1
|
Santamaria F, Roberto M, Buccilli D, Di Civita MA, Giancontieri P, Maltese G, Nicolella F, Torchia A, Scagnoli S, Pisegna S, Barchiesi G, Speranza I, Botticelli A, Santini D. Clinical implications of the Drug-Drug Interaction in Cancer Patients treated with innovative oncological treatments. Crit Rev Oncol Hematol 2024; 200:104405. [PMID: 38838928 DOI: 10.1016/j.critrevonc.2024.104405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
In the last two-decades, innovative drugs have revolutionized cancer treatments, demonstrating a significant improvement in overall survival. These drugs may present several pharmacokinetics interactions with non-oncological drugs, and vice versa, and, non-oncological drugs can modify oncological treatment outcome both with pharmacokinetic interaction and with an "off-target impact" on the tumor microenvironment or on the peripheral immune response. It's supposed that the presence of a drug-drug interaction (DDI) is associated with an increased risk of reduced anti-tumor effects or severe toxicities. However, clinical evidence that correlate the DDI presence with outcome are few, and results are difficult to compare because of difference in data collection and heterogeneous population. This review reports all the clinical evidence about DDI to provide an easy-to-use guide for DDI management and dose adjustment in solid tumors treated with inhibitors of the cyclin-dependent kinases CDK4-6, Antibody-drug conjugates, Poly ADPribose polymerase inhibitors, androgen-receptor targeted agents, or immunecheckpoints inhibitors.
Collapse
Affiliation(s)
- Fiorenza Santamaria
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Michela Roberto
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy.
| | - Dorelsa Buccilli
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Mattia Alberto Di Civita
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Paola Giancontieri
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Giulia Maltese
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Francesco Nicolella
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Andrea Torchia
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Clinical and Molecular Medicine, Sapienza University of Rome, Italy
| | - Simone Scagnoli
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Simona Pisegna
- Department of Experimental Medicine, Sapienza University of Rome, Italy; Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Giacomo Barchiesi
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Iolanda Speranza
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy
| | - Andrea Botticelli
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Radiological, Oncological and Pathological Anatomy Sciences, Sapienza University of Rome, Italy
| | - Daniele Santini
- Medical Oncology A, Department of Hematology, Oncology and Dermatology, AOU Policlinico Umberto I, Italy; Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Italy
| |
Collapse
|
2
|
Gao D, Wang G, Wu H, Ren J. Physiologically-based pharmacokinetic modeling for optimal dosage prediction of olaparib when co-administered with CYP3A4 modulators and in patients with hepatic/renal impairment. Sci Rep 2023; 13:16027. [PMID: 37749178 PMCID: PMC10519932 DOI: 10.1038/s41598-023-43258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 09/21/2023] [Indexed: 09/27/2023] Open
Abstract
This study aimed to develop a physiologically-based pharmacokinetic (PBPK) model to predict the maximum plasma concentration (Cmax) and trough concentration (Ctrough) at steady-state of olaparib (OLA) in Caucasian, Japanese and Chinese. Furthermore, the PBPK model was combined with mean and 95% confidence interval to predict optimal dosing regimens of OLA when co-administered with CYP3A4 modulators and administered to patients with hepatic/renal impairment. The dosing regimens were determined based on safety and efficacy PK threshold Cmax (< 12,500 ng/mL) and Ctrough (772-2500 ng/mL). The population PBPK model for OLA was successfully developed and validated, demonstrating good consistency with clinically observed data. The ratios of predicted to observed values for Cmax and Ctrough fell within the range of 0.5 to 2.0. When OLA was co-administered with a strong or moderate CYP3A4 inhibitor, the recommended dosing regimens should be reduced to 100 mg BID and 150 mg BID, respectively. Additionally, the PBPK model also suggested that OLA could be not recommended with a strong or moderate CYP3A4 inducer. For patients with moderate hepatic and renal impairment, the dosing regimens of OLA were recommended to be reduced to 200 mg BID and 150 mg BID, respectively. In cases of severe hepatic and renal impairment, the PBPK model suggested a dosing regimen of 100 mg BID for OLA. Overall, this present PBPK model can determine the optimal dosing regimens for various clinical scenarios involving OLA.
Collapse
Affiliation(s)
- Dongmei Gao
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Guopeng Wang
- Zhongcai Health (Beijing) Biological Technology Development Co., Ltd., Beijing, 101500, China
| | - Honghai Wu
- Department of Clinical Pharmacy, Bethune International Peace Hospital, Shijiazhuang, 050082, China
| | - Jiawei Ren
- North China Electric Power University, No.2, Beinong Road, Huilongguan, Changping District, Beijing, 102206, China.
| |
Collapse
|
3
|
Maiorano BA, Maiorano MFP, Maiello E. Olaparib and advanced ovarian cancer: Summary of the past and looking into the future. Front Pharmacol 2023; 14:1162665. [PMID: 37153769 PMCID: PMC10160416 DOI: 10.3389/fphar.2023.1162665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 04/11/2023] [Indexed: 05/10/2023] Open
Abstract
Ovarian cancer (OC) is women's eighth most common cancer, bearing the highest mortality rates of all female reproductive system malignancies. Poly (ADP-ribose) polymerase inhibitors (PARPis) have reshaped the treatment scenario of metastatic OC as a maintenance post platinum-based chemotherapy. Olaparib is the first PARPi developed for this disease. Results from Study 42, Study 19, SOLO2, OPINION, SOLO1, and PAOLA-1 clinical trials, led to the FDA and EMA approval of olaparib for the maintenance treatment of women with high-grade epithelial ovarian, fallopian tube, or primary peritoneal cancer without platinum progression: in the platinum-sensitive recurrent OC; in the newly diagnosed setting in case Breast Cancer (BRCA) mutations and, in combination with bevacizumab, in case of BRCA mutation or deficiency of homologous recombination genes. In this review, we synthetized olaparib's pharmacokinetic and pharmacodynamic properties and its use in special populations. We summarized the efficacy and safety of the studies leading to the current approvals and discussed the future developments of this agent.
Collapse
Affiliation(s)
- Brigida Anna Maiorano
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
- Department of Translational Medicine and Surgery, Catholic University of the Sacred Heart, Rome, Italy
| | - Mauro Francesco Pio Maiorano
- Division of Obstetrics and Gynecology, Biomedical and Human Oncological Science, University of Bari “Aldo Moro”, Bari, Italy
- *Correspondence: Mauro Francesco Pio Maiorano,
| | - Evaristo Maiello
- Oncology Unit, Foundation Casa Sollievo della Sofferenza IRCCS, San Giovanni Rotondo, Italy
| |
Collapse
|
4
|
Bruin MAC, Sonke GS, Beijnen JH, Huitema ADR. Pharmacokinetics and Pharmacodynamics of PARP Inhibitors in Oncology. Clin Pharmacokinet 2022; 61:1649-1675. [PMID: 36219340 PMCID: PMC9734231 DOI: 10.1007/s40262-022-01167-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2022] [Indexed: 12/15/2022]
Abstract
Olaparib, niraparib, rucaparib, and talazoparib are poly (ADP-ribose) polymerase (PARP) inhibitors approved for the treatment of ovarian, breast, pancreatic, and/or prostate cancer. Poly (ADP-ribose) polymerase inhibitors are potent inhibitors of the PARP enzymes with comparable half-maximal inhibitory concentrations in the nanomolar range. Olaparib and rucaparib are orally dosed twice a day, extensively metabolized by cytochrome P450 enzymes, and inhibitors of several enzymes and drug transporters with a high risk for drug-drug interactions. Niraparib and talazoparib are orally dosed once a day with a lower risk for niraparib and a minimal risk for talazoparib to cause drug-drug interactions. All four PARP inhibitors show moderate-to-high interindividual variability in plasma exposure. Higher exposure is associated with an increase in toxicity, mostly hematological toxicity. For talazoparib, exposure-efficacy relationships have been described, but for olaparib, niraparib, and rucaparib this relationship remains inconclusive. Further studies are required to investigate exposure-response relationships to improve dosing of PARP inhibitors, in which therapeutic drug monitoring could play an important role. In this review, we give an overview of the pharmacokinetic properties of the four PARP inhibitors, including considerations for patients with renal dysfunction or hepatic impairment, the effect of food, and drug-drug interactions. Furthermore, we focus on the pharmacodynamics and summarize the available exposure-efficacy and exposure-toxicity relationships.
Collapse
Affiliation(s)
- Maaike A C Bruin
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| | - Gabe S Sonke
- Department of Medical Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Jos H Beijnen
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Division of Pharmacoepidemiology and Clinical Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Alwin D R Huitema
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute, Antoni van Leeuwenhoek, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
- Department of Pharmacology, Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
- Department of Clinical Pharmacy, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
5
|
Geyer C, Garber J, Gelber R, Yothers G, Taboada M, Ross L, Rastogi P, Cui K, Arahmani A, Aktan G, Armstrong A, Arnedos M, Balmaña J, Bergh J, Bliss J, Delaloge S, Domchek S, Eisen A, Elsafy F, Fein L, Fielding A, Ford J, Friedman S, Gelmon K, Gianni L, Gnant M, Hollingsworth S, Im SA, Jager A, Jóhannsson Ó, Lakhani S, Janni W, Linderholm B, Liu TW, Loman N, Korde L, Loibl S, Lucas P, Marmé F, Martinez de Dueñas E, McConnell R, Phillips KA, Piccart M, Rossi G, Schmutzler R, Senkus E, Shao Z, Sharma P, Singer C, Španić T, Stickeler E, Toi M, Traina T, Viale G, Zoppoli G, Park Y, Yerushalmi R, Yang H, Pang D, Jung K, Mailliez A, Fan Z, Tennevet I, Zhang J, Nagy T, Sonke G, Sun Q, Parton M, Colleoni M, Schmidt M, Brufsky A, Razaq W, Kaufman B, Cameron D, Campbell C, Tutt A. Overall survival in the OlympiA phase III trial of adjuvant olaparib in patients with germline pathogenic variants in BRCA1/2 and high risk, early breast cancer. Ann Oncol 2022; 33:1250-1268. [PMID: 36228963 DOI: 10.1016/j.annonc.2022.09.159] [Citation(s) in RCA: 165] [Impact Index Per Article: 82.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/22/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The randomized, double-blind OlympiA trial compared 1 year of the oral poly(adenosine diphosphate-ribose) polymerase inhibitor, olaparib, to matching placebo as adjuvant therapy for patients with pathogenic or likely pathogenic variants in germline BRCA1 or BRCA2 (gBRCA1/2pv) and high-risk, human epidermal growth factor receptor 2-negative, early breast cancer (EBC). The first pre-specified interim analysis (IA) previously demonstrated statistically significant improvement in invasive disease-free survival (IDFS) and distant disease-free survival (DDFS). The olaparib group had fewer deaths than the placebo group, but the difference did not reach statistical significance for overall survival (OS). We now report the pre-specified second IA of OS with updates of IDFS, DDFS, and safety. PATIENTS AND METHODS One thousand eight hundred and thirty-six patients were randomly assigned to olaparib or placebo following (neo)adjuvant chemotherapy, surgery, and radiation therapy if indicated. Endocrine therapy was given concurrently with study medication for hormone receptor-positive cancers. Statistical significance for OS at this IA required P < 0.015. RESULTS With a median follow-up of 3.5 years, the second IA of OS demonstrated significant improvement in the olaparib group relative to the placebo group [hazard ratio 0.68; 98.5% confidence interval (CI) 0.47-0.97; P = 0.009]. Four-year OS was 89.8% in the olaparib group and 86.4% in the placebo group (Δ 3.4%, 95% CI -0.1% to 6.8%). Four-year IDFS for the olaparib group versus placebo group was 82.7% versus 75.4% (Δ 7.3%, 95% CI 3.0% to 11.5%) and 4-year DDFS was 86.5% versus 79.1% (Δ 7.4%, 95% CI 3.6% to 11.3%), respectively. Subset analyses for OS, IDFS, and DDFS demonstrated benefit across major subgroups. No new safety signals were identified including no new cases of acute myeloid leukemia or myelodysplastic syndrome. CONCLUSION With 3.5 years of median follow-up, OlympiA demonstrates statistically significant improvement in OS with adjuvant olaparib compared with placebo for gBRCA1/2pv-associated EBC and maintained improvements in the previously reported, statistically significant endpoints of IDFS and DDFS with no new safety signals.
Collapse
|
6
|
PARP Inhibitors for Breast Cancer: Germline BRCA1/2 and Beyond. Cancers (Basel) 2022; 14:cancers14174332. [PMID: 36077867 PMCID: PMC9454726 DOI: 10.3390/cancers14174332] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are effective against tumors with mutations in DNA repair genes, most commonly in the BRCA1 and BRCA2 genes. Because these tumors are unable to repair their DNA, PARPi have been used to target DNA repair pathways and are useful in the treatment of breast cancers with some of these alterations. There are two FDA-approved PARPi for patients with breast cancer—olaparib and talazoparib. The data on olaparib and talazoparib in the treatment of breast cancer are summarized in this review, and we also explore potential future applications of PARPi beyond inherited BRCA mutations. Abstract Poly-adenosine diphosphate ribose polymerase (PARP) inhibitors (PARPi) are approved for BRCA1/2 carriers with HER2-negative breast cancer in the adjuvant setting with a high risk of recurrence as well as the metastatic setting. However, the indications for PARPi are broader for patients with other cancer types (e.g., prostate and ovarian cancer), involving additional biomarkers (e.g., ATM, PALB2, and CHEK) and genomic instability scores. Herein, we summarize the data on PARPi and breast cancer and discuss their use beyond BRCA carriers.
Collapse
|
7
|
Maintenance Therapy with Aromatase Inhibitor in epithelial Ovarian Cancer (MATAO): study protocol of a randomized double-blinded placebo-controlled multi-center phase III Trial. BMC Cancer 2022; 22:508. [PMID: 35524184 PMCID: PMC9074273 DOI: 10.1186/s12885-022-09555-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 04/17/2022] [Indexed: 11/24/2022] Open
Abstract
Background A high percentage of epithelial ovarian cancers (EOC) express the estrogen receptor (ER), which is an ideal target for endocrine therapy. Letrozole is a proven, potent aromatase inhibitor, extensively tested and used in the treatment of ER positive breast cancer. In addition, it seems a potent drug for patients with heavily pre-treated OC as demonstrated in several distinctive settings. However, it has never been evaluated prospectively in a maintenance setting for ovarian cancer after standard of care. The here proposed trial aims to define a population of EOC patients, who would benefit from the effectiveness of the generic agent letrozole, with little expected toxicity and thus beneficial impact on overall quality of life (QoL). Methods In this international multicenter randomized, placebo-controlled phase III trial at clinical centers in Switzerland, Germany and Austria, we plan to include 540 patients with primary, newly diagnosed FIGO Stage II to IV and histologically confirmed low- or high-grade serous or endometrioid epithelial ovarian/fallopian tube/peritoneal cancer. Patients are randomized in a 1:1 ratio into two groups: receiving blinded study treatment (letrozole or placebo tablets). When assuming a HR of 0.7, a median PFS of 18 months in the control arm and a median PFS of 25.7 months in the treatment arm, a two-sided alpha level of 5%, 3.5 years recruitment and 1.5 years observation time, we expect 330 events to have occurred within these 5 years in the total cohort yielding a power of 90%. Follow-up data for the whole cohort will be collected for up to 10 years and for the low-grade cancer for up to 12 years. Discussion The here proposed randomized phase III trial aims to identify patients with EOC in the maintenance setting, who benefit from the effectiveness of the letrozole, by proving its efficacy whilst maintaining a high standard of QoL due to the limited toxicity expected in comparison to the current alternative drugs on the market for this treatment phase. Trial registration This trial is registered at clinicaltrials.gov under the identifier NCT04111978. Registered 02 October 2019. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09555-8.
Collapse
|
8
|
Valabrega G, Scotto G, Tuninetti V, Pani A, Scaglione F. Differences in PARP Inhibitors for the Treatment of Ovarian Cancer: Mechanisms of Action, Pharmacology, Safety, and Efficacy. Int J Mol Sci 2021; 22:ijms22084203. [PMID: 33921561 PMCID: PMC8073512 DOI: 10.3390/ijms22084203] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Poly(ADP-ribose) polymerases (PARP) are proteins responsible for DNA damage detection and signal transduction. PARP inhibitors (PARPi) are able to interact with the binding site for PARP cofactor (NAD+) and trapping PARP on the DNA. In this way, they inhibit single-strand DNA damage repair. These drugs have been approved in recent years for the treatment of ovarian cancer. Although they share some similarities, from the point of view of the chemical structure and pharmacodynamic, pharmacokinetic properties, these drugs also have some substantial differences. These differences may underlie the different safety profiles and activity of PARPi.
Collapse
Affiliation(s)
- Giorgio Valabrega
- Department of Oncology, School of Medicine, University of Torino, 10124 Torino, Italy; (G.S.); (V.T.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence: ; Tel.: +39-11-9933-3842
| | - Giulia Scotto
- Department of Oncology, School of Medicine, University of Torino, 10124 Torino, Italy; (G.S.); (V.T.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Valentina Tuninetti
- Department of Oncology, School of Medicine, University of Torino, 10124 Torino, Italy; (G.S.); (V.T.)
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
| | - Arianna Pani
- Department of Oncology and Hemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy; (A.P.); (F.S.)
| | - Francesco Scaglione
- Department of Oncology and Hemato-Oncology, School of Medicine, University of Milan, 20122 Milan, Italy; (A.P.); (F.S.)
| |
Collapse
|
9
|
Baumgart SJ, Nevedomskaya E, Lesche R, Newman R, Mumberg D, Haendler B. Darolutamide antagonizes androgen signaling by blocking enhancer and super-enhancer activation. Mol Oncol 2020; 14:2022-2039. [PMID: 32333502 PMCID: PMC7463324 DOI: 10.1002/1878-0261.12693] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/03/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023] Open
Abstract
Prostate cancer (PCa) is one of the most frequent tumor types in the male Western population. Early-stage PCa and late-stage PCa are dependent on androgen signaling, and inhibitors of the androgen receptor (AR) axis represent the standard therapy. Here, we studied in detail the global impact of darolutamide, a newly approved AR antagonist, on the transcriptome and AR-bound cistrome in two PCa cell models. Darolutamide strongly depleted the AR from gene regulatory regions and abolished AR-driven transcriptional signaling. Enhancer activation was blocked at the chromatin level as evaluated by H3K27 acetylation (H3K27ac), H3K4 monomethylation (H3K4me1), and FOXA1, MED1, and BRD4 binding. We identified genomic regions with high affinities for the AR in androgen-stimulated, but also in androgen-depleted conditions. A similar AR affinity pattern was observed in healthy and PCa tissue samples. High FOXA1, BRD4, H3K27ac, and H3K4me1 levels were found to mark regions showing AR binding in the hormone-depleted setting. Conversely, low FOXA1, BRD4, and H3K27ac levels were observed at regulatory sites that responded strongly to androgen stimulation, and AR interactions at these sites were blocked by darolutamide. Beside marked loss of AR occupancy, FOXA1 recruitment to chromatin was also clearly reduced after darolutamide treatment. We furthermore identified numerous androgen-regulated super-enhancers (SEs) that were associated with hallmark androgen and cell proliferation-associated gene sets. Importantly, these SEs are also active in PCa tissues and sensitive to darolutamide treatment in our models. Our findings demonstrate that darolutamide is a potent AR antagonist blocking genome-wide AR enhancer and SE activation, and downstream transcription. We also show the existence of a dynamic AR cistrome that depends on the androgen levels and on high AR affinity regions present in PCa cell lines and also in tissue samples.
Collapse
Affiliation(s)
| | | | - Ralf Lesche
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Richard Newman
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | - Dominik Mumberg
- Research and Development, PharmaceuticalsBayer AGBerlinGermany
| | | |
Collapse
|
10
|
Nave R. Development of an intravaginal ring delivering simultaneously anastrozole and levonorgestrel: a pharmacokinetic perspective. Drug Deliv 2019; 26:586-594. [PMID: 31174438 PMCID: PMC6567139 DOI: 10.1080/10717544.2019.1622609] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Intravaginal rings (IVRs) are an option for continuous administration of drugs in women. As an attractive approach for the treatment of endometriosis-associated pelvic pain, IVRs delivering a combination of the aromatase inhibitor anastrozole (ATZ) and the progestin levonorgestrel (LNG) have been developed. This article describes the developmental pharmacokinetic (PK) aspects covering the characterization of in vitro release, preclinical IVR PK investigations in monkeys, and clinical PK considerations. An IVR for ATZ has been developed and investigated in healthy menstruating female cynomolgus monkeys showing effective in vivo release. PK data from the size-adapted IVR used in these animals can be translated into a human context as confirmed in human studies where predefined exposure levels of ATZ were reached. As ATZ may cause harm to the fetus, use of effective contraception has to be assured in women of childbearing potential. Therefore, the IVR delivers a low dose of LNG as a contraceptive. Although the daily dose differed strongly between both drugs (20 µg LNG/d to >1 mg ATZ/d), simultaneous delivery of ATZ and LNG in vitro and in vivo was observed with a high correlation between the in vitro release and PK profiles. The PK characteristics successfully guided the design of clinical studies investigating the drug–drug interaction (DDI) potential. No relevant DDI between both the investigated or other vaginally administered drugs were identified.
Collapse
Affiliation(s)
- Rüdiger Nave
- a Translational Medicine , Bayer AG , Berlin , Germany
| |
Collapse
|
11
|
Paluch-Shimon S, Evron E. Targeting DNA repair in breast cancer. Breast 2019; 47:33-42. [DOI: 10.1016/j.breast.2019.06.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 06/22/2019] [Accepted: 06/25/2019] [Indexed: 12/16/2022] Open
|