1
|
Davidson BP, Hodovan J, Layoun ME, Golwala H, Zahr F, Lindner JR. Echocardiographic Ischemic Memory Molecular Imaging for Point-of-Care Detection of Myocardial Ischemia. J Am Coll Cardiol 2021; 78:1990-2000. [PMID: 34763776 DOI: 10.1016/j.jacc.2021.08.068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Noninvasive molecular imaging of recent ischemia can potentially be used to diagnose acute coronary syndrome (ACS) with high accuracy. OBJECTIVES The authors hypothesized that bedside myocardial contrast echocardiography (MCE) ischemic memory imaging could be achieved with phosphatidylserine microbubbles (MBPS) that are retained in the microcirculation via ischemia-associated endothelial activation. METHODS A dose-finding study was performed in healthy volunteers (n = 17) to establish optimal MBPS dosing. Stable patients with ACS (n = 30) and confirmed antecedent but resolved myocardial ischemia were studied within 2 hours of coronary angiography and percutaneous coronary intervention (PCI) when indicated. MCE molecular imaging was performed 8 minutes after intravenous administration of MBPS. MCE perfusion imaging was used to assess the status of the postischemic microcirculation. RESULTS Based on dose-finding studies, 0.10 or 0.15 mL of MBPS based on body mass was selected. In patients with ACS, all but 2 underwent primary PCI. MCE molecular imaging signal intensity was greater in the postischemic risk area vs remote territory (median [95% CI]: 56 [33-66] vs 8 [2-17] IU; P < 0.001) with a receiver-operating characteristic curve C-statistic of 0.94 to differentiate post-ischemic from remote territory. Molecular imaging signal in the risk area was not related to type of ACS (unstable angina: 3; non-ST-segment elevation myocardial infarction: 14; ST-segment elevation myocardial infarction: 13), peak troponin, time to PCI, post-PCI myocardial perfusion, GRACE (Global Registry of Acute Coronary Events) score, or HEART score. CONCLUSIONS Molecular imaging with point-of-care echocardiography and MBPS can detect recent but resolved myocardial ischemia. This bedside technique requires only minutes to perform and appears independent of the degree of ischemia. (Ischemic Memory Imaging With Myocardial Contrast Echocardiography; NCT03009266).
Collapse
Affiliation(s)
- Brian P Davidson
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - James Hodovan
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Michael E Layoun
- Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA
| | - Harsh Golwala
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Firas Zahr
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA; Oregon National Primate Research Center, Oregon Health & Science University, Portland, Oregon, USA.
| |
Collapse
|
2
|
Abstract
The use of contrast agents as signal enhancers during ultrasound improves visualization and the diagnostic utility of this technology in medical imaging. Although widely used in many disciplines, contrast ultrasound is not routinely implemented in obstetrics, largely due to safety concerns of administered agents for pregnant women and the limited number of studies that address this issue. Here the microbubble characteristics that make them beneficial for enhancement of the blood pool and the quantification of real-time imaging are reviewed. Literature from pregnant animal model studies and safety assessments are detailed, and the potential for contrast-enhanced ultrasound to provide clinically relevant data and benefit our understanding of early placental development and detection of placental dysfunction is discussed.
Collapse
|
3
|
Gupta A, Caravan P, Price WS, Platas-Iglesias C, Gale EM. Applications for Transition-Metal Chemistry in Contrast-Enhanced Magnetic Resonance Imaging. Inorg Chem 2020; 59:6648-6678. [PMID: 32367714 DOI: 10.1021/acs.inorgchem.0c00510] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Contrast-enhanced magnetic resonance imaging (MRI) is an indispensable tool for diagnostic medicine. However, safety concerns related to gadolinium in commercial MRI contrast agents have emerged in recent years. For patients suffering from severe renal impairment, there is an important unmet medical need to perform contrast-enhanced MRI without gadolinium. There are also concerns over the long-term effects of retained gadolinium within the general patient population. Demand for gadolinium-free MRI contrast agents is driving a new wave of inorganic chemistry innovation as researchers explore paramagnetic transition-metal complexes as potential alternatives. Furthermore, advances in personalized care making use of molecular-level information have motivated inorganic chemists to develop MRI contrast agents that can detect pathologic changes at the molecular level. Recent studies have highlighted how reaction-based modulation of transition-metal paramagnetism offers a highly effective mechanism to achieve MRI contrast enhancement that is specific to biochemical processes. This Viewpoint highlights how recent advances in transition-metal chemistry are leading the way for a new generation of MRI contrast agents.
Collapse
Affiliation(s)
- Abhishek Gupta
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | | | - William S Price
- Nanoscale Organisation and Dynamics Group, School of Science and Health, Western Sydney University, Penrith, New South Wales 2751, Australia.,Ingham Institute of Applied Medical Research, Liverpool, New South Wales 2170, Australia
| | - Carlos Platas-Iglesias
- Centro de Investigacións Científicas Avanzadas and Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruña, Galicia 15071, Spain
| | | |
Collapse
|
4
|
Ultrasound molecular imaging: insights into cardiovascular pathology. J Echocardiogr 2020; 18:86-93. [PMID: 32056137 PMCID: PMC7244457 DOI: 10.1007/s12574-020-00463-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 01/06/2023]
Abstract
Similar to what has already occurred in cancer medicine, the management of cardiovascular conditions will likely be improved by non-invasive molecular imaging technologies that can provide earlier or more accurate diagnosis. These techniques are already having a positive impact in pre-clinical research by providing insight into pathophysiology or efficacy of new therapies. Contrast enhanced ultrasound (CEU) molecular imaging is a technique that relies on the ultrasound detection of targeted microbubble contrast agents to examine molecular or cellular events that occur at the blood pool-endothelial interface. CEU molecular imaging techniques have been developed that are able to provide unique information on atherosclerosis, ischemia reperfusion injury, angiogenesis, vascular inflammation, and thrombus formation. Accordingly, CEU has the potential to be used in a wide variety of circumstances to detect disease early or at the bedside, and to guide appropriate therapy based on vascular phenotype. This review will describe the physical basis for CEU molecular imaging, and the specific disease processes for the pre-clinical translational research experience.
Collapse
|
5
|
Dammes N, Peer D. Monoclonal antibody-based molecular imaging strategies and theranostic opportunities. Theranostics 2020; 10:938-955. [PMID: 31903161 PMCID: PMC6929980 DOI: 10.7150/thno.37443] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/26/2019] [Indexed: 01/13/2023] Open
Abstract
Molecular imaging modalities hold great potential as less invasive techniques for diagnosis and management of various diseases. Molecular imaging combines imaging agents with targeting moieties to specifically image diseased sites in the body. Monoclonal antibodies (mAbs) have become increasingly popular as novel therapeutics against a variety of diseases due to their specificity, affinity and serum stability. Because of the same properties, mAbs are also exploited in molecular imaging to target imaging agents such as radionuclides to the cell of interest in vivo. Many studies investigated the use of mAb-targeted imaging for a variety of purposes, for instance to monitor disease progression and to predict response to a specific therapeutic agent. Herein, we highlighted the application of mAb-targeted imaging in three different types of pathologies: autoimmune diseases, oncology and cardiovascular diseases. We also described the potential of molecular imaging strategies in theranostics and precision medicine. Due to the nearly infinite repertoire of mAbs, molecular imaging can change the future of modern medicine by revolutionizing diagnostics and response prediction in practically any disease.
Collapse
Affiliation(s)
- Niels Dammes
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv 69978, Israel
- School of Molecular Cell Biology and Biotechnology, George S Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
- Department of Materials Sciences and Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv 69978, Israel
- Center for Nanoscience and Nanotechnology, and Tel Aviv University, Tel Aviv 69978, Israel
- Cancer Biology Research Center, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
6
|
Abstract
Noninvasive imaging has played an increasing role in the process of cardiovascular drug development. This review focuses specifically on the use of molecular imaging, which has been increasingly applied to improve and accelerate certain preclinical steps in drug development, including the identification of appropriate therapeutic targets, evaluation of on-target and off-target effects of candidate therapies, assessment of dose response, and the evaluation of drug or biological biodistribution and pharmacodynamics. Unlike the case in cancer medicine, in cardiovascular medicine, molecular imaging has not been used as a primary surrogate clinical end point for drug approval. However, molecular imaging has been applied in early clinical trials, particularly in phase 0 studies, to demonstrate proof-of-concept or to explain variation in treatment effect. Many of these applications where molecular imaging has been used in drug development have involved the retasking of technologies that were originally intended as clinical diagnostics. With greater experience and recognition of the rich information provided by in vivo molecular imaging, it is anticipated that it will increasingly be used to address the enormous time and costs associated with bringing a new drug to clinical launch.
Collapse
Affiliation(s)
- Jonathan R Lindner
- From the Knight Cardiovascular Institute (J.R.L.), Oregon National Primate Research Center (J.R.L.), and Center for Radiologic Research (J.L.), Oregon Health and Science University, Portland.
| | - Jeanne Link
- From the Knight Cardiovascular Institute (J.R.L.), Oregon National Primate Research Center (J.R.L.), and Center for Radiologic Research (J.L.), Oregon Health and Science University, Portland
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Non-invasive molecular imaging is currently used as a research technique to better understand disease pathophysiology. There are also many potential clinical applications where molecular imaging may provide unique information that allows either earlier or more definitive diagnosis, or can guide precision medicine-based decisions on therapy. Contrast-enhanced ultrasound (CEU) with targeted microbubble contrast agents is one such technique that has been developed that has the unique properties of providing rapid information and revealing information only on events that occur within the vascular space. RECENT FINDINGS CEU molecular probes have been developed for a wide variety of disease states including atherosclerosis, vascular inflammation, thrombosis, tumor neovascularization, and ischemic injury. While the technique has not yet been adapted to clinical use, it has been used to reveal pathological processes, to identify new therapeutic targets, and to test the efficacy of novel treatments. This review will explore the physical basis for CEU molecular imaging, its strengths and limitations compared to other molecular imaging modalities, and the pre-clinical translational research experience.
Collapse
Affiliation(s)
- Eran Brown
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, USA.,Knight Cardiovascular Institute, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA
| | - Jonathan R Lindner
- Knight Cardiovascular Institute, UHN-62, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd., Portland, OR, 97239, USA. .,Oregon National Primate Research Center (J.R.L.), Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
8
|
Noonan J, Asiala SM, Grassia G, MacRitchie N, Gracie K, Carson J, Moores M, Girolami M, Bradshaw AC, Guzik TJ, Meehan GR, Scales HE, Brewer JM, McInnes IB, Sattar N, Faulds K, Garside P, Graham D, Maffia P. In vivo multiplex molecular imaging of vascular inflammation using surface-enhanced Raman spectroscopy. Am J Cancer Res 2018; 8:6195-6209. [PMID: 30613292 PMCID: PMC6299693 DOI: 10.7150/thno.28665] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 10/18/2018] [Indexed: 01/09/2023] Open
Abstract
Vascular immune-inflammatory responses play a crucial role in the progression and outcome of atherosclerosis. The ability to assess localized inflammation through detection of specific vascular inflammatory biomarkers would significantly improve cardiovascular risk assessment and management; however, no multi-parameter molecular imaging technologies have been established to date. Here, we report the targeted in vivo imaging of multiple vascular biomarkers using antibody-functionalized nanoparticles and surface-enhanced Raman scattering (SERS). Methods: A series of antibody-functionalized gold nanoprobes (BFNP) were designed containing unique Raman signals in order to detect intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1) and P-selectin using SERS. Results: SERS and BFNP were utilized to detect, discriminate and quantify ICAM-1, VCAM-1 and P-selectin in vitro on human endothelial cells and ex vivo in human coronary arteries. Ultimately, non-invasive multiplex imaging of adhesion molecules in a humanized mouse model was demonstrated in vivo following intravenous injection of the nanoprobes. Conclusion: This study demonstrates that multiplexed SERS-based molecular imaging can indicate the status of vascular inflammation in vivo and gives promise for SERS as a clinical imaging technique for cardiovascular disease in the future.
Collapse
|
9
|
Wang A, Yin L, He L, Xia H, Chen F, Zhao M, Ding J, Shi H. An acidic pH/reduction dual-stimuli responsive nanoprobe for enhanced CT imaging of tumours in vivo. NANOSCALE 2018; 10:20126-20130. [PMID: 30376027 DOI: 10.1039/c8nr05061a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Computed tomography (CT) is one of the most frequently used diagnostic imaging modalities in clinics. However, the fast clearance of CT contrast agents through the kidney and short circulation time severely restrict their in vivo applications. Herein, taking advantage of the biocompatible CBT condensation reaction, we rationally designed and synthesized a new smart acidic pH/glutathione (GSH) dual-stimuli responsive nanoprobe (1) which can intermolecularly undergo condensation and form a nanoparticle assembly (I-NPs) in the tumour microenvironment. In vivo CT imaging results indicated that probe 1 could be successfully applied for enhanced CT imaging of tumours in nude mice with a low dose of 21.79 mg I per kg body weight, which may offer a promising tool for precise tumor diagnosis.
Collapse
Affiliation(s)
- Anna Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Centre of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, 199 Renai Road, Suzhou 215123, China.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Zeng Y, Zhu J, Wang J, Parasuraman P, Busi S, Nauli SM, Wáng YXJ, Pala R, Liu G. Functional probes for cardiovascular molecular imaging. Quant Imaging Med Surg 2018; 8:838-852. [PMID: 30306063 PMCID: PMC6177368 DOI: 10.21037/qims.2018.09.19] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 09/17/2018] [Indexed: 12/26/2022]
Abstract
Cardiovascular diseases (CVDs) are a severely threatening disorder and frequently cause death in industrialized countries, posing critical challenges to modern research and medicine. Molecular imaging has been heralded as the solution to many problems encountered in individuals living with CVD. The use of probes in cardiovascular molecular imaging is causing a paradigmatic shift from regular imaging techniques, to future advanced imaging technologies, which will facilitate the acquisition of vital information at the cellular and molecular level. Advanced imaging for CVDs will help early detection of disease development, allow early therapeutic intervention, and facilitate better understanding of fundamental biological processes. To promote a better understanding of cardiovascular molecular imaging, this article summarizes the current developments in the use of molecular probes, highlighting some of the recent advances in probe design, preparation, and functional modification.
Collapse
Affiliation(s)
- Yun Zeng
- Department of Pharmacology, Xiamen Medical College, Xiamen 361008, China
| | - Jing Zhu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Junqing Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Paramanantham Parasuraman
- Departments of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Siddhardha Busi
- Departments of Microbiology, School of Life Sciences, Pondicherry University, Puducherry 605014, India
| | - Surya M. Nauli
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Yì Xiáng J. Wáng
- Department of Imaging and Interventional Radiology, Prince of Wales Hospital, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Rajasekharreddy Pala
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- Department of Biomedical and Pharmaceutical Sciences, School of Pharmacy, Chapman University, Irvine, California, USA
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
11
|
Weinkauf CC, Concha-Moore K, Lindner JR, Marinelli ER, Hadinger KP, Bhattacharjee S, Berman SS, Goshima K, Leon LR, Matsunaga TO, Unger E. Endothelial vascular cell adhesion molecule 1 is a marker for high-risk carotid plaques and target for ultrasound molecular imaging. J Vasc Surg 2018; 68:105S-113S. [PMID: 29452833 DOI: 10.1016/j.jvs.2017.10.088] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/25/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND Molecular imaging of carotid plaque vulnerability to atheroembolic events is likely to lead to improvements in selection of patients for carotid endarterectomy (CEA). The aims of this study were to assess the relative value of endothelial inflammatory markers for this application and to develop molecular ultrasound contrast agents for their imaging. METHODS Human CEA specimens were obtained prospectively from asymptomatic (30) and symptomatic (30) patients. Plaques were assessed by semiquantitative immunohistochemistry for vascular cell adhesion molecule 1 (VCAM-1), lectin-like oxidized low-density lipoprotein receptor 1, P-selectin, and von Willebrand factor. Established small peptide ligands to each of these targets were then synthesized and covalently conjugated to the surface of lipid-shelled microbubble ultrasound contrast agents, which were then evaluated in a flow chamber for binding kinetics to activated human aortic endothelial cells under variable shear conditions. RESULTS Expression of VCAM-1 on the endothelium of CEA specimens from symptomatic patients was 2.4-fold greater than that from asymptomatic patients (P < .01). Expression was not significantly different between groups for P-selectin (P = .43), von Willebrand factor (P = .59), or lectin-like oxidized low-density lipoprotein receptor 1 (P = .99). Although most plaques from asymptomatic patients displayed low VCAM-1 expression, approximately one in five expressed high VCAM-1 similar to plaques from symptomatic patients. In vitro flow chamber experiments demonstrated that VCAM-1-targeted microbubbles bind cells that express VCAM-1, even under high-shear conditions that approximate those found in human carotid arteries, whereas binding efficiency was lower for the other agents. CONCLUSIONS VCAM-1 displays significantly higher expression on high-risk (symptomatic) vs low-risk (asymptomatic) carotid plaques. Ultrasound contrast agents bearing ligands for VCAM-1 can sustain high-shear attachment and may be useful for identifying patients in whom more aggressive treatment is warranted.
Collapse
Affiliation(s)
- Craig C Weinkauf
- Division of Vascular and Endovascular Surgery, University of Arizona, Tucson, Ariz
| | | | - Jonathan R Lindner
- Division of Cardiovascular Medicine, Oregon Health Sciences University, Portland, Ore
| | | | - Kyle P Hadinger
- Department of Biomedical Engineering, University of Arizona, Tucson, Ariz
| | | | | | - Kay Goshima
- Division of Vascular and Endovascular Surgery, University of Arizona, Tucson, Ariz
| | - Luis R Leon
- Division of Vascular and Endovascular Surgery, University of Arizona, Tucson, Ariz
| | - Terry O Matsunaga
- Department of Biomedical Engineering, University of Arizona, Tucson, Ariz; Department of Medical Imaging, University of Arizona, Tucson, Ariz
| | - Evan Unger
- NuvOx Pharmaceuticals, Tucson, Ariz; Department of Medical Imaging, University of Arizona, Tucson, Ariz.
| |
Collapse
|
12
|
Li Z, Gupte AA, Zhang A, Hamilton DJ. Pet Imaging and its Application in Cardiovascular Diseases. Methodist Debakey Cardiovasc J 2017; 13:29-33. [PMID: 28413580 DOI: 10.14797/mdcj-13-1-29] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide and represent a great challenge for modern research and medicine. Despite advances in preventing and treating CVD over the decades, there remains an urgent need to develop sensitive and safe methods for early detection and personalized treatment. With refinements of molecular imaging technologies such as positron emission tomography (PET), noninvasive imaging of CVDs is experiencing impressive progress in both preclinical and clinical settings. In this review, we summarize advances in cardiovascular PET imaging, highlight the latest development of CVD imaging probes, and illustrate the potential for individualized therapy based on metabolic phenotype.
Collapse
Affiliation(s)
- Zheng Li
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| | - Anisha A Gupte
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| | - Anjun Zhang
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| | - Dale J Hamilton
- Houston Methodist Research Institute, Houston Methodist Hospital, Houston, Texas
| |
Collapse
|
13
|
Li J, Zhang Y, Chordia MD, Wu H, Shao L, Pan D. Multimodal formyl peptide receptor 1 targeted inflammation imaging probe: cFLFLF-MHI-DOTA. Bioorg Med Chem Lett 2016; 26:1052-1055. [DOI: 10.1016/j.bmcl.2015.12.029] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/03/2015] [Accepted: 12/10/2015] [Indexed: 01/08/2023]
|
14
|
Du W, Tao H, Zhao S, He ZX, Li Z. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie 2015; 116:43-51. [PMID: 26134715 DOI: 10.1016/j.biochi.2015.06.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 06/25/2015] [Indexed: 12/21/2022]
Abstract
Cardiovascular disease (CVD) is the leading cause of mortality and morbidity worldwide. Molecular imaging techniques provide valuable information at cellular and molecular level, as opposed to anatomical and structural layers acquired from traditional imaging modalities. More specifically, molecular imaging employs imaging probes which interact with specific molecular targets and therefore makes it possible to visualize biological processes in vivo. Molecular imaging technology is now progressing towards preclinical and clinical application that gives an integral and comprehensive guidance for the investigation of cardiovascular disease. In addition, cardiac stem cell therapy holds great promise for clinical translation. Undoubtedly, combining stem cell therapy with molecular imaging technology will bring a broad prospect for the study and treatment of cardiac disease. This review will focus on the progresses of molecular imaging strategies in cardiovascular disease and cardiac stem cell therapy. Furthermore, the perspective on the future role of molecular imaging in clinical translation and potential strategies in defining safety and efficacy of cardiac stem cell therapies will be discussed.
Collapse
Affiliation(s)
- Wei Du
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Hongyan Tao
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China
| | - Shihua Zhao
- Department of Radiology, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China
| | - Zuo-Xiang He
- Department of Nuclear Imaging, Fuwai Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing, China.
| | - Zongjin Li
- Collaborative Innovation Center for Biotherapy, Nankai University School of Medicine, Tianjin, China; Tianjin Key Laboratory of Tumor Microenvironment and Neurovascular Regulation, Nankai University School of Medicine, Tianjin, China; The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.
| |
Collapse
|
15
|
Simons M, Alitalo K, Annex BH, Augustin HG, Beam C, Berk BC, Byzova T, Carmeliet P, Chilian W, Cooke JP, Davis GE, Eichmann A, Iruela-Arispe ML, Keshet E, Sinusas AJ, Ruhrberg C, Woo YJ, Dimmeler S. State-of-the-Art Methods for Evaluation of Angiogenesis and Tissue Vascularization: A Scientific Statement From the American Heart Association. Circ Res 2015; 116:e99-132. [PMID: 25931450 DOI: 10.1161/res.0000000000000054] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Imaging of oxidation-specific epitopes with targeted nanoparticles to detect high-risk atherosclerotic lesions: progress and future directions. J Cardiovasc Transl Res 2014; 7:719-36. [PMID: 25297940 DOI: 10.1007/s12265-014-9590-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/12/2014] [Indexed: 12/17/2022]
Abstract
Oxidation-specific epitopes (OSE) within developing atherosclerotic lesions are key antigens that drive innate and adaptive immune responses in atherosclerosis, leading to chronic inflammation. Oxidized phospholipids and malondialdehyde-lysine epitopes are well-characterized OSE present in human atherosclerotic lesions, particularly in pathologically defined vulnerable plaques. Using murine and human OSE-specific antibodies as targeting agents, we have developed radionuclide and magnetic resonance based nanoparticles, containing gadolinium, manganese or lipid-coated ultrasmall superparamagnetic iron oxide, to non-invasively image OSE within experimental atherosclerotic lesions. These methods quantitate plaque burden, allow detection of lesion progression and regression, plaque stabilization, and accumulation of OSE within macrophage-rich areas of the artery wall, suggesting they detect the most active lesions. Future studies will focus on using "natural" antibodies, lipopeptides, and mimotopes for imaging applications. These approaches should enhance the clinical translation of this technique to image, monitor, evaluate efficacy of novel therapeutic agents, and guide optimal therapy of high-risk atherosclerotic lesions.
Collapse
|
17
|
Jones CM, Baker-Groberg SM, Cianchetti FA, Glynn JJ, Healy LD, Lam WY, Nelson JW, Parrish DC, Phillips KG, Scott-Drechsel DE, Tagge IJ, Zelaya JE, Hinds MT, McCarty OJT. Measurement science in the circulatory system. Cell Mol Bioeng 2013; 7:1-14. [PMID: 24563678 DOI: 10.1007/s12195-013-0317-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The dynamics of the cellular and molecular constituents of the circulatory system are regulated by the biophysical properties of the heart, vasculature and blood cells and proteins. In this review, we discuss measurement techniques that have been developed to characterize the physical and mechanical parameters of the circulatory system across length scales ranging from the tissue scale (centimeter) to the molecular scale (nanometer) and time scales of years to milliseconds. We compare the utility of measurement techniques as a function of spatial resolution and penetration depth from both a diagnostic and research perspective. Together, this review provides an overview of the utility of measurement science techniques to study the spatial systems of the circulatory system in health and disease.
Collapse
Affiliation(s)
- Casey M Jones
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Department of Chemistry, Lewis & Clark College, Portland OR
| | | | - Flor A Cianchetti
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Jeremy J Glynn
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Laura D Healy
- Department of Cell & Developmental Biology, Oregon Health & Science University, Portland OR
| | - Wai Yan Lam
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Jonathan W Nelson
- Division of Cardiology, Knight Cardiovascular Institute, Oregon Health & Science University, Portland OR
| | - Diana C Parrish
- Department of Physiology & Pharmacology, Oregon Health & Science University, Portland OR
| | - Kevin G Phillips
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | | | - Ian J Tagge
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Advanced Imaging Research Center, Oregon Health & Science University, Portland OR
| | - Jaime E Zelaya
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Monica T Hinds
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR
| | - Owen J T McCarty
- Department of Biomedical Engineering, Oregon Health & Science University, Portland OR ; Department of Cell & Developmental Biology, Oregon Health & Science University, Portland OR ; Division of Hematology & Medical Oncology, Oregon Health & Science University, Portland OR
| |
Collapse
|