elife.85907] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 09/22/2023] [Indexed: 09/23/2023] Open
Abstract
The process of brain folding is thought to play an important role in the development and organisation of the cerebrum and the cerebellum. The study of cerebellar folding is challenging due to the small size and abundance of its folia. In consequence, little is known about its anatomical diversity and evolution. We constituted an open collection of histological data from 56 mammalian species and manually segmented the cerebrum and the cerebellum. We developed methods to measure the geometry of cerebellar folia and to estimate the thickness of the molecular layer. We used phylogenetic comparative methods to study the diversity and evolution of cerebellar folding and its relationship with the anatomy of the cerebrum. Our results show that the evolution of cerebellar and cerebral anatomy follows a stabilising selection process. We observed two groups of phenotypes changing concertedly through evolution: a group of 'diverse' phenotypes - varying over several orders of magnitude together with body size, and a group of 'stable' phenotypes varying over less than 1 order of magnitude across species. Our analyses confirmed the strong correlation between cerebral and cerebellar volumes across species, and showed in addition that large cerebella are disproportionately more folded than smaller ones. Compared with the extreme variations in cerebellar surface area, folial anatomy and molecular layer thickness varied only slightly, showing a much smaller increase in the larger cerebella. We discuss how these findings could provide new insights into the diversity and evolution of cerebellar folding, the mechanisms of cerebellar and cerebral folding, and their potential influence on the organisation of the brain across species.
Collapse
Affiliation(s)
- Katja Heuer
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et ThéoriqueParisFrance
| | - Nicolas Traut
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et ThéoriqueParisFrance
| | | | - Sofie Louise Valk
- Otto Hahn Group Cognitive Neurogenetics, Max Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
- Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, FZ JülichJülichGermany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University DüsseldorfDüsseldorfGermany
| | - Julien Clavel
- Université Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNAVilleurbanneFrance
| | - Roberto Toro
- Institut Pasteur, Université Paris Cité, Unité de Neuroanatomie Appliquée et ThéoriqueParisFrance
| |
Collapse
|
5
|
Ciapponi C, Li Y, Osorio Becerra DA, Rodarie D, Casellato C, Mapelli L, D’Angelo E. Variations on the theme: focus on cerebellum and emotional processing. Front Syst Neurosci 2023; 17:1185752. [PMID: 37234065 PMCID: PMC10206087 DOI: 10.3389/fnsys.2023.1185752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 04/18/2023] [Indexed: 05/27/2023] Open
Abstract
The cerebellum operates exploiting a complex modular organization and a unified computational algorithm adapted to different behavioral contexts. Recent observations suggest that the cerebellum is involved not just in motor but also in emotional and cognitive processing. It is therefore critical to identify the specific regional connectivity and microcircuit properties of the emotional cerebellum. Recent studies are highlighting the differential regional localization of genes, molecules, and synaptic mechanisms and microcircuit wiring. However, the impact of these regional differences is not fully understood and will require experimental investigation and computational modeling. This review focuses on the cellular and circuit underpinnings of the cerebellar role in emotion. And since emotion involves an integration of cognitive, somatomotor, and autonomic activity, we elaborate on the tradeoff between segregation and distribution of these three main functions in the cerebellum.
Collapse
Affiliation(s)
- Camilla Ciapponi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Yuhe Li
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | | | - Dimitri Rodarie
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Centro Ricerche Enrico Fermi, Rome, Italy
| | - Claudia Casellato
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Egidio D’Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Brain Connectivity Center, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|