1
|
Zhang D, Jiang C, Feng Y, Ni Y, Zhang J. Molecular imaging of myocardial necrosis: an updated mini-review. J Drug Target 2020; 28:565-573. [PMID: 32037899 DOI: 10.1080/1061186x.2020.1725769] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Acute myocardial infarction (AMI) remains the most severe and common cardiac emergency among various ischaemic heart diseases. Both unregulated (necrosis) and regulated (apoptosis, autophagy and necroptosis et al.) forms of cell death can occur during AMI. Non-invasive imaging of cardiomyocyte death represents an attractive approach to acquire insights into the pathophysiology of AMI, track the temporal and spatial evolution of MI, guide therapeutic decision-making, evaluate response to therapeutic intervention and predict prognosis. Although several forms of cell death have been identified during AMI, to date, only apoptosis- and necrosis-detecting probes compatible with currently available tomographic imaging modalities have been successfully developed for non-invasive visualisation of cardiomyocyte death. Myocardial apoptosis imaging has gained more attention because of its potential controllability while less attention has been paid to myocardial necrosis imaging. In our opinion, although cardiomyocyte necrosis is unsalvageable, imaging necrosis can play an important role in early diagnosis, risk stratification, prognostic prediction and guidance in therapeutic decision-making of AMI. In this mini-review, we summarise the updated advances achieved by us and others and discuss the challenges in the development of molecular imaging probes for visualisation of myocardial necrosis.
Collapse
Affiliation(s)
- Dongjian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Cuihua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| | - Yuanbo Feng
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Yicheng Ni
- Theragnostic Laboratory, KU Leuven, Leuven, Belgium
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, P.R. China.,Laboratories of Translational Medicine, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing, P.R. China
| |
Collapse
|
2
|
Kociol RD, Cooper LT, Fang JC, Moslehi JJ, Pang PS, Sabe MA, Shah RV, Sims DB, Thiene G, Vardeny O. Recognition and Initial Management of Fulminant Myocarditis: A Scientific Statement From the American Heart Association. Circulation 2020; 141:e69-e92. [PMID: 31902242 DOI: 10.1161/cir.0000000000000745] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Fulminant myocarditis (FM) is an uncommon syndrome characterized by sudden and severe diffuse cardiac inflammation often leading to death resulting from cardiogenic shock, ventricular arrhythmias, or multiorgan system failure. Historically, FM was almost exclusively diagnosed at autopsy. By definition, all patients with FM will need some form of inotropic or mechanical circulatory support to maintain end-organ perfusion until transplantation or recovery. Specific subtypes of FM may respond to immunomodulatory therapy in addition to guideline-directed medical care. Despite the increasing availability of circulatory support, orthotopic heart transplantation, and disease-specific treatments, patients with FM experience significant morbidity and mortality as a result of a delay in diagnosis and initiation of circulatory support and lack of appropriately trained specialists to manage the condition. This scientific statement outlines the resources necessary to manage the spectrum of FM, including extracorporeal life support, percutaneous and durable ventricular assist devices, transplantation capabilities, and specialists in advanced heart failure, cardiothoracic surgery, cardiac pathology, immunology, and infectious disease. Education of frontline providers who are most likely to encounter FM first is essential to increase timely access to appropriately resourced facilities, to prevent multiorgan system failure, and to tailor disease-specific therapy as early as possible in the disease process.
Collapse
|
3
|
Chanana N, Van Dorn CS, Everitt MD, Weng HY, Miller DV, Menon SC. Alteration of Cardiac Deformation in Acute Rejection in Pediatric Heart Transplant Recipients. Pediatr Cardiol 2017; 38:691-699. [PMID: 28161809 DOI: 10.1007/s00246-016-1567-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 12/30/2016] [Indexed: 11/28/2022]
Abstract
The objective of this study is to assess changes in cardiac deformation during acute cellular- and antibody-mediated rejection in pediatric HT recipients. Pediatric HT recipients aged ≤18 years with at least one episode of biopsy-diagnosed rejection from 2006 to 2013 were included. Left ventricular systolic S (SS) and SR (SSr) data were acquired using 2D speckle tracking on echocardiograms obtained within 12 h of right ventricular endomyocardial biopsy. A mixed effect model was used to compare cardiac deformation during CR (Grade ≥ 1R), AMR (pAMR ≥ 2), and mixed rejection (CR and AMR positive) versus no rejection (Grade 0R and pAMR 0 or 1). A total of 20 subjects (10 males, 50%) with 71 rejection events (CR 35, 49%; AMR 21, 30% and mixed 15, 21%) met inclusion criteria. The median time from HT to first biopsy used for analysis was 5 months (IQR 0.25-192 months). Average LV longitudinal SS and SSr were reduced significantly during rejection (SS: -17.2 ± 3.4% vs. -10.7 ± 4.5%, p < 0.001 and SSr: -1.2 ± 0.2 s- 1 vs. -0.9 ± 0.3 s- 1; p < 0.001) and in all rejection types. Average LV short-axis radial SS was reduced only in CR compared to no rejection (p = 0.04), while average LV circumferential SS and SSr were reduced significantly in AMR compared to CR (SS: 18.9 ± 4.2% vs. 20.8 ± 8.8%, p = 0.03 and SSr: 1.35 ± 0.8 s- 1 vs. 1.54 ± 0.9 s- 1; p = 0.03). In pediatric HT recipients, LV longitudinal SS and SSr were reduced in all rejection types, while LV radial SS was reduced only in CR. LV circumferential SS and SSr further differentiated between CR and AMR with a significant reduction seen in AMR as compared to CR. This novel finding suggests mechanistic differences between AMR- and CR-induced myocardial injury which may be useful in non-invasively predicting the type of rejection in pediatric HT recipients.
Collapse
Affiliation(s)
- Nitin Chanana
- Pediatric Cardiology, Children's Heart Center of El Paso, El Paso, TX, USA
| | - Charlotte S Van Dorn
- Division of Critical Care and Pediatric Cardiology, Department of Pediatrics, Mayo Clinic, Rochester, MN, USA
| | - Melanie D Everitt
- Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, Aurora, CO, USA
| | - Hsin Yi Weng
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, 81 N. Mario Capecchi Drive, Salt Lake City, UT, 84113, USA
| | - Dylan V Miller
- Department of Pathology, University of Utah, Salt Lake City, UT, USA
| | - Shaji C Menon
- Division of Pediatric Cardiology, Department of Pediatrics, University of Utah, 81 N. Mario Capecchi Drive, Salt Lake City, UT, 84113, USA.
| |
Collapse
|
4
|
Cathepsin B Imaging to Predict Quality of Engineered Cartilage. Macromol Biosci 2015; 15:1224-32. [DOI: 10.1002/mabi.201500215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 06/19/2015] [Indexed: 01/01/2023]
|
5
|
Benitez E, Sumpio BJ, Chin J, Sumpio BE. Contemporary assessment of foot perfusion in patients with critical limb ischemia. Semin Vasc Surg 2014; 27:3-15. [PMID: 25812754 DOI: 10.1053/j.semvascsurg.2014.12.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Significant progress in limb salvage for patients with peripheral arterial disease and critical limb ischemia has occurred in the past 2 decades. Improved patient outcomes have resulted from increased knowledge and understanding of the disease processes, as well as efforts to improve revascularization techniques and enhance patient care after open and endovascular procedures. An imaging modality that is noninvasive, fast, and safe would be a useful tool for clinicians in assessing lower-extremity perfusion when planning interventions. Among the current and emerging regional perfusion imaging modalities are transcutaneous oxygen monitoring, hyperspectral imaging, indocyanine green dye-based fluorescent angiography, nuclear diagnostic imaging, and laser Doppler. These tests endeavor to delineate regional foot perfusion to guide directed revascularization therapy in patients with critical limb ischemia and foot ulceration.
Collapse
Affiliation(s)
- Erik Benitez
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Brandon J Sumpio
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Jason Chin
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510
| | - Bauer E Sumpio
- Department of Vascular Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510.
| |
Collapse
|
6
|
Iqbal B, Currie G, Greene L, Kiat H. Novel Radiopharmaceuticals in Cardiovascular Medicine: Present and Future. J Med Imaging Radiat Sci 2014; 45:423-434. [DOI: 10.1016/j.jmir.2014.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/03/2014] [Accepted: 09/05/2014] [Indexed: 01/25/2023]
|
7
|
|
8
|
Abstract
Radionuclide cardiac imaging has potential to assess underlying molecular, electrophysiologic, and pathophysiologic processes of cardiac disease. An area of current interest is cardiac autonomic innervation imaging with a radiotracer such as (123)I-meta-iodobenzylguanidine ((123)I-mIBG), a norepinephrine analogue. Cardiac (123)I-mIBG uptake can be assessed by planar and SPECT techniques, involving determination of global uptake by a heart-to-mediastinal ratio, tracer washout between early and delayed images, and focal defects on tomographic images. Cardiac (123)I-mIBG findings have consistently been shown to correlate strongly with heart failure severity, pre-disposition to cardiac arrhythmias, and poor prognosis independent of conventional clinical, laboratory, and image parameters. (123)I-mIBG imaging promises to help monitor a patient's clinical course and response to therapy, showing potential to help select patients for an ICD and other advanced therapies better than current methods. Autonomic imaging also appears to help diagnose ischemic heart disease and identify higher risk, as well as risk-stratify patients with diabetes. Although more investigations in larger populations are needed to strengthen prior findings and influence modifications of clinical guidelines, cardiac (123)I-mIBG imaging shows promise as an emerging technique for recognizing and following potentially life-threatening conditions, as well as improving our understanding of the pathophysiology of various diseases.
Collapse
Affiliation(s)
- Mark I Travin
- Division of Nuclear Medicine, Department of Radiology, Montefiore Medical Center, Albert Einstein College of Medicine, 111 East-210th Street, Bronx, NY 10467-2490, USA.
| |
Collapse
|
9
|
Molecular Targeting of Imaging and Drug Delivery Probes in Atherosclerosis. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2013. [DOI: 10.1016/b978-0-12-417150-3.00008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
10
|
Travin MI, Kamalakkannan G. A key role for nuclear cardiac imaging in evaluating and managing patients with heart failure. J Nucl Cardiol 2012; 19:879-82. [PMID: 22918707 DOI: 10.1007/s12350-012-9615-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Wang Y, Liu Y, Luehmann H, Xia X, Brown P, Jarreau C, Welch M, Xia Y. Evaluating the pharmacokinetics and in vivo cancer targeting capability of Au nanocages by positron emission tomography imaging. ACS NANO 2012; 6:5880-8. [PMID: 22690722 PMCID: PMC3404261 DOI: 10.1021/nn300464r] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Gold nanocages have recently emerged as a novel class of photothermal transducers and drug carriers for cancer treatment. However, their pharmacokinetics and tumor targeting capability remain largely unexplored due to the lack of an imaging modality for quick and reliable mapping of their distributions in vivo. Herein, Au nanocages were prepared with controlled physicochemical properties and radiolabeled with (64)Cu in high specific activities for in vivo evaluation using positron emission tomography (PET). Our pharmacokinetic studies with femtomolar administrations suggest that 30 nm nanocages had a greatly improved biodistribution profile than 55 nm nanocages, together with higher blood retention and lower hepatic and splenic uptakes. In a murine EMT-6 breast cancer model, the small cages also showed a significantly higher level of tumor uptake and a greater tumor-to-muscle ratio than the large cages. Quantitative PET imaging confirmed rapid accumulation and retention of Au nanocages inside the tumors. The ability to directly and quickly image the distribution of Au nanocages in vivo allows us to further optimize their physicochemical properties for a range of theranostic applications.
Collapse
Affiliation(s)
- Yucai Wang
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Yongjian Liu
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Address correspondence to , , and
| | - Hannah Luehmann
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Xiaohu Xia
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Paige Brown
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
| | - Chad Jarreau
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
| | - Michael Welch
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, United States
- Address correspondence to , , and
| | - Younan Xia
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, United States
- Address correspondence to , , and
| |
Collapse
|
12
|
Hamad EA, Travin MI. The Complementary Roles of Radionuclide Myocardial Perfusion Imaging and Cardiac Computed Tomography. Semin Roentgenol 2012; 47:228-39. [DOI: 10.1053/j.ro.2011.11.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
13
|
Stacy MR, Maxfield MW, Sinusas AJ. Targeted molecular imaging of angiogenesis in PET and SPECT: a review. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2012; 85:75-86. [PMID: 22461745 PMCID: PMC3313541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Over the past few decades, there have been significant advancements in the imaging techniques of positron emission tomography (PET) and single photon emission tomography (SPECT). These changes have allowed for the targeted imaging of cellular processes and the development of hybrid imaging systems (e.g., SPECT/CT and PET/CT), which provide both functional and structural images of biological systems. One area that has garnered particular attention is angiogenesis as it relates to ischemic heart disease and limb ischemia. Though the aforementioned techniques have benefits and consequences, they enable scientists and clinicians to identify regions that are vulnerable to or have been exposed to ischemic injury via non-invasive means. This literature review highlights the advancements in molecular imaging techniques and specific probes as they pertain to the process of angiogenesis in cardiovascular disease.
Collapse
Affiliation(s)
- Mitchel R. Stacy
- Section of Cardiovascular Medicine, Department of
Internal Medicine, Yale School of Medicine, New Haven, Connecticut,To whom all correspondence should be
addressed: Mitchel R. Stacy, Nuclear Cardiology, 3 FMP, PO Box 208017, New
Haven, CT 06520-8017, Tel: 203-737-5917; Fax: 203-737-1030;
| | - Mark W. Maxfield
- Department of Surgery, Yale School of Medicine, New
Haven, Connecticut
| | - Albert J. Sinusas
- Section of Cardiovascular Medicine, Department of
Internal Medicine, Yale School of Medicine, New Haven, Connecticut,Department of Diagnostic Radiology, Yale School of
Medicine, New Haven, Connecticut
| |
Collapse
|
14
|
Albertí JFF, de Diego JJG, Delgado RV, Riera JC, Torres RA. [State of the art: new developments in cardiac imaging]. Rev Esp Cardiol 2012; 65 Suppl 1:24-34. [PMID: 22269837 DOI: 10.1016/j.recesp.2011.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2011] [Accepted: 11/03/2011] [Indexed: 11/16/2022]
Abstract
Cardiac imaging continues to reveal new anatomical and functional insights into heart disease. In echocardiography, both transesophageal and transthoracic three-dimensional imaging have been fully developed and optimized, and the value of the techniques that have increased our understanding of cardiac mechanics and ventricular function is well established. At the same time, the healthcare industry has released new devices onto the market which, although they are easier to use, have limitations that restrict their use for routine assessment. Tomography's diagnostic and prognostic value in coronary artery disease continues to increase while radiation exposure becomes progressively lower. With cardiac magnetic resonance imaging, myocardial injury and recovery in ischemic heart disease and following acute coronary syndrome can be monitored in exquisite detail. The emergence of new combined tomographic and gamma camera techniques, exclusively developed for nuclear cardiology, have improved the quality of investigations and reduced radiation exposure. The hybrid or fusion images produced by combining different techniques, such as nuclear cardiology techniques and tomography, promise an exciting future.
Collapse
|
15
|
Liu Y, Pressly ED, Abendschein DR, Hawker CJ, Woodard GE, Woodard PK, Welch MJ. Targeting angiogenesis using a C-type atrial natriuretic factor-conjugated nanoprobe and PET. J Nucl Med 2011; 52:1956-63. [PMID: 22049461 PMCID: PMC4255943 DOI: 10.2967/jnumed.111.089581] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Sensitive, specific, and noninvasive detection of angiogenesis would be helpful in discovering new strategies for the treatment of cardiovascular diseases. Recently, we reported the (64)Cu-labeled C-type atrial natriuretic factor (CANF) fragment for detecting the upregulation of natriuretic peptide clearance receptor (NPR-C) with PET on atherosclerosis-like lesions in an animal model. However, it is unknown whether NPR-C is present and overexpressed during angiogenesis. The goal of this study was to develop a novel CANF-integrated nanoprobe to prove the presence of NPR-C and offer sensitive detection with PET during development of angiogenesis in mouse hind limb. METHODS We prepared a multifunctional, core-shell nanoparticle consisting of DOTA chelators attached to a poly(methyl methacrylate) core and CANF-targeting moieties attached to poly(ethylene glycol) chain ends in the shell of the nanoparticle. Labeling of this nanoparticle with (64)Cu yielded a high-specific-activity nanoprobe for PET imaging NPR-C receptor in a mouse model of hind limb ischemia-induced angiogenesis. Histology and immunohistochemistry were performed to assess angiogenesis development and NPR-C localization. RESULTS (15)O-H(2)O imaging showed blood flow restoration in the previously ischemic hind limb, consistent with the development of angiogenesis. The targeted DOTA-CANF-comb nanoprobe showed optimized pharmacokinetics and biodistribution. PET imaging demonstrated significantly higher tracer accumulation for the targeted DOTA-CANF-comb nanoprobe than for either the CANF peptide tracer or the nontargeted control nanoprobe (P < 0.05, both). Immunohistochemistry confirmed NPR-C upregulation in the angiogenic lesion with colocalization in both endothelial and smooth muscle cells. PET and immunohistochemistry competitive receptor blocking verified the specificity of the targeted nanoprobe to NPR-C receptor. CONCLUSION As evidence of its translational potential, this customized DOTA-CANF-comb nanoprobe demonstrated superiority over the CANF peptide alone for imaging NPR-C receptor in angiogenesis.
Collapse
Affiliation(s)
- Yongjian Liu
- Department of Radiology, Washington University, St. Louis, Missouri
| | - Eric D. Pressly
- Department of Materials, Chemistry, and Biochemistry, University of California, Santa Barbara, California
| | | | - Craig J. Hawker
- Department of Materials, Chemistry, and Biochemistry, University of California, Santa Barbara, California
| | - Geoffrey E. Woodard
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | | | - Michael J. Welch
- Department of Radiology, Washington University, St. Louis, Missouri
| |
Collapse
|
16
|
|
17
|
Current world literature. Curr Opin Cardiol 2011; 26:165-73. [PMID: 21307667 DOI: 10.1097/hco.0b013e328344b569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|