1
|
Hurstel M, Joly L, Imbert L, Zimmermann G, Roch V, Schoepfer P, Lamiral Z, Salvi P, Benetos A, Verger A, Marie PY. Volume of the proximal half of the thoracic aorta is the most comprehensive FDG-PET/CT indicator of arterial aging throughout adulthood. Eur J Hybrid Imaging 2023; 7:11. [PMID: 37369917 DOI: 10.1186/s41824-023-00169-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023] Open
Abstract
INTRODUCTION 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) and computed tomography (CT) features of the proximal and more elastic half of the thoracic aorta are known to correlate with aorta stiffness in older populations. This prospective study aimed to analyze the changes in these FDG-PET/CT features between young, middle-aged, and older adults, and investigate associations with arterial stiffness and blood pressure (BP). METHODS Young (< 40 years), middle-aged (40-to-60 years), and older (> 60 years) adults, who underwent an FDG-PET/CT, were prospectively recruited. FDG-PET/CT features of the proximal half of the thoracic aorta were analyzed relative to the age categories, BP and carotid-femoral pulse wave velocity (PWV), a reference indicator of aorta stiffness. RESULTS We included 79 patients (38 women; 22 young, 19 middle-aged, and 38 older adults). An increase in age category was associated with increases in mean standardized uptake values (SUVs) of blood and aorta and most significantly in aorta SUV heterogeneity, represented by SUV standard deviation (SUV-SD), aorta calcification volume, and the aorta volume indexed to body surface area. However, this indexed aorta volume was the sole variable: (i) exhibiting a stepwise increase from young (median: 25 cm3/m2 [interquartile range: 20-28 cm3/m2]), to middle-aged (41 [30-48] cm3/m2, p < 0.001 vs. Young), and older (62 [44-70] cm3/m2, p < 0.001 vs. middle-age) adults, and (ii) selected in the multivariate predictions of systolic, diastolic, and pulse BP. Indexed aorta volume was also a multivariate predictor of PWV but in association with SUV-SD and hypertension. CONCLUSION In a population of patients referred to an FDG-PET/CT investigation, the indexed volume of the proximal and more elastic half of the thoracic aorta is the most comprehensive indicator of arterial aging. This imaging parameter exhibits a stepwise increase from young to middle-aged and older adults, is strongly linked to inter-individual changes in both arterial stiffness and BP, and thus, could help assess the early phases of arterial aging. Trial registration ClinicalTrial.gov, NCT03345290. Registered 17 November 2017, https://clinicaltrials.gov/ct2/show/NCT03345290?term=NCT03345290&draw=2&rank=1.
Collapse
Affiliation(s)
- Moira Hurstel
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Laure Joly
- Geriatric Department, CHRU Nancy, Université de Lorraine, Nancy, France
- INSERM, DCAC, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Laetitia Imbert
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | - Gaetan Zimmermann
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Véronique Roch
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
| | - Pauline Schoepfer
- Geriatric Department, CHRU Nancy, Université de Lorraine, Nancy, France
| | - Zohra Lamiral
- INSERM, CIC 1433, Université de Lorraine, CHRU-Nancy, Nancy, France
| | - Paolo Salvi
- Department of Cardiology, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Athanase Benetos
- Geriatric Department, CHRU Nancy, Université de Lorraine, Nancy, France
- INSERM, DCAC, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Antoine Verger
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France
- IADI, INSERM U1254, Université de Lorraine, Nancy, France
| | - Pierre-Yves Marie
- Department of Nuclear Medicine and Nancyclotep Molecular Imaging Platform, CHRU-Nancy, Université de Lorraine, 54000, Nancy, France.
- INSERM, DCAC, Université de Lorraine, Vandœuvre-lès-Nancy, France.
- Médecine Nucléaire, Hôpital de Brabois, CHRU-Nancy, rue Morvan, 54500, Vandoeuvre-lès-Nancy, France.
| |
Collapse
|
2
|
Moghiseh M, Searle E, Dixit D, Kim J, Dong YC, Cormode DP, Butler A, Gieseg SP. Spectral Photon-Counting CT Imaging of Gold Nanoparticle Labelled Monocytes for Detection of Atherosclerosis: A Preclinical Study. Diagnostics (Basel) 2023; 13:diagnostics13030499. [PMID: 36766602 PMCID: PMC9914700 DOI: 10.3390/diagnostics13030499] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 01/31/2023] Open
Abstract
A key process in the development of atherosclerotic plaques is the recruitment of monocytes into the artery wall. Using spectral photon-counting computed tomography we examine whether monocyte deposition within the artery wall of ApoE-/- mouse can be detected. Primary mouse monocytes were labelled by incubating them with 15 nm gold nanoparticles coated with 11-mercaptoundecanoic acid The monocyte uptake of the particle was confirmed by electron microscopy of the cells before injection into 6-week-old apolipoprotein E deficient (ApoE-/-) mouse that had been fed with the Western diet for 10 weeks. Four days following injection, the mouse was sacrificed and imaged using a MARS spectral photon counting computed tomography scanner with a spectral range of 7 to 120 KeV with five energy bins. Imaging analysis showed the presence of X-ray dense material within the mouse aortic arch which was consistent with the spectral characteristic of gold rather than calcium. The imaging is interpreted as showing the deposition of gold nanoparticles containing monocytes within the mouse aorta. The results of our study determined that spectral photon-counting computed tomography could provide quantitative information about gold nanoparticles labelled monocytes in voxels of 90 × 90 × 90 µm3. The imaging was consistent with previous micro-CT and electron microscopy of mice using the same nanoparticles. This study demonstrates that spectral photon-counting computed tomography, using a MARS small bore scanner, can detect a fundamental atherogenic process within mouse models of atherogenesis. The present study demonstrates the feasibility of spectral photon-counting computed tomography as an emerging molecular imaging modality to detect atherosclerotic disease.
Collapse
Affiliation(s)
- Mahdieh Moghiseh
- Department of Radiology, University of Otago, Christchurch 9016, New Zealand
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Correspondence: (M.M.); (S.P.G.)
| | - Emily Searle
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- Department of Physics and Astronomy, University of Canterbury, Christchurch 8041, New Zealand
| | - Devyani Dixit
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Johoon Kim
- Departments of Radiology, Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yuxi C. Dong
- Departments of Radiology, Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David P. Cormode
- Departments of Radiology, Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anthony Butler
- Department of Radiology, University of Otago, Christchurch 9016, New Zealand
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Department of Physics and Astronomy, University of Canterbury, Christchurch 8041, New Zealand
- European Organization for Nuclear Research (CERN), 1211 Meyrin, Switzerland
| | - Steven P. Gieseg
- Department of Radiology, University of Otago, Christchurch 9016, New Zealand
- MARS Bioimaging Ltd., Christchurch 8041, New Zealand
- Free Radical Biochemistry Laboratory, School of Biological Sciences, University of Canterbury, Christchurch 8041, New Zealand
- European Organization for Nuclear Research (CERN), 1211 Meyrin, Switzerland
- Correspondence: (M.M.); (S.P.G.)
| | | |
Collapse
|
3
|
Coronary CT Angiography Guided Medical Therapy in Subclinical Atherosclerosis. J Clin Med 2021; 10:jcm10040625. [PMID: 33562179 PMCID: PMC7914610 DOI: 10.3390/jcm10040625] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/31/2021] [Accepted: 02/01/2021] [Indexed: 12/11/2022] Open
Abstract
The goals of primary prevention in coronary atherosclerosis are to avoid sudden cardiac death, myocardial infarction or the need for revascularization procedures. Successful prevention will rely on accurate identification, effective therapy and monitoring of those at risk. Identification and potential monitoring can be achieved using cardiac computed tomography (CT). Cardiac CT can determine coronary artery calcification (CAC), a useful surrogate of coronary atherosclerosis burden. Cardiac CT can also assess coronary CT angiography (CCTA). CCTA can identify arterial lumen narrowing and highlight mural atherosclerosis hitherto hidden from other anatomical approaches. Herein we consider the role of CCTA and CAC-scoring in subclinical atherosclerosis. We explore the use of these modalities in screening and discuss data that has used CCTA for guiding primary prevention. We examine therapeutic trials using CCTA to determine the effects of plaque-modifying therapies. Finally, we address the role of CCTA and CAC to guide therapy as defined in current primary prevention documents. CCTA has emerged as an essential tool in the detection and management of clinical coronary artery disease. To date, its role in subclinical atherosclerosis is less well defined, yet with modern CT scanners and continued pharmacotherapy development, CCTA is likely to achieve a more prominent place in the primary prevention of coronary atherosclerosis.
Collapse
|
5
|
Cocker MS, Mc Ardle B, Spence JD, Lum C, Hammond RR, Ongaro DC, McDonald MA, deKemp RA, Tardif JC, Beanlands RSB. Imaging atherosclerosis with hybrid [18F]fluorodeoxyglucose positron emission tomography/computed tomography imaging: what Leonardo da Vinci could not see. J Nucl Cardiol 2012; 19:1211-25. [PMID: 23073913 PMCID: PMC3510422 DOI: 10.1007/s12350-012-9631-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Prodigious efforts and landmark discoveries have led toward significant advances in our understanding of atherosclerosis. Despite significant efforts, atherosclerosis continues globally to be a leading cause of mortality and reduced quality of life. With surges in the prevalence of obesity and diabetes, atherosclerosis is expected to have an even more pronounced impact upon the global burden of disease. It is imperative to develop strategies for the early detection of disease. Positron emission tomography (PET) imaging utilizing [(18)F]fluorodeoxyglucose (FDG) may provide a non-invasive means of characterizing inflammatory activity within atherosclerotic plaque, thus serving as a surrogate biomarker for detecting vulnerable plaque. The aim of this review is to explore the rationale for performing FDG imaging, provide an overview into the mechanism of action, and summarize findings from the early application of FDG PET imaging in the clinical setting to evaluate vascular disease. Alternative imaging biomarkers and approaches are briefly discussed.
Collapse
Affiliation(s)
- Myra S. Cocker
- Molecular Function and Imaging Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| | - Brian Mc Ardle
- Molecular Function and Imaging Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| | - J. David Spence
- Stroke Prevention & Atherosclerosis Research Centre, Robarts Research Institute, University of Western Ontario, 1400 Western Road, London, ON Canada
| | - Cheemun Lum
- Interventional & Diagnostic Neuroradiology, Department of Radiology, The Ottawa
Hospital, University of Ottawa, Civic Campus, Diagnostic Imaging, K1Y 4E9 Ottawa, ON Canada
| | - Robert R. Hammond
- Departments of Pathology and Clinical Neurological Sciences, London Health Sciences Centre and University of Western Ontario, 339 Windermere Road, N6A 5A5 London, ON Canada
| | - Deidre C. Ongaro
- Molecular Function and Imaging Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| | - Matthew A. McDonald
- Molecular Function and Imaging Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| | - Robert A. deKemp
- Molecular Function and Imaging Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| | | | - Rob S. B. Beanlands
- Molecular Function and Imaging Program, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON K1Y 4W7 Canada
| |
Collapse
|
6
|
Abstract
Over the last few decades it has been shown that novel technologies and technological progress rapidly change the working environment of radiologists and nuclear medicine physicians. Thus, new possibilities, e.g., in tumor staging and therapy monitoring, but also new challenges arise. Recently, it could be shown that the integration of magnetic resonance imaging (MRI) and positron emission tomography (PET) is technically possible. The evolvement of new dedicated hybrid MR/PET systems for whole-body imaging in humans offers new potential in multimodal imaging. Especially simultaneous measurement of PET and MRI datasets allows for insights in metabolic and functional processes, particularly in oncologic demands, but also in cardiovascular and cerebral imaging. In this work-in-progress review article, a technical summary including the method-inherent challenges are given. Furthermore, possible clinical applications and research interests are addressed.
Collapse
|