1
|
Woods E, Bennett J, Chandrasekhar S, Newman N, Rizwan A, Siddiqui R, Khan R, Khawaja M, Krittanawong C. Efficacy of Diagnostic Testing of Suspected Coronary Artery Disease: A Contemporary Review. Cardiology 2024:1-22. [PMID: 39013364 DOI: 10.1159/000539916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/10/2024] [Indexed: 07/18/2024]
Abstract
BACKGROUND Coronary artery disease (CAD) is a highly prevalent condition which can lead to myocardial ischemia as well as acute coronary syndrome. Early diagnosis of CAD can improve patient outcomes through guiding risk factor modification and treatment modalities. SUMMARY Testing for CAD comes with increased cost and risk; therefore, physicians must determine which patients require testing, and what testing modality will offer the most useful data to diagnose patients with CAD. Patients should have an initial risk stratification for pretest probability of CAD based on symptoms and available clinical data. Patients with a pretest probability less than 5% should receive no further testing, while patients with a high pretest probability should be considered for direct invasive coronary angiography. In patients with a pretest probability between 5 and 15%, coronary artery calcium score and or exercise electrocardiogram can be obtained to further risk stratify patients to low-risk versus intermediate-high-risk. Intermediate-high-risk patients should be tested with coronary computed tomography angiography (preferred) versus positron emission tomography or single photon emission computed tomography based on their individual patient characteristics and institutional availability. KEY MESSAGES This comprehensive review aimed to describe the available CAD testing modalities, detail their risks and benefits, and propose when each should be considered in the evaluation of a patient with suspected CAD.
Collapse
Affiliation(s)
- Edward Woods
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Josiah Bennett
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | | | - Noah Newman
- Department of Internal Medicine, Emory University, Atlanta, Georgia, USA
| | - Affan Rizwan
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rehma Siddiqui
- Department of Internal Medicine, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Rabisa Khan
- Department of Anesthesiology, University of Mississippi Medical Center, Jackson, Mississippi, USA
| | - Muzamil Khawaja
- Division of Cardiology, Emory University, Atlanta, Georgia, USA
| | - Chayakrit Krittanawong
- Cardiology Division, NYU Langone Health and NYU School of Medicine, New York, New York, USA
| |
Collapse
|
2
|
Ruddy TD, Davies RA, Kiess MC. Development and evolution of nuclear cardiology and cardiac PET in Canada. J Med Imaging Radiat Sci 2024; 55:S3-S9. [PMID: 38637261 DOI: 10.1016/j.jmir.2024.03.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024]
Abstract
Gated radionuclide angiography and myocardial perfusion imaging were developed in the United States and Europe in the 1970's and soon adopted in Canadian centers. Much of the early development of nuclear cardiology in Canada was in Toronto, Ontario and was quickly followed by new programs across the country. Clinical research in Canada contributed to the further development of nuclear cardiology and cardiac PET. The Canadian Nuclear Cardiology Society (CNCS) was formed in 1995 and became the Canadian Society of Cardiovascular Nuclear and CT Imaging (CNCT) in 2014. The CNCS had a major role in education and advocacy for cardiovascular nuclear medicine testing. The CNCS established the Dr Robert Burns Lecture and CNCT named the Canadian Society of Cardiovascular Nuclear and CT Imaging Annual Achievement Award for Dr Michael Freeman in memoriam of these two outstanding Canadian leaders in nuclear cardiology. The future of nuclear cardiology in Canada is exciting with the expanding use of SPECT imaging to include Tc-99m-pyrophosphate for diagnosis of transthyretin cardiac amyloidosis and the ongoing introduction of cardiac PET imaging.
Collapse
Affiliation(s)
- Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Ross A Davies
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Marla C Kiess
- Division of Cardiology, University of British Columbia, St. Paul's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
3
|
Renaud JM, Poitrasson-Rivière A, Hagio T, Moody JB, Arida-Moody L, Ficaro EP, Murthy VL. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application. J Nucl Cardiol 2022; 29:2078-2089. [PMID: 34426935 DOI: 10.1007/s12350-021-02761-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND PET myocardial flow reserve (MFR) has established diagnostic and prognostic value. Technological advances have now enabled SPECT MFR quantification. We investigated whether SPECT MFR precision is sufficient for clinical categorization of patients. METHODS Validation studies vs invasive flow measurements and PET MFR were reviewed to determine global SPECT MFR thresholds. Studies vs PET and a SPECT MFR repeatability study were used to establish imprecision in SPECT MFR measurements as the standard deviation of the difference between SPECT and PET MFR, or test-retest SPECT MFR. Simulations were used to evaluate the impact of SPECT MFR imprecision on confidence of clinically relevant categorization. RESULTS Based on validation studies, the typical PET MFR categories were used for SPECT MFR classification (< 1.5, 1.5-2.0, > 2.0). Imprecision vs PET MFR ranged from 0.556 to 0.829, and test-retest imprecision was 0.781-0.878. Simulations showed correct classification of up to only 34% of patients when 1.5 ≤ true MFR ≤ 2.0. Categorization with high confidence (> 80%) was only achieved for extreme MFR values (< 1.0 or > 2.5), with correct classification in only 15% of patients in a typical lab with MFR of 1.8 ± 0.5. CONCLUSIONS Current SPECT-derived estimates of MFR lack precision and require further optimization for clinical risk stratification.
Collapse
Affiliation(s)
- Jennifer M Renaud
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA.
| | | | - Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Liliana Arida-Moody
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Ziadi MC, de Kemp R, Beanlands RSB, Small GR. Looking for trouble: Reduced myocardial flow reserve following anthracyclines. J Nucl Cardiol 2020; 27:1708-1713. [PMID: 30627882 DOI: 10.1007/s12350-018-01564-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Accepted: 11/20/2018] [Indexed: 01/06/2023]
Affiliation(s)
- M C Ziadi
- Non Invasive Cardiovascular Imaging Department, Instituto Cardiovascular de Rosario, 440 Oroño Boulevard, Rosario, Santa Fe, Argentina.
| | - Rob de Kemp
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Rob S B Beanlands
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - G R Small
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
5
|
Van Tosh A, Votaw JR, David Cooke C, Cao JJ, Palestro CJ, Nichols KJ. Relationship of 82Rb PET territorial myocardial asynchrony to arterial stenosis. J Nucl Cardiol 2020; 27:575-588. [PMID: 29946825 DOI: 10.1007/s12350-018-1350-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 06/06/2018] [Indexed: 11/28/2022]
Abstract
OBJECTIVE 82Rb PET/CT rest/regadenoson-stress data enable quantification of left ventricular rest and stress function, perfusion, and asynchrony. Our study was conducted to determine which parameters best identify patients with multi-vessel disease (MVD) and individual stenosed arteries. METHODS PET/CT data were reviewed retrospectively for 105 patients referred for evaluation of CAD, who also underwent angiography. % arterial stenosis was determined quantitatively at a core laboratory. Severe stenosis was defined as ≥ 70%, and MVD as 2 or more stenosed arteries. Segmental MBF was calculated from first-pass data for arterial territories. Regional rest and stress systolic and diastolic asynchrony (Asynch) scores were determined from visual examination of phase polar maps. RESULTS 65 vessels had stenoses ≥ 70%. 15 patients had MVD. ROC area under curve (ROC AUC) for identifying patients with MVD was 83% for Asynch and 73% for MFR. ROC AUC for identifying individual arterial territories with stenoses ≥ 70% was 81% and 72% for Asynch and MFR. CONCLUSION 82Rb PET/CT accurately identified patients with MVD and individual stenosed territories, with regional asynchrony measurements contributing significantly to identify patients with CAD.
Collapse
Affiliation(s)
- Andrew Van Tosh
- Research Department, St. Francis Hospital, 100 Port Washington Blvd., Roslyn, NY, 11576-1348, USA
| | | | | | - J Jane Cao
- Research Department, St. Francis Hospital, 100 Port Washington Blvd., Roslyn, NY, 11576-1348, USA
| | - Christopher J Palestro
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
- Northwell Health, New Hyde Park, NY, USA
| | - Kenneth J Nichols
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA.
- Northwell Health, New Hyde Park, NY, USA.
| |
Collapse
|
6
|
Mastrocola LE, Amorim BJ, Vitola JV, Brandão SCS, Grossman GB, Lima RDSL, Lopes RW, Chalela WA, Carreira LCTF, Araújo JRND, Mesquita CT, Meneghetti JC. Update of the Brazilian Guideline on Nuclear Cardiology - 2020. Arq Bras Cardiol 2020; 114:325-429. [PMID: 32215507 PMCID: PMC7077582 DOI: 10.36660/abc.20200087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
| | - Barbara Juarez Amorim
- Universidade Estadual de Campinas (Unicamp), Campinas, SP - Brazil
- Sociedade Brasileira de Medicina Nuclear (SBMN), São Paulo, SP - Brazil
| | | | | | - Gabriel Blacher Grossman
- Hospital Moinhos de Vento, Porto Alegre, RS - Brazil
- Clínica Cardionuclear, Porto Alegre, RS - Brazil
| | - Ronaldo de Souza Leão Lima
- Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ - Brazil
- Fonte Imagem Medicina Diagnóstica, Rio de Janeiro, RJ - Brazil
- Clínica de Diagnóstico por Imagem (CDPI), Grupo DASA, Rio de Janeiro, RJ - Brazil
| | | | - William Azem Chalela
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| | | | | | | | - José Claudio Meneghetti
- Instituto do Coração (Incor) do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo (HCFMUSP), São Paulo, SP - Brazil
| |
Collapse
|
7
|
Vleeming EJ, Lazarenko SV, van der Zant FM, Pan XB, Declerck JM, Wondergem M, Knol RJ. Cardiac Displacement During 13N-Ammonia Myocardial Perfusion PET/CT: Comparison Between Adenosine- and Regadenoson-Induced Stress. J Nucl Med Technol 2017; 46:114-122. [DOI: 10.2967/jnmt.117.199463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 11/28/2017] [Indexed: 11/16/2022] Open
|
8
|
Abstract
The present study aimed to discuss the role of mitochondrion in cardiac function and disease. The mitochondrion plays a fundamental role in cellular processes ranging from metabolism to apoptosis. The mitochondrial-targeted molecular imaging could potentially illustrate changes in global and regional cardiac dysfunction. The collective changes that occur in mitochondrial-targeted molecular imaging probes have been widely explored and developed. As probes currently used in the preclinical setting still have a lot of shortcomings, the development of myocardial metabolic activity, viability, perfusion, and blood flow molecular imaging probes holds great potential for accurately evaluating the myocardial viability and functional reserve. The advantages of molecular imaging provide a perspective on investigating the mitochondrial function of the myocardium in vivo noninvasively and quantitatively. The molecular imaging tracers of single-photon emission computed tomography and positron emission tomography could give more detailed information on myocardial metabolism and restoration. In this study, series mitochondrial-targeted 99mTc-, 123I-, and 18F-labeled tracers displayed broad applications because they could provide a direct link between mitochondrial dysfunction and cardiac disease.
Collapse
|
9
|
Yuoness SA, Goha AM, Romsa JG, Akincioglu C, Warrington JC, Datta S, Massel DR, Martell R, Gambhir S, Urbain JLC, Vezina WC. Very high coronary artery calcium score with normal myocardial perfusion SPECT imaging is associated with a moderate incidence of severe coronary artery disease. Eur J Nucl Med Mol Imaging 2015; 42:1542-50. [PMID: 26138459 PMCID: PMC4521098 DOI: 10.1007/s00259-015-3072-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Accepted: 04/15/2015] [Indexed: 01/07/2023]
Abstract
PURPOSE Myocardial perfusion imaging (MPI) has limitations in the presence of balanced multivessel disease (MVD) and left main (LM) coronary artery disease, occasionally resulting in false-normal results despite the high cardiovascular risk associated with this condition. The purpose of this study was to assess the incidence of severe coronary artery disease (CAD) in the presence of a very high Agatston coronary artery calcium (CAC) score (>1,000) in stable symptomatic patients without known CAD but with normal MPI results. METHODS A total of 2,659 prospectively acquired consecutive patients were referred for MPI and evaluation of CAC score by CT. Of this patient population, 8 % (222/2,659) had ischemia without myocardial infarction (MI) on MPIand 11 % (298/2,659) had abnormal MPI (MI and/or ischemia). On presentation 1 % of the patients (26/2,659) were symptomatic, had a CAC score >1,000 and normal MPI results. The definition of normal MPI was strict and included a normal hemodynamic response without ischemic ECG changes and normal imaging, particularly absence of transient ischemic dilation. All of these 26 patients with a CAC score >1,000 and normal MPI findings underwent cardiac catheterization. RESULTS Of these 26 patients, 58 % (15/26) had severe disease (≥70 % stenosis) leading to revascularization. Of this group, 47 % (7/15) underwent percutaneous intervention, and 53 % (8/15) underwent coronary artery bypass grafting. All of these 15 patients had either MVD (14/15) or LM coronary artery disease (1/15), and represented 0.6 % (15/2,659) of all referred patients (95 % CI 0.3 - 0.9 %). The majority, 90 % (8/9), had severe CAD with typical chest pain. CONCLUSION A very high CAC score (>1,000) with normal MPI in a small subset of symptomatically stable patients was associated with a moderate incidence of severe CAD (95 % CI 37 - 77 %). Larger studies and/or a meta-analysis of small studies are needed to more precisely estimate the incidence of CAD in this population. This study also supports the concept that a normal MPI result in patients with severe CAD may be due to balanced MVD.
Collapse
Affiliation(s)
- Salem A Yuoness
- Department of Nuclear Medicine, London Health Sciences Centre, 800 Commissioners Road East, PO Box 5010, London, ON, N6A 5W9, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Sunderland JJ, Pan XB, Declerck J, Menda Y. Dependency of cardiac rubidium-82 imaging quantitative measures on age, gender, vascular territory, and software in a cardiovascular normal population. J Nucl Cardiol 2015; 22:72-84. [PMID: 25294436 DOI: 10.1007/s12350-014-9920-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 05/13/2014] [Indexed: 12/14/2022]
Abstract
OBJECTIVES Recent technological improvements to PET imaging equipment combined with the availability of software optimized to calculate regional myocardial blood flow (MBF) and myocardial flow reserve (MFR) create a paradigm shifting opportunity to provide new clinically relevant quantitative information to cardiologists. However, clinical interpretation of the MBF and MFR is entirely dependent upon knowledge of MBF and MFR values in normal populations and subpopulations. This work reports Rb-82-based MBF and MFR measurements for a series of 49 verified cardiovascularly normal subjects as a preliminary baseline for future clinical studies. METHODS Forty-nine subjects (24F/25M, ages 41-69) with low probability for coronary artery disease and with normal exercise stress test were included. These subjects underwent rest/dipyridamole stress Rb-82 myocardial perfusion imaging using standard clinical techniques (40 mCi injection, 6-minute acquisition) using a Siemens Biograph 40 PET/CT scanner with high count rate detector option. List mode data was rehistogrammed into 26 dynamic frames (12 × 5 seconds, 6 × 10 seconds, 4 × 20 seconds, 4 × 40 seconds). Cardiac images were processed, and MBF and MFR calculated using Siemens syngo MBF, PMOD, and FlowQuant software using a single compartment Rb-82 model. RESULTS Global myocardial blood flow under pharmacological stress for the 24 females as measured by PMOD, syngo MBF, and FlowQuant were 3.10 ± 0.72, 2.80 ± 0.66, and 2.60 ± 0.63 mL·minute(-1)·g(-1), and for the 25 males was 2.60 ± 0.84, 2.33 ± 0.75, 2.15 ± 0.62 mL·minute(-1)·g(-1), respectively. Rest flows for PMOD, syngo MBF, and FlowQuant averaged 1.32 ± 0.42, 1.20 ± 0.33, and 1.06 ± 0.38 mL·minute(-1)·g(-1) for the female subjects, and 1.12 ± 0.29, 0.90 ± 0.26, and 0.85 ± 0.24 mL·minute(-1)·g(-1) for the males. Myocardial flow reserves for PMOD, syngo MBF, and FlowQuant for the female normals were calculated to be 2.50 ± 0.80, 2.53 ± 0.67, 2.71 ± 0.90, and 2.50 ± 1.19, 2.85 ± 1.19, 2.94 ± 1.31 mL·minute(-1)·g(-1) for males. CONCLUSION Quantitative normal MBF and MFR values averaged for age and sex have been compiled for three commercial pharmacokinetic software packages. The current collection of data consisting of 49 subjects resulted in several statistically significant conclusions that support the need for a software specific, age, and sex-matched database to aid in interpretation of quantitative clinical myocardial perfusion studies.
Collapse
Affiliation(s)
- John J Sunderland
- Department of Radiology, University of Iowa, 200 Hawkins Drive, Iowa City, IA 52242, USA.
| | | | | | | |
Collapse
|
11
|
Abstract
Positron-emitting myocardial flow radiotracers such as (15)O-water, (13)N-ammonia and (82)Rubidium in conjunction with positron-emission-tomography (PET) are increasingly applied in clinical routine for coronary artery disease (CAD) detection, yielding high diagnostic accuracy, while providing valuable information on cardiovascular (CV) outcome. Owing to a cyclotron dependency of (15)O-water and (13)N-ammonia, their clinical use for PET myocardial perfusion imaging is limited to a few centers. This limitation could be overcome by the increasing use of (82)Rubidium as it can be eluted from a commercially available (82)Strontium generator and, thus, is independent of a nearby cyclotron. Another novel F-18-labeled myocardial flow radiotracer is flurpiridaz which has attracted increasing interest due to its excellent radiotracer characteristics for perfusion and flow imaging with PET. In particular, the relatively long half-life of 109 minutes of flurpiridaz may afford a general application of this radiotracer for PET perfusion imaging comparable to technetium-99m-labeled single-photon emission computed tomography (SPECT). The ability of PET in conjunction with several radiotracers to assess myocardial blood flow (MBF) in ml/g/min at rest and during vasomotor stress has contributed to unravel pathophysiological mechanisms underlying coronary artery disease (CAD), to improve the detection and characterization of CAD burden in multivessel disease, and to provide incremental prognostic information in individuals with subclinical and clinically-manifest CAD. The concurrent evaluation of myocardial perfusion and MBF may lead to a new era of a personalized, image-guided therapy approach that may offer potential to further improve clinical outcome in CV disease patients but needing validation in large-scale clinical trials.
Collapse
Affiliation(s)
- Thomas H Schindler
- Division of Nuclear Medicine, Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
12
|
Nakazato R, Heo R, Leipsic J, Min JK. CFR and FFR assessment with PET and CTA: strengths and limitations. Curr Cardiol Rep 2014; 16:484. [PMID: 24652346 DOI: 10.1007/s11886-014-0484-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Positron emission tomography (PET) myocardial perfusion imaging (MPI) has high diagnostic accuracy and prognostic value. PET-MPI can also be used to quantitatively evaluate regional myocardial blood flow (MBF). This technique also allows the calculation of the coronary flow reserve (CFR)/myocardial flow reserve (MFR), which is the ratio of MBF at peak hyperemia to resting MBF. Coronary computed tomography angiography (CTA) is a non-invasive method for accurate detection and exclusion of high-grade coronary stenoses, when compared to an invasive coronary angiography reference standard. However, CTA assessment of coronary stenoses tends toward overestimation, and CTA cannot determine physiologic significance of lesions. Recent advances in computational fluid dynamics and image-based modeling permit calculation of non-invasive fractional flow reserve derived from CT (FFRCT), without the need for additional imaging, modification of acquisition protocols, or administration of medications. In this review, we cover the CFR/MFR assessment by PET and FFR assessment by CT.
Collapse
|
13
|
Klein R, Hung GU, Wu TC, Huang WS, Li D, deKemp RA, Hsu B. Feasibility and operator variability of myocardial blood flow and reserve measurements with ⁹⁹mTc-sestamibi quantitative dynamic SPECT/CT imaging. J Nucl Cardiol 2014; 21:1075-88. [PMID: 25280761 DOI: 10.1007/s12350-014-9971-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2014] [Accepted: 07/14/2014] [Indexed: 12/16/2022]
Abstract
PURPOSE Myocardial blood flow (MBF) quantification with dynamic SPECT could lead to widespread utilization of MBF imaging in clinical practice with little cost increase over current standard SPECT myocardial perfusion imaging. This work evaluates the feasibility and operator-dependent variability of MBF and flow reserve measurements with (99m)Tc-sestamibi (MIBI) dynamic SPECT imaging using a standard dual-head SPECT camera. METHODS Twenty-eight patients underwent dipyridamole-stress and rest imaging with dynamic SPECT/CT acquisition. Quantitative images were iteratively reconstructed with all physical corrections and then myocardial and arterial blood regions of interest (ROI) were defined semi-automatically. A compartmental model was fitted to these ROI-sampled time-activity-curves, and flow-dependent MIBI extraction correction was applied to derive regional MBF values. Myocardial flow reserve (MFR) was estimated as stress/rest MBF ratio. MBF and MFR in low and high risk populations were evaluated for ability to detect disease. Images were each processed twice (≥7 days apart) by one expert and one novice operator to evaluate intra- and inter-operator variability of MBF and MFR measurement in the three coronary artery vascular territories. RESULTS Mean rest flow, stress flow, and MFR values were 0.83, 1.82 mL·minute(-1)·g(-1), and 2.45, respectively. For stress/rest MFR, the inter-operator reproducibility was r(2) = 0.86 with RPC = 1.1. Stress MBF and MFR were significantly reduced (P < .05) in high risk (n = 9) vs low risk populations (n = 19), indicating ability to detect disease. For expert and novice operators very good intra-operator correlations of r(2) = 0.98 and 0.95 (n = 168, P < .001) were observed for combined rest and stress regional flow values. Bland-Altman reproducibility coefficients (RPC) were 0.25 and 0.47 mL·minute(-1)·g(-1) for the expert and novice operators, respectively (P < .001). Inter-operator correlation was r(2) = 0.91 and Bland-Altman RPC = 0.58 mL·minute(-1)·g(-1) (n = 336). CONCLUSIONS MBF and reserve measurements using (99m)Tc-sestamibi on a traditional, two-headed camera with fast rotation and with quantitative dynamic SPECT appears to be feasible, warranting further investigation.
Collapse
Affiliation(s)
- Ran Klein
- University of Ottawa Heart Institute, Cardiac PET Centre, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada,
| | | | | | | | | | | | | |
Collapse
|
14
|
Shaw LJ, Tandon S, Rosen S, Mieres JH. Evaluation of suspected ischemic heart disease in symptomatic women. Can J Cardiol 2013; 30:729-37. [PMID: 24582723 DOI: 10.1016/j.cjca.2013.09.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 01/22/2023] Open
Abstract
There is a wealth of evidence about the role of a variety of diagnostic testing modalities to define coronary artery disease (CAD) risk in women presenting for evaluation of suspected myocardial ischemia. The exercise electrocardiogram (ECG) is the core index procedure, which can define risk in women capable of performing maximal exercise. Stress imaging, using echocardiography or myocardial perfusion single-photon emission computed tomography/positron emission tomography, is useful for symptomatic women with an abnormal resting ECG or for those who are functionally disabled. For women with low-risk stress imaging findings, there is a very low risk of CAD events, usually < 1%. There is a gradient relationship between the extent and severity of inducible abnormalities and CAD event risk. Women at high risk are those defined as having moderate to severely abnormal wall motion or abnormal perfusion imaging findings. In addition to stress imaging, the evidence of the relationship between CAD extent and severity and prognosis has been clearly defined with coronary computed tomographic angiography. In women, prognosis for those with mild but nonobstructive CAD is higher when compared with those without any CAD. The current evidence base clearly supports that women presenting with chest pain can benefit from one of the commonly applied diagnostic testing modalities.
Collapse
Affiliation(s)
- Leslee J Shaw
- Emory University School of Medicine, Atlanta, Georgia, USA.
| | | | - Stacey Rosen
- North Shore Long Island Jewish Hospital, Manhasset, New York, USA
| | | |
Collapse
|
15
|
Kolthammer JA, Muzic RF. Optimized dynamic framing for PET-based myocardial blood flow estimation. Phys Med Biol 2013; 58:5783-801. [DOI: 10.1088/0031-9155/58/16/5783] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Ben-Haim S, Murthy VL, Breault C, Allie R, Sitek A, Roth N, Fantony J, Moore SC, Park MA, Kijewski M, Haroon A, Slomka P, Erlandsson K, Baavour R, Zilberstien Y, Bomanji J, Di Carli MF. Quantification of Myocardial Perfusion Reserve Using Dynamic SPECT Imaging in Humans: A Feasibility Study. J Nucl Med 2013; 54:873-9. [PMID: 23578996 PMCID: PMC3951831 DOI: 10.2967/jnumed.112.109652] [Citation(s) in RCA: 170] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
UNLABELLED Myocardial perfusion imaging (MPI) is well established in the diagnosis and workup of patients with known or suspected coronary artery disease (CAD); however, it can underestimate the extent of obstructive CAD. Quantification of myocardial perfusion reserve with PET can assist in the diagnosis of multivessel CAD. We evaluated the feasibility of dynamic tomographic SPECT imaging and quantification of a retention index to describe global and regional myocardial perfusion reserve using a dedicated solid-state cardiac camera. METHODS Ninety-five consecutive patients (64 men and 31 women; median age, 67 y) underwent dynamic SPECT imaging with (99m)Tc-sestamibi at rest and at peak vasodilator stress, followed by standard gated MPI. The dynamic images were reconstructed into 60-70 frames, 3-6 s/frame, using ordered-subsets expectation maximization with 4 iterations and 32 subsets. Factor analysis was used to estimate blood-pool time-activity curves, used as input functions in a 2-compartment kinetic model. K1 values ((99m)Tc-sestamibi uptake) were calculated for the stress and rest images, and K2 values ((99m)Tc-sestamibi washout) were set to zero. Myocardial perfusion reserve (MPR) index was calculated as the ratio of the stress and rest K1 values. Standard MPI was evaluated semiquantitatively, and total perfusion deficit (TPD) of at least 5% was defined as abnormal. RESULTS Global MPR index was higher in patients with normal MPI (n = 51) than in patients with abnormal MPI (1.61 [interquartile range (IQR), 1.33-2.03] vs. 1.27 [IQR, 1.12-1.61], P = 0.0002). By multivariable regression analysis, global MPR index was associated with global stress TPD, age, and smoking. Regional MPR index was associated with the same variables and with regional stress TPD. Sixteen patients undergoing invasive coronary angiography had 20 vessels with stenosis of at least 50%. The MPR index was 1.11 (IQR, 1.01-1.21) versus 1.30 (IQR, 1.12-1.67) in territories supplied by obstructed and nonobstructed arteries, respectively (P = 0.02). MPR index showed a stepwise reduction with increasing extent of obstructive CAD (P = 0.02). CONCLUSION Dynamic tomographic imaging and quantification of a retention index describing global and regional perfusion reserve are feasible using a solid-state camera. Preliminary results show that the MPR index is lower in patients with perfusion defects and in regions supplied by obstructed coronary arteries. Further studies are needed to establish the clinical role of this technique as an aid to semiquantitative analysis of MPI.
Collapse
Affiliation(s)
- Simona Ben-Haim
- Institute of Nuclear Medicine, University College London Hospitals, NHS Trust, London, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Cho SG, Kim JH, Cho JY, Kim HS, Bom HS. Myocardial Blood Flow and Flow Reserve in Proximal and Mid-to-Distal Lesions of Left Anterior Descending Artery Measured By N-13 Ammonia PET/CT. Nucl Med Mol Imaging 2013; 47:158-65. [PMID: 24900102 DOI: 10.1007/s13139-013-0208-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 11/27/2022] Open
Abstract
PURPOSE The purpose of this study is to compare the myocardial blood flow (MBF) and flow reserve (MFR) between proximal and mid-to-distal lesions of the left anterior descending artery (pLAD and mdLAD, respectively) using N-13 ammonia positron emission tomography/computed tomography (PET/CT). METHODS Subjects were 11 patients (six men and five women, mean age 64.5 years) with known coronary artery disease (CAD) involving LAD studied by N-13 ammonia PET/CT. They were divided into two groups by the location of stenotic lesions, i.e. pLAD versus mdLAD. Global and regional MBF and MFR were measured and compared. Characteristics of perfusion defects including the number of involved segments, basal area involvement, location, size, and shape were also compared between the two groups. RESULTS The regional MFR in mid-anterior segment was significantly lower in pLAD group (1.80 ± 0.35 vs 2.76 ± 1.13 for pLAD and mdLAD groups, respectively, p = 0.034), while global MFR was not different (2.10 ± 1.10 vs 2.34 ± 0.84). Both stress and rest MBF in LAD territories were not different in both groups. The size of the perfusion defects were significantly larger in pLAD group (44.0 ± 11.5 % vs 21.1 ± 15.8 %, p = 0.041). Other characteristics such as location, basal area involvement, and shape were not significantly different between two groups. CONCLUSIONS The proximal lesion makes lower MFR in the mid-anterior segment and larger perfusion defect in the LAD territory but comparable MBF compared with mdLAD lesion.
Collapse
Affiliation(s)
- Sang-Geon Cho
- Department of Nuclear Medicine, Chonnam National University Hospital, Gwangju, South Korea
| | - Ju Han Kim
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Jae Young Cho
- Department of Cardiology, Chonnam National University Hospital, Gwangju, South Korea
| | - Hyeon Sik Kim
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeonnam Korea 519-763
| | - Hee-Seung Bom
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, 322 Seoyang-ro Hwasun-eup, Hwasun-gun, Jeonnam Korea 519-763
| |
Collapse
|
18
|
Advances in Cardiac SPECT and PET Imaging: Overcoming the Challenges to Reduce Radiation Exposure and Improve Accuracy. Can J Cardiol 2013; 29:275-84. [DOI: 10.1016/j.cjca.2012.10.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Revised: 09/27/2012] [Accepted: 10/04/2012] [Indexed: 11/22/2022] Open
|
19
|
Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, Arumugam P, Berman DS, Germano G, Beanlands RS, Slomka PJ. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3D dynamic PET/CT and a 1-tissue-compartment model of 82Rb kinetics. J Nucl Med 2013; 54:571-7. [PMID: 23447656 DOI: 10.2967/jnumed.112.112219] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
UNLABELLED Routine quantification of myocardial blood flow (MBF) requires robust and reproducible processing of dynamic image series. The goal of this study was to evaluate the reproducibility of 3 highly automated software programs commonly used for absolute MBF and flow reserve (stress/rest MBF) assessment with (82)Rb PET imaging. METHODS Dynamic rest and stress (82)Rb PET scans were selected in 30 sequential patient studies performed at 3 separate institutions using 3 different 3-dimensional PET/CT scanners. All 90 scans were processed with 3 different MBF quantification programs, using the same 1-tissue-compartment model. Global (left ventricle) and regional (left anterior descending, left circumflex, and right coronary arteries) MBF and flow reserve were compared among programs using correlation and Bland-Altman analyses. RESULTS All scans were processed successfully by the 3 programs, with minimal operator interactions. Global and regional correlations of MBF and flow reserve all had an R(2) of at least 0.92. There was no significant difference in flow values at rest (P = 0.68), stress (P = 0.14), or reserve (P = 0.35) among the 3 programs. Bland-Altman coefficients of reproducibility (1.96 × SD) averaged 0.26 for MBF and 0.29 for flow reserve differences among programs. Average pairwise differences were all less than 10%, indicating good reproducibility for MBF quantification. Global and regional SD from the line of perfect agreement averaged 0.15 and 0.17 mL/min/g, respectively, for MBF, compared with 0.22 and 0.26, respectively, for flow reserve. CONCLUSION The 1-tissue-compartment model of (82)Rb tracer kinetics is a reproducible method for quantification of MBF and flow reserve with 3-dimensional PET/CT imaging.
Collapse
Affiliation(s)
- Robert A Dekemp
- University of Ottawa Heart Institute, National Cardiac PET Centre, Ottawa, Canada.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Pourmoghaddas A, Klein R, deKemp RA, Wells RG. Respiratory phase alignment improves blood-flow quantification in Rb82 PET myocardial perfusion imaging. Med Phys 2013; 40:022503. [DOI: 10.1118/1.4788669] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
21
|
Arumugam P, Tout D, Tonge C. Myocardial perfusion scintigraphy using rubidium-82 positron emission tomography. Br Med Bull 2013; 107:87-100. [PMID: 23966422 DOI: 10.1093/bmb/ldt026] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
INTRODUCTION Myocardial perfusion scintigraphy (MPS) is an established non-invasive technique for the diagnosis and management of patients with suspected or known coronary artery disease. Because of the wealth of prognostic data, MPS single photon emission computed tomography (SPECT) is the most commonly used functional test to detect inducible ischaemia. However, the increasing availability of positron emission tomography (PET) scanners for oncology along with the introduction of the generator-produced PET tracer rubidium-82 (⁸²Rb) has helped the growth of MPS PET. SOURCES OF DATA Relevant review articles, primary literature and clinical guidelines identified through medical literature search engines. AREAS OF AGREEMENT PET offers advantages over SPECT, including increased patient throughput because of rapid scanning protocols, reduced radiation exposure to patients and the ability to quantify tracer distribution accurately and hence measure myocardial perfusion in millilitre per gram per minute and hence myocardial perfusion reserve (MPR). AREAS OF CONTROVERSY Although PET has advantages over SPECT, there are no large-scale prognostic or cost-effectiveness data to support it use as the primary MPS technique. GROWING POINTS A wider use of absolute measurements of perfusion has the potential to improve diagnostic accuracy and to add prognostic value over relative assessment of myocardial perfusion. AREAS TIMELY FOR DEVELOPING RESEARCH Assessment of absolute myocardial perfusion may provide insight into the effects of traditional risk factors on perfusion reserve and the impact of risk factor modifications on progression of coronary artery disease.
Collapse
Affiliation(s)
- Parthiban Arumugam
- Nuclear Medicine Centre, Central Manchester NHS Foundation Trust, Manchester, UK.
| | | | | |
Collapse
|
22
|
Efseaff M, Klein R, Ziadi MC, Beanlands RS, deKemp RA. Short-term repeatability of resting myocardial blood flow measurements using rubidium-82 PET imaging. J Nucl Cardiol 2012; 19:997-1006. [PMID: 22826134 DOI: 10.1007/s12350-012-9600-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 07/05/2012] [Indexed: 11/28/2022]
Abstract
BACKGROUND Rubidium-82 ((82)Rb) PET imaging has been proposed for routine myocardial blood flow (MBF) quantification. However, few studies have investigated the test-retest repeatability of this method. The aim of this study was to optimize same-day repeatability of rest MBF imaging with a highly automated analysis program (FlowQuant) using image-derived input functions and dual spillover corrections (SOC). METHODS Test-retest repeatability of resting left-ventricle (LV) MBF was measured in patients (n = 27) with suspected coronary artery disease (CAD) and healthy volunteers (n = 9). The effects of scan-time, reconstruction, and quantification methods were assessed with correlation and Bland-Altman repeatability coefficients. RESULTS Factors affecting rest MBF included gender, suspected CAD, and SOC (P < .001). Significant test-retest correlations were found using all analysis methods tested (r > 0.79). The best repeatability coefficient for same-day MBF was 0.20 mL/minute/g using a 6-minute scan-time, iterative reconstruction, SOC, resting rate-pressure-product (RPP) adjustment, and left atrium input function. This protocol was significantly less variable than standard protocols using filtered back-projection reconstruction, longer scan-time, no SOC, or LV input function. CONCLUSION Absolute MBF can be measured with good repeatability using FlowQuant analysis of (82)Rb PET scans with a 6-minute scan time, iterative reconstruction, dual SOC, RPP-adjustment, and an image-derived input function in the left atrium cavity.
Collapse
|
23
|
Beller GA. Nonobstructive coronary artery disease on CT coronary angiography and abnormal coronary flow reserve: two sides of the same coin. J Nucl Cardiol 2012; 19:9-10. [PMID: 22207398 DOI: 10.1007/s12350-011-9500-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Stress Myocardial Perfusion Imaging for Assessing Prognosis: An Update. JACC Cardiovasc Imaging 2011; 4:1305-19. [DOI: 10.1016/j.jcmg.2011.10.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/21/2011] [Accepted: 10/27/2011] [Indexed: 12/25/2022]
|
25
|
Beller GA, Heede RC. SPECT imaging for detecting coronary artery disease and determining prognosis by noninvasive assessment of myocardial perfusion and myocardial viability. J Cardiovasc Transl Res 2011; 4:416-24. [PMID: 21732226 DOI: 10.1007/s12265-011-9290-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2011] [Accepted: 06/02/2011] [Indexed: 11/24/2022]
Abstract
Basic knowledge of active and passive transport mechanisms for concentrating monovalent cations in myocardial cells led to the investigation of the application of radioisotopes of potassium, thallium, rubidium, and ammonia to the in vivo noninvasive assessment of regional myocardial perfusion and viability utilizing gamma camera or positron emission tomographic (PET) imaging technology. Subsequently, technetium-99m (Tc-99m)-labeled isonitriles (sestamibi and tetrofosmin), which bind to mitochondrial membranes, emerged as superior imaging agents with single photon emission tomography (SPECT) imaging. When any of these imaging agents are injected intravenously during either exercise or pharmacologic stress, myocardial defects in tracer uptake represent either abnormal regional flow reserve or myocardial scar reflecting of coronary artery disease (CAD). The major clinical indications for stress SPECT or PET myocardial perfusion imaging are for detection of CAD as the cause of chest pain and risk stratification for prognostication. Patients with normal stress myocardial perfusion scans have an excellent prognosis with <1.0% annual rate future annual death or nonfatal infarction. The greater the extent and severity of ischemic perfusion defects (defects seen on stress images but improve on resting images), the greater the subsequent death or infarction rate during follow-up. Rest imaging alone is performed for determination of myocardial viability in patients with CAD and severe left ventricular dysfunction. Myocardial segments showing >50% uptake compared to normal uptake have a better long-term outcome with revascularization than with medical therapy with enhanced left ventricular function and improved survival. Other applications of SPECT imaging include the evaluation of cardiac sympathetic function, assessment of myocardial metabolism in health and disease, and molecular imaging of coronary atherosclerosis and myocardial stem cell therapy.
Collapse
Affiliation(s)
- George A Beller
- University of Virginia Health System, Box 800158, Charlottesville, VA 22908, USA.
| | | |
Collapse
|
26
|
Abstract
Microvascular angina (MVA) is an often overlooked cause of significant chest pain. Decreased myocardial perfusion secondary to dysregulated blood flow in the microvasculature can occur in the presence or absence of obstructive epicardial coronary artery disease. The corresponding myocardial ischemia and angina is now a well-established diagnosis, made by detection of decreased coronary flow reserve (CFR). Although low CFR and MVA are associated with poor prognosis, there is initial evidence for reversibility of this abnormal vascular regulation with aggressive medical therapy and control of associated risk factors. Current assessment of MVA is carried out predominantly during cardiac catheterization; however, noninvasive techniques to assess CFR are being developed, including PET, MRI, and CT modalities. Quantitative tracer techniques or imaging of metabolic disturbances reflecting ischemia will likely enhance diagnostic approaches for such patients as well as allow more frequent monitoring of response to therapy.
Collapse
|
27
|
|
28
|
Johnson NP, Sdringola S, Gould KL. Partial volume correction incorporating Rb-82 positron range for quantitative myocardial perfusion PET based on systolic-diastolic activity ratios and phantom measurements. J Nucl Cardiol 2011; 18:247-58. [PMID: 21184208 PMCID: PMC3069317 DOI: 10.1007/s12350-010-9327-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2010] [Accepted: 11/26/2010] [Indexed: 11/30/2022]
Abstract
BACKGROUND Quantitative myocardial PET perfusion imaging requires partial volume corrections. METHODS Patients underwent ECG-gated, rest-dipyridamole, myocardial perfusion PET using Rb-82 decay corrected in Bq/cc for diastolic, systolic, and combined whole cycle ungated images. Diastolic partial volume correction relative to systole was determined from the systolic/diastolic activity ratio, systolic partial volume correction from phantom dimensions comparable to systolic LV wall thicknesses and whole heart cycle partial volume correction for ungated images from fractional systolic-diastolic duration for systolic and diastolic partial volume corrections. RESULTS For 264 PET perfusion images from 159 patients (105 rest-stress image pairs, 54 individual rest or stress images), average resting diastolic partial volume correction relative to systole was 1.14 ± 0.04, independent of heart rate and within ±1.8% of stress images (1.16 ± 0.04). Diastolic partial volume corrections combined with those for phantom dimensions comparable to systolic LV wall thickness gave an average whole heart cycle partial volume correction for ungated images of 1.23 for Rb-82 compared to 1.14 if positron range were negligible as for F-18. CONCLUSION Quantitative myocardial PET perfusion imaging requires partial volume correction, herein demonstrated clinically from systolic/diastolic absolute activity ratios combined with phantom data accounting for Rb-82 positron range.
Collapse
Affiliation(s)
- Nils P. Johnson
- Division of Cardiology, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL USA
| | - Stefano Sdringola
- Division of Cardiology, Department of Medicine, Weatherhead P.E.T. Center For Preventing and Reversing Atherosclerosis, University of Texas Medical School and Memorial Hermann Hospital, 6431 Fannin St., Room 4.256 MSB, Houston, TX 77030 USA
| | - K. Lance Gould
- Division of Cardiology, Department of Medicine, Weatherhead P.E.T. Center For Preventing and Reversing Atherosclerosis, University of Texas Medical School and Memorial Hermann Hospital, 6431 Fannin St., Room 4.256 MSB, Houston, TX 77030 USA
| |
Collapse
|
29
|
Cavalcanti Filho JLG, de Souza Leão Lima R, de Souza Machado Neto L, Kayat Bittencourt L, Domingues RC, da Fonseca LMB. PET/CT and vascular disease: current concepts. Eur J Radiol 2011; 80:60-7. [PMID: 21371842 DOI: 10.1016/j.ejrad.2010.12.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 12/29/2010] [Indexed: 10/18/2022]
Abstract
Since its introduction in 2001, positron emission tomography associated to computed tomography (PET/CT) has been established as a standard tool in cancer evaluation. Being a multimodality imaging method, it combines in a single session the sensitivity granted by PET for detection of molecular targets within the picomolar range, with an underlying submilimetric resolution inherent to CT, that can precisely localize the PET findings. In this last decade, there have been new insights regarding the pathophysiology of atherosclerosis, particularly about plaque rupture and vascular remodeling. This has increased the interest for research on PET/CT in vascular diseases as a potential new diagnostic tool, since some PET molecular targets could identify diseases before the manifestation of gross anatomic features. In this review, we will describe the current applications of PET/CT in vascular diseases, emphasizing its usefulness in the settings of vasculitis, aneurysms, vascular graft infection, aortic dissection, and atherosclerosis/plaque vulnerability. Although not being properly peripheral vascular conditions, ischemic cardiovascular disease and cerebrovascular disease will be briefly addressed as well, due to their widespread prevalence and importance.
Collapse
|
30
|
|
31
|
Current world literature. Curr Opin Cardiol 2011; 26:165-73. [PMID: 21307667 DOI: 10.1097/hco.0b013e328344b569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|