1
|
Assante R, Zampella E, D'Antonio A, Mannarino T, Gaudieri V, Nappi C, Arumugam P, Panico M, Buongiorno P, Petretta M, Cuocolo A, Acampa W. Impact on cardiovascular outcome of coronary revascularization-induced changes in ischemic perfusion defect and myocardial flow reserve. Eur J Nucl Med Mol Imaging 2024; 51:1612-1621. [PMID: 38191816 PMCID: PMC11043198 DOI: 10.1007/s00259-023-06588-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
PURPOSE We evaluated the impact on cardiovascular outcome of coronary revascularization-induced changes in ischemic total perfusion defect (ITPD) and myocardial flow reserve (MFR) as assessed by 82Rb positron emission tomography (PET)/computed tomography (CT) imaging. METHODS The study included 102 patients referred to 82Rb PET/CT myocardial perfusion imaging before and after coronary revascularization. All patients were followed for the occurrence of cardiovascular events (cardiac death, nonfatal myocardial infarction, repeated revascularization, and heart failure) after the second imaging study. RESULTS During a median follow-up of 20 months, 21 events occurred. The clinical characteristics were comparable between patients with and without events. In the overall study population, after revascularization, there was a significant reduction (P < 0.001) of ITPD, while hyperemic myocardial blood flow (MBF) (P < 0.01) and MFR (P < 0.05) significantly improved. Event rate was higher in patients with ITPD (P < 0.005) or MFR (P < 0.001) worsening compared to those with unchanged or improved ITPD or MFR. At Cox univariable analysis, ITPD and MFR worsening resulted in predictors of events (both P < 0.05). Patients with worsening of both ITPD and MFR had the worst event-free survival (log-rank 32.9, P for trend < 0.001). CONCLUSIONS In patients with stable CAD, worsening of ITPD and MFR after revascularization procedures is associated with higher risk of cardiovascular events. Follow-up MPI with 82Rb PET/CT may improve risk stratification in patients submitted to coronary revascularization.
Collapse
Affiliation(s)
- Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Parthiban Arumugam
- Department of Nuclear Medicine, Central Manchester Foundation Trust, Manchester, UK
| | | | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | | | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
2
|
Zampella E, Mannarino T, D'Antonio A, Assante R, Gaudieri V, Buongiorno P, Panico M, Cantoni V, Green R, Nappi C, Arumugam P, Petretta M, Cuocolo A, Acampa W. Prediction of outcome by 82Rb PET/CT in patients with ischemia and nonobstructive coronary arteries. J Nucl Cardiol 2023; 30:1110-1117. [PMID: 36352083 DOI: 10.1007/s12350-022-03144-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/11/2022] [Indexed: 11/11/2022]
Abstract
BACKGROUND The purpose of this study was to assess the prognostic value of cardiac 82Rb positron emission tomography (PET)/computed tomography (CT) imaging in patients with myocardial ischemia of nonobstructive coronary arteries (INOCA). METHODS We retrospectively evaluated 311 INOCA patients who underwent rest stress 82Rb PET/CT. Cardiac end points were cardiac death, myocardial infarction, or late coronary revascularization. A parametric survival model was also used to identify how the variables influenced time to event. RESULTS During a median follow-up of 37 months (range 6-108), 23 (7%) cardiac events occurred. In patients with events total perfusion defect (TPD) was higher and myocardial flow reserve (MFR) lower compared to those without events (both P < .001). At multivariable Cox analysis, increased TPD (i.e., ≥ 5%) and reduced MFR (i.e., < 2) were predictors of events (both P < .001). At Weibull survival analysis, the highest probability of cardiac events and risk acceleration were observed in patients with both increased TPD and reduced MFR. Annualized event rate was higher in patients with reduced MFR compared to those with preserved MFR (P < .001). CONCLUSION In patients with INOCA, the combined evaluation of myocardial perfusion and coronary vascular function by 82Rb PET/CT is able to identify those at higher risk of cardiac events.
Collapse
Affiliation(s)
- Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | | | - Valeria Cantoni
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Roberta Green
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Parthiban Arumugam
- Department of Nuclear Medicine, Central Manchester Foundation Trust, Manchester, UK
| | | | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
3
|
Singh A, Kwiecinski J, Cadet S, Killekar A, Tzolos E, Williams MC, Dweck MR, Newby DE, Dey D, Slomka PJ. Automated nonlinear registration of coronary PET to CT angiography using pseudo-CT generated from PET with generative adversarial networks. J Nucl Cardiol 2023; 30:604-615. [PMID: 35701650 PMCID: PMC9747983 DOI: 10.1007/s12350-022-03010-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 05/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Coronary 18F-sodium-fluoride (18F-NaF) positron emission tomography (PET) showed promise in imaging coronary artery disease activity. Currently image processing remains subjective due to the need for manual registration of PET and computed tomography (CT) angiography data. We aimed to develop a novel fully automated method to register coronary 18F-NaF PET to CT angiography using pseudo-CT generated by generative adversarial networks (GAN). METHODS A total of 169 patients, 139 in the training and 30 in the testing sets were considered for generation of pseudo-CT from non-attenuation corrected (NAC) PET using GAN. Non-rigid registration was used to register pseudo-CT to CT angiography and the resulting transformation was used to align PET with CT angiography. We compared translations, maximal standard uptake value (SUVmax) and target to background ratio (TBRmax) at the location of plaques, obtained after observer and automated alignment. RESULTS Automatic end-to-end registration was performed for 30 patients with 88 coronary vessels and took 27.5 seconds per patient. Difference in displacement motion vectors between GAN-based and observer-based registration in the x-, y-, and z-directions was 0.8 ± 3.0, 0.7 ± 3.0, and 1.7 ± 3.9 mm, respectively. TBRmax had a coefficient of repeatability (CR) of 0.31, mean bias of 0.03 and narrow limits of agreement (LOA) (95% LOA: - 0.29 to 0.33). SUVmax had CR of 0.26, mean bias of 0 and narrow LOA (95% LOA: - 0.26 to 0.26). CONCLUSION Pseudo-CT generated by GAN are perfectly registered to PET can be used to facilitate quick and fully automated registration of PET and CT angiography.
Collapse
Affiliation(s)
- Ananya Singh
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite Metro 203, Los Angeles, CA, 90048, USA
| | - Jacek Kwiecinski
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite Metro 203, Los Angeles, CA, 90048, USA
- Department of Interventional Cardiology and Angiology, Institute of Cardiology, Warsaw, Poland
| | - Sebastien Cadet
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite Metro 203, Los Angeles, CA, 90048, USA
| | - Aditya Killekar
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite Metro 203, Los Angeles, CA, 90048, USA
| | - Evangelos Tzolos
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Michelle C Williams
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Marc R Dweck
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, UK
| | - Damini Dey
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite Metro 203, Los Angeles, CA, 90048, USA
| | - Piotr J Slomka
- Departments of Medicine (Division of Artificial Intelligence in Medicine), Imaging and Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Suite Metro 203, Los Angeles, CA, 90048, USA.
| |
Collapse
|
4
|
Otaki Y, Van Kriekinge SD, Wei CC, Kavanagh P, Singh A, Parekh T, Di Carli M, Maddahi J, Sitek A, Buckley C, Berman DS, Slomka PJ. Improved myocardial blood flow estimation with residual activity correction and motion correction in 18F-flurpiridaz PET myocardial perfusion imaging. Eur J Nucl Med Mol Imaging 2021; 49:1881-1893. [PMID: 34967914 DOI: 10.1007/s00259-021-05643-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/28/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE We sought to evaluate the diagnostic performance for coronary artery disease (CAD) of myocardial blood flow (MBF) quantification with 18F-flurpiridaz PET using motion correction (MC) and residual activity correction (RAC). METHODS In total, 231 patients undergoing same-day pharmacologic rest and stress 18F-flurpiridaz PET from Phase III Flurpiridaz trial (NCT01347710) were studied. Frame-by-frame MC was performed and RAC was accomplished by subtracting the rest residual counts from the dynamic stress polar maps. MBF and myocardial flow reserve (MFR) were derived with a two-compartment early kinetic model for the entire left ventricle (global), each coronary territory, and 17-segment. Global and minimal values of three territorial (minimal vessel) and segmental estimation (minimal segment) of stress MBF and MFR were evaluated in the prediction of CAD. MBF and MFR were evaluated with and without MC and RAC (1: no MC/no RAC, 2: no MC/RAC, 3: MC/RAC). RESULTS The area-under the receiver operating characteristics curve (AUC [95% confidence interval]) of stress MBF with MC/RAC was higher for minimal segment (0.89 [0.85-0.94]) than for minimal vessel (0.86 [0.81-0.92], p = 0.03) or global estimation (0.81 [0.75-0.87], p < 0.0001). The AUC of MFR with MC/RAC was higher for minimal segment (0.87 [0.81-0.93]) than for minimal vessel (0.83 [0.76-0.90], p = 0.014) or global estimation (0.77 [0.69-0.84], p < 0.0001). The AUCs of minimal segment stress MBF and MFR with MC/RAC were higher compared to those with no MC/RAC (p < 0.001 for both) or no MC/no RAC (p < 0.0001 for both). CONCLUSIONS Minimal segment MBF or MFR estimation with MC and RAC improves the diagnostic performance for obstructive CAD compared to global assessment.
Collapse
Affiliation(s)
- Yuka Otaki
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Serge D Van Kriekinge
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Chih-Chun Wei
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Paul Kavanagh
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Ananya Singh
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Tejas Parekh
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Marcelo Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology and Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA
| | - Jamshid Maddahi
- Division of Nuclear Medicine, Department of Molecular and Medical Pharmacology and Division of Cardiology, Department of Medicine, David Geffen School of Medicine, UCLA, Los Angeles, CA, USA
| | - Arkadiusz Sitek
- Sano Centre for Computational Medicine, Cracow, Malopolskie, Poland
| | | | - Daniel S Berman
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA
| | - Piotr J Slomka
- Department of Medicine (Division of Artificial Intelligence)- Imaging- and Biomedical Sciences- Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Ste. Metro 203, Los Angeles, CA, 90048, USA.
| |
Collapse
|
5
|
Kawaguchi N, Okayama H, Kido T, Fukuyama N, Shigematsu T, Kawamura G, Hiasa G, Kazatani Y, Inoue T, Miki H, Miyagawa M, Mochizuki T. Clinical significance of corrected relative flow reserve derived from 13N-ammonia positron emission tomography combined with coronary computed tomography angiography. J Nucl Cardiol 2021; 28:1851-1860. [PMID: 31713117 DOI: 10.1007/s12350-019-01931-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022]
Abstract
BACKGROUND This study evaluated corrected relative flow reserve (RFR) derived from 13N-ammonia positron emission tomography (PET) combined with coronary computed tomography angiography (CTA). METHODS We analyzed 61 patients who underwent coronary CTA, 13N-ammonia PET, and invasive coronary angiography. Triple-vessel disease were excluded. Conventional RFRs were calculated as the ratio of hyperemic myocardial blood flow (hMBF) of hypoperfusion areas to those of non-ischemic lesions. Corrected RFRs were calculated using PET and coronary CTA to adjust coronary territories to their feeding vessels. Diagnostic performance was compared to detect obstructive coronary lesions. RESULTS Of the 180 vessels analyzed, 50 were diagnosed as obstructive lesions (≥ 70% stenosis and/or fractional flow reserve value ≤ 0.8). The coronary flow reserve (CFR), hMBF, conventional RFR, and corrected RFR of obstructive lesions were significantly lower than those of non-obstructive lesions. In receiver operating characteristic curve analysis, these quantitative PET measurements had area under the curve of 0.67, 0.71, 0.89, and 0.92, respectively. Diagnostic performance differences between corrected and conventional RFR were not statistically significant. CONCLUSION In patients with single or double vessel disease, indices of RFR, with or without coronary angiographic guidance of the reference coronary territory, are better discriminators of flow-limiting stenoses than hMBF and CFR.
Collapse
Affiliation(s)
- Naoto Kawaguchi
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Hideki Okayama
- Department of Cardiology, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan.
| | - Teruhito Kido
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Naoki Fukuyama
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Tatsuya Shigematsu
- Department of Cardiology, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Go Kawamura
- Department of Cardiology, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Go Hiasa
- Department of Cardiology, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Yukio Kazatani
- Department of Cardiology, Ehime Prefectural Central Hospital, 83 Kasuga-machi, Matsuyama, Ehime, 790-0024, Japan
| | - Takeshi Inoue
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Hitoshi Miki
- Department of Radiology, Ehime Prefectural Central Hospital, Matsuyama, Ehime, Japan
| | - Masao Miyagawa
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| | - Teruhito Mochizuki
- Department of Radiology, Ehime University Graduate School of Medicine, Toon, Ehime, Japan
| |
Collapse
|
6
|
Yang HJ, Dey D, Sykes J, Butler J, Biernaski H, Kovacs M, Bi X, Sharif B, Cokic I, Tang R, Slomka P, Prato FS, Dharmakumar R. Heart Rate-Independent 3D Myocardial Blood Oxygen Level-Dependent MRI at 3.0 T with Simultaneous 13N-Ammonia PET Validation. Radiology 2020; 295:82-93. [PMID: 32096705 PMCID: PMC7106942 DOI: 10.1148/radiol.2020191456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 11/11/2022]
Abstract
Background Despite advances, blood oxygen level-dependent (BOLD) cardiac MRI for myocardial perfusion is limited by inadequate spatial coverage, imaging speed, multiple breath holds, and imaging artifacts, particularly at 3.0 T. Purpose To develop and validate a robust, contrast agent-unenhanced, free-breathing three-dimensional (3D) cardiac MRI approach for reliably examining changes in myocardial perfusion between rest and adenosine stress. Materials and Methods A heart rate-independent, free-breathing 3D T2 mapping technique at 3.0 T that can be completed within the period of adenosine stress (≤4 minutes) was developed by using computer simulations, ex vivo heart preparations, and dogs. Studies in dogs were performed with and without coronary stenosis and validated with simultaneously acquired nitrogen 13 (13N) ammonia PET perfusion in a clinical PET/MRI system. The MRI approach was also prospectively evaluated in healthy human volunteers (from January 2017 to September 2017). Myocardial BOLD responses (MBRs) between normal and ischemic myocardium were compared with mixed model analysis. Results Dogs (n = 10; weight range, 20-25 kg; mongrel dogs) and healthy human volunteers (n = 10; age range, 22-53 years; seven men) were evaluated. In healthy dogs, T2 MRI at adenosine stress was greater than at rest (mean rest vs stress, 38.7 msec ± 2.5 [standard deviation] vs 45.4 msec ± 3.3, respectively; MBR, 1.19 ± 0.08; both, P < .001). At the same conditions, mean rest versus stress PET perfusion was 1.1 mL/mg/min ± 0.11 versus 2.3 mL/mg/min ± 0.82, respectively (P < .001); myocardial perfusion reserve (MPR) was 2.4 ± 0.82 (P < .001). The BOLD response and PET MPR were positively correlated (R = 0.67; P < .001). In dogs with coronary stenosis, perfusion anomalies were detected on the basis of MBR (normal vs ischemic, 1.09 ± 0.05 vs 1.00 ± 0.04, respectively; P < .001) and MPR (normal vs ischemic, 2.7 ± 0.08 vs 1.7 ± 1.1, respectively; P < .001). Human volunteers showed increased myocardial T2 at stress (rest vs stress, 44.5 msec ± 2.6 vs 49.0 msec ± 5.5, respectively; P = .004; MBR, 1.1 msec ± 8.08). Conclusion This three-dimensional cardiac blood oxygen level-dependent (BOLD) MRI approach overcame key limitations associated with conventional cardiac BOLD MRI by enabling whole-heart coverage within the standard duration of adenosine infusion, and increased the magnitude and reliability of BOLD contrast, which may be performed without requiring breath holds. © RSNA, 2020 Online supplemental material is available for this article. See also the editorial by Almeida in this issue.
Collapse
Affiliation(s)
- Hsin-Jung Yang
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Damini Dey
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Jane Sykes
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - John Butler
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Heather Biernaski
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Michael Kovacs
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Xiaoming Bi
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Behzad Sharif
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Ivan Cokic
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Richard Tang
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Piotr Slomka
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Frank S. Prato
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| | - Rohan Dharmakumar
- From the Department of Biomedical Sciences, Cedars-Sinai Medical
Center, Biomedical Imaging Research Institute, PACT Bldg–Suite 400, 8700
Beverly Blvd, Los Angeles, CA 90048 (H.J.Y., D.D., B.S., I.C., R.T., P.S.,
R.D.); Department of Bioengineering (H.J.Y., R.D.) and David Geffen School of
Medicine (D.D., P.S.), University of California, Los Angeles Calif; Lawson
Health Research Institute, London, Canada (J.S., J.B., H.B., M.K., F.S.P.); and
MR R&D, Siemens Healthcare, Los Angeles, Calif (X.B.)
| |
Collapse
|
7
|
Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in predicting lesion-related outcome. Eur J Nucl Med Mol Imaging 2019; 47:1698-1704. [DOI: 10.1007/s00259-019-04534-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/12/2019] [Indexed: 12/15/2022]
|
8
|
Slomka P. Hybrid quantitative imaging: Will it enter clinical practice? J Nucl Cardiol 2018; 25:1387-1389. [PMID: 28390041 DOI: 10.1007/s12350-017-0868-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 02/16/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Piotr Slomka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Zampella E, Acampa W, Assante R, Nappi C, Gaudieri V, Mainolfi CG, Green R, Cantoni V, Panico M, Klain M, Petretta M, Slomka PJ, Cuocolo A. Combined evaluation of regional coronary artery calcium and myocardial perfusion by 82Rb PET/CT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 2018; 45:521-529. [DOI: 10.1007/s00259-018-3935-1] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/02/2018] [Indexed: 12/22/2022]
|
10
|
Yang HJ, Dey D, Sykes J, Klein M, Butler J, Kovacs MS, Sobczyk O, Sharif B, Bi X, Kali A, Cokic I, Tang R, Yumul R, Conte AH, Tsaftaris SA, Tighiouart M, Li D, Slomka PJ, Berman DS, Prato FS, Fisher JA, Dharmakumar R. Arterial CO 2 as a Potent Coronary Vasodilator: A Preclinical PET/MR Validation Study with Implications for Cardiac Stress Testing. J Nucl Med 2017; 58:953-960. [PMID: 28254864 DOI: 10.2967/jnumed.116.185991] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 01/31/2017] [Indexed: 11/16/2022] Open
Abstract
Myocardial blood flow (MBF) is the critical determinant of cardiac function. However, its response to increases in partial pressure of arterial CO2 (PaCO2), particularly with respect to adenosine, is not well characterized because of challenges in blood gas control and limited availability of validated approaches to ascertain MBF in vivo. Methods: By prospectively and independently controlling PaCO2 and combining it with 13N-ammonia PET measurements, we investigated whether a physiologically tolerable hypercapnic stimulus (∼25 mm Hg increase in PaCO2) can increase MBF to that observed with adenosine in 3 groups of canines: without coronary stenosis, subjected to non-flow-limiting coronary stenosis, and after preadministration of caffeine. The extent of effect on MBF due to hypercapnia was compared with adenosine. Results: In the absence of stenosis, mean MBF under hypercapnia was 2.1 ± 0.9 mL/min/g and adenosine was 2.2 ± 1.1 mL/min/g; these were significantly higher than at rest (0.9 ± 0.5 mL/min/g, P < 0.05) and were not different from each other (P = 0.30). Under left-anterior descending coronary stenosis, MBF increased in response to hypercapnia and adenosine (P < 0.05, all territories), but the effect was significantly lower than in the left-anterior descending coronary territory (with hypercapnia and adenosine; both P < 0.05). Mean perfusion defect volumes measured with adenosine and hypercapnia were significantly correlated (R = 0.85) and were not different (P = 0.12). After preadministration of caffeine, a known inhibitor of adenosine, resting MBF decreased; and hypercapnia increased MBF but not adenosine (P < 0.05). Conclusion: Arterial blood CO2 tension when increased by 25 mm Hg can induce MBF to the same level as a standard dose of adenosine. Prospectively targeted arterial CO2 has the capability to evolve as an alternative to current pharmacologic vasodilators used for cardiac stress testing.
Collapse
Affiliation(s)
- Hsin-Jung Yang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Damini Dey
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Jane Sykes
- University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Michael Klein
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - John Butler
- University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Michael S Kovacs
- University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Olivia Sobczyk
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Behzad Sharif
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Xiaoming Bi
- MR R&D, Siemens Healthcare, Los Angeles, California
| | - Avinash Kali
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Ivan Cokic
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Richard Tang
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Roya Yumul
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Antonio H Conte
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California
| | - Sotirios A Tsaftaris
- School of Engineering, Institute of Digital Communications, University of Edinburgh, Edinburgh, United Kingdom; and
| | - Mourad Tighiouart
- Biostatistics and Bioinformatics Research Center, Cedars-Sinai Medical Center, Los Angeles, California
| | - Debiao Li
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Bioengineering, University of California, Los Angeles, California
| | - Piotr J Slomka
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Daniel S Berman
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Frank S Prato
- University of Western Ontario, Lawson Health Research Institute, London, Ontario, Canada
| | - Joseph A Fisher
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Rohan Dharmakumar
- Biomedical Imaging Research Institute, Cedars-Sinai Medical Center, Los Angeles, California .,Department of Bioengineering, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| |
Collapse
|
11
|
Juneau D, Erthal F, Ohira H, Mc Ardle B, Hessian R, deKemp RA, Beanlands RSB. Clinical PET Myocardial Perfusion Imaging and Flow Quantification. Cardiol Clin 2015; 34:69-85. [PMID: 26590781 DOI: 10.1016/j.ccl.2015.07.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Cardiac PET imaging is a powerful tool for the assessment of coronary artery disease. Many tracers with different advantages and disadvantages are available. It has several advantages over single photon emission computed tomography, including superior accuracy and lower radiation exposure. It provides powerful prognostic information, which can help to stratify patients and guide clinicians. The addition of flow quantification enables better detection of multivessel disease while providing incremental prognostic information. Flow quantification provides important physiologic information, which may be useful to individualize patient therapy. This approach is being applied in some centers, but requires standardization before it is more widely applied.
Collapse
Affiliation(s)
- Daniel Juneau
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Fernanda Erthal
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Hiroshi Ohira
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada; First Department of Medicine, Hokkaido University Graduate School of Medicine, Kita 15 Nishi 7, Kita-Ku, Sapporo, Hokkaido 060-8638, Japan
| | - Brian Mc Ardle
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Renée Hessian
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Robert A deKemp
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada
| | - Rob S B Beanlands
- Division of Cardiology, Department of Medicine, National Cardiac PET Centre, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
12
|
Abstract
Positron Emission Tomography (PET) has several clinical and research applications in cardiovascular imaging. Myocardial perfusion imaging with PET allows accurate global and regional measurements of myocardial perfusion, myocardial blood flow and function at stress and rest in one exam. Simultaneous assessment of function and perfusion by PET with quantitative software is currently the routine practice. Combination of ejection fraction reserve with perfusion information may improve the identification of severe disease. The myocardial viability can be estimated by quantitative comparison of fluorodeoxyglucose (18FDG) and rest perfusion imaging. The myocardial blood flow and coronary flow reserve measurements are becoming routinely included in the clinical assessment due to enhanced dynamic imaging capabilities of the latest PET/CT scanners. Absolute flow measurements allow evaluation of the coronary microvascular dysfunction and provide additional prognostic and diagnostic information for coronary disease. Standard quantitative approaches to compute myocardial blood flow from kinetic PET data in automated and rapid fashion have been developed for 13N-ammonia, 15O-water and 82Rb radiotracers. The agreement between software methods available for such analysis is excellent. Relative quantification of 82Rb PET myocardial perfusion, based on comparisons to normal databases, demonstrates high performance for the detection of obstructive coronary disease. New tracers, such as 18F-flurpiridaz may allow further improvements in the disease detection. Computerized analysis of perfusion at stress and rest reduces the variability of the assessment as compared to visual analysis. PET quantification can be enhanced by precise coregistration with CT angiography. In emerging clinical applications, the potential to identify vulnerable plaques by quantification of atherosclerotic plaque uptake of 18FDG and 18F-sodium fluoride tracers in carotids, aorta and coronary arteries has been demonstrated.
Collapse
|
13
|
Slomka PJ, Berman DS, Germano G. State of the Art Hybrid Technology: PET/CT. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-013-9208-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Dweck MR, Joshi FR, Newby DE, Rudd JHF. Noninvasive imaging in cardiovascular therapy: the promise of coronary arterial ¹⁸F-sodium fluoride uptake as a marker of plaque biology. Expert Rev Cardiovasc Ther 2013; 10:1075-7. [PMID: 23098140 DOI: 10.1586/erc.12.104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
15
|
Nakazato R, Berman DS, Alexanderson E, Slomka P. Myocardial perfusion imaging with PET. ACTA ACUST UNITED AC 2013; 5:35-46. [PMID: 23671459 DOI: 10.2217/iim.13.1] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
PET-myocardial perfusion imaging (MPI) allows accurate measurement of myocardial perfusion, absolute myocardial blood flow and function at stress and rest in a single study session performed in approximately 30 min. Various PET tracers are available for MPI, and rubidium-82 or nitrogen-13-ammonia is most commonly used. In addition, a new fluorine-18-based PET-MPI tracer is currently being evaluated. Relative quantification of PET perfusion images shows very high diagnostic accuracy for detection of obstructive coronary artery disease. Dynamic myocardial blood flow analysis has demonstrated additional prognostic value beyond relative perfusion imaging. Patient radiation dose can be reduced and image quality can be improved with latest advances in PET/CT equipment. Simultaneous assessment of both anatomy and perfusion by hybrid PET/CT can result in improved diagnostic accuracy. Compared with SPECT-MPI, PET-MPI provides higher diagnostic accuracy, using lower radiation doses during a shorter examination time period for the detection of coronary artery disease.
Collapse
Affiliation(s)
- Ryo Nakazato
- Departments of Imaging & Medicine, & Cedars-Sinai Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | |
Collapse
|