1
|
Hage FG, Einstein AJ, Ananthasubramaniam K, Bourque JM, Case J, DePuey EG, Hendel RC, Henzlova MJ, Shah NR, Abbott BG, Al Jaroudi W, Better N, Doukky R, Duvall WL, Malhotra S, Pagnanelli R, Peix A, Reyes E, Saeed IM, Sanghani RM, Slomka PJ, Thompson RC, Veeranna V, Williams KA, Winchester DE. Quality metrics for single-photon emission computed tomography myocardial perfusion imaging: an ASNC information statement. J Nucl Cardiol 2023; 30:864-907. [PMID: 36607538 DOI: 10.1007/s12350-022-03162-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 11/17/2022] [Indexed: 01/07/2023]
Affiliation(s)
- Fadi G Hage
- Section of Cardiology, Birmingham VA Medical Center, Birmingham, AL, USA.
- Division of Cardiovascular Disease, Department of Medicine, University of Alabama at Birmingham, 446 GSB, 520 19Th Street South, Birmingham, AL, 35294, USA.
| | - Andrew J Einstein
- Seymour, Paul and Gloria Milstein Division of Cardiology, Department of Medicine and Department of Radiology, Columbia University Irving Medical Center and NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Jamieson M Bourque
- Department of Medicine (Cardiology), University of Virginia Health System, Charlottesville, VA, USA
- Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, VA, USA
| | - James Case
- Cardiovascular Imaging Technologies, Kansas City, MO, USA
| | - E Gordon DePuey
- Mount Sinai Morningside Hospital, New York, NY, USA
- Bay Ridge Medical Imaging, Brooklyn, NY, USA
| | - Robert C Hendel
- Department of Medicine, Division of Cardiology, Tulane University School of Medicine, New Orleans, LA, USA
| | | | - Nishant R Shah
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Brian G Abbott
- Warren Alpert Medical School, Brown University, Providence, RI, USA
| | - Wael Al Jaroudi
- Division of Cardiovascular Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Nathan Better
- Department of Nuclear Medicine and Cardiology, Royal Melbourne Hospital and University of Melbourne, Melbourne, Australia
| | - Rami Doukky
- Division of Cardiology, Cook County Health and Hospitals System, Chicago, IL, USA
| | - W Lane Duvall
- Heart and Vascular Institute, Hartford Hospital, Hartford, CT, USA
| | - Saurabh Malhotra
- Division of Cardiology, Cook County Health and Hospitals System, Chicago, IL, USA
| | | | - Amalia Peix
- Nuclear Medicine Department, Institute of Cardiology and Cardiovascular Surgery, La Habana, Cuba
| | - Eliana Reyes
- Nuclear Medicine Department, Royal Brompton and Harefield NHS Foundation Trust, London, UK
| | - Ibrahim M Saeed
- Virginia Heart, Falls Church, VA, USA
- INOVA Heart and Vascular Institute, Falls Church, VA, USA
- University of Missouri, Kansas City, MO, USA
| | - Rupa M Sanghani
- Division of Cardiology, Department of Medicine, Rush University Medical Center, Chicago, IL, USA
| | | | - Randall C Thompson
- Saint Luke's Mid America Heart Institute, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Vikas Veeranna
- Division of Cardiology, Department of Medicine, New England Heart and Vascular Institute, Manchester, NH, USA
| | - Kim A Williams
- Department of Medicine, University of Louisville Department of Medicine, Louisville, KY, USA
| | - David E Winchester
- Malcom Randall VA Medical Center, Gainesville, FL, USA
- Division of Cardiovascular Medicine, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Scabbio C, Zoccarato O, Malaspina S, Lucignani G, Del Sole A, Lecchi M. Impact of non-specific normal databases on perfusion quantification of low-dose myocardial SPECT studies. J Nucl Cardiol 2019; 26:775-785. [PMID: 29043555 DOI: 10.1007/s12350-017-1079-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 09/16/2017] [Indexed: 11/28/2022]
Abstract
AIM To evaluate the impact of non-specific normal databases on the percent summed rest score (SR%) and stress score (SS%) from simulated low-dose SPECT studies by shortening the acquisition time/projection. METHODS Forty normal-weight and 40 overweight/obese patients underwent myocardial studies with a conventional gamma-camera (BrightView, Philips) using three different acquisition times/projection: 30, 15, and 8 s (100%-counts, 50%-counts, and 25%-counts scan, respectively) and reconstructed using the iterative algorithm with resolution recovery (IRR) AstonishTM (Philips). Three sets of normal databases were used: (1) full-counts IRR; (2) half-counts IRR; and (3) full-counts traditional reconstruction algorithm database (TRAD). The impact of these databases and the acquired count statistics on the SR% and SS% was assessed by ANOVA analysis and Tukey test (P < 0.05). RESULTS Significantly higher SR% and SS% values (> 40%) were found for the full-counts TRAD databases respect to the IRR databases. For overweight/obese patients, significantly higher SS% values for 25%-counts scans (+19%) are confirmed compared to those of 50%-counts scan, independently of using the half-counts or the full-counts IRR databases. CONCLUSIONS AstonishTM requires the adoption of the own specific normal databases in order to prevent very high overestimation of both stress and rest perfusion scores. Conversely, the count statistics of the normal databases seems not to influence the quantification scores.
Collapse
Affiliation(s)
| | - Orazio Zoccarato
- Unit of Nuclear Medicine, I.C.S. Maugeri S.p.A. SB, Scientific Institute of Veruno IRCCS, Veruno, NO, Italy
| | - Simona Malaspina
- Nuclear Medicine Unit, Department of Diagnostic Services, ASST Santi Paolo e Carlo, Milan, Italy
| | - Giovanni Lucignani
- Nuclear Medicine Unit, Department of Diagnostic Services, ASST Santi Paolo e Carlo, Milan, Italy
- Department of Health Sciences, University of Milan, Milan, Italy
| | - Angelo Del Sole
- Nuclear Medicine Unit, Department of Diagnostic Services, ASST Santi Paolo e Carlo, Milan, Italy.
- Department of Health Sciences, University of Milan, Milan, Italy.
| | | |
Collapse
|
4
|
Abstract
Cardiac SPECT continues to play a critical role in detecting and managing cardiovascular disease, in particularly coronary artery disease (CAD) (Jaarsma et al 2012 J. Am. Coll. Cardiol. 59 1719-28), (Agostini et al 2016 Eur. J. Nucl. Med. Mol. Imaging 43 2423-32). While conventional dual-head SPECT scanners using parallel-hole collimators and scintillation crystals with photomultiplier tubes are still the workhorse of cardiac SPECT, they have the limitations of low photon sensitivity (~130 count s-1 MBq-1), poor image resolution (~15 mm) (Imbert et al 2012 J. Nucl. Med. 53 1897-903), relatively long acquisition time, inefficient use of the detector, high radiation dose, etc. Recently our field observed an exciting growth of new developments of dedicated cardiac scanners and collimators, as well as novel imaging algorithms for quantitative cardiac SPECT. These developments have opened doors to new applications with potential clinical impact, including ultra-low-dose imaging, absolute quantification of myocardial blood flow (MBF) and coronary flow reserve (CFR), multi-radionuclide imaging, and improved image quality as a result of attenuation, scatter, motion, and partial volume corrections (PVCs). In this article, we review the recent advances in cardiac SPECT instrumentation and imaging methods. This review mainly focuses on the most recent developments published since 2012 and points to the future of cardiac SPECT from an imaging physics perspective.
Collapse
Affiliation(s)
- Jing Wu
- Department of Radiology and Biomedical Imaging, Yale University, New Haven, United States of America
| | | |
Collapse
|
7
|
Slomka P, Hung GU, Germano G, Berman DS. Novel SPECT Technologies and Approaches in Cardiac Imaging. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2016; 2:31-46. [PMID: 29034066 PMCID: PMC5640436 DOI: 10.15212/cvia.2016.0052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Recent novel approaches in myocardial perfusion single photon emission CT (SPECT) have been facilitated by new dedicated high-efficiency hardware with solid-state detectors and optimized collimators. New protocols include very low-dose (1 mSv) stress-only, two-position imaging to mitigate attenuation artifacts, and simultaneous dual-isotope imaging. Attenuation correction can be performed by specialized low-dose systems or by previously obtained CT coronary calcium scans. Hybrid protocols using CT angiography have been proposed. Image quality improvements have been demonstrated by novel reconstructions and motion correction. Fast SPECT acquisition facilitates dynamic flow and early function measurements. Image processing algorithms have become automated with virtually unsupervised extraction of quantitative imaging variables. This automation facilitates integration with clinical variables derived by machine learning to predict patient outcome or diagnosis. In this review, we describe new imaging protocols made possible by the new hardware developments. We also discuss several novel software approaches for the quantification and interpretation of myocardial perfusion SPECT scans.
Collapse
Affiliation(s)
- Piotr Slomka
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Guang-Uei Hung
- Department of Nuclear Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua, Taiwan
| | - Guido Germano
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Daniel S. Berman
- Departments of Imaging and Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|