1
|
Jo KH, Kang WJ. Recent Progress in Myocardial Perfusion Imaging Techniques. Nucl Med Mol Imaging 2024; 58:400-405. [PMID: 39635632 PMCID: PMC11612050 DOI: 10.1007/s13139-024-00852-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 12/07/2024] Open
Abstract
Nuclear cardiology, similar to other fields of nuclear medicine, has experience rapid advancements. Myocardial perfusion imaging (MPI), an important component of nuclear cardiology that commenced in the 1970s, plays a crucial role in the non-invasive evaluation and management of coronary artery disease. Over the past decade, MPI has witnessed significant changes and advancements. The introduction of gamma cameras using cadmium zinc telluride (CZT) systems, accompanied by advancements in related software, represents a notable development in this nuclear cardiology. Ongoing research and development effects are actively exploring new radiopharmaceuticals, with a particular focus on their application in positron emission tomography (PET)-MPI. Furthermore, studies have been conducted highlighting the necessity and benefits of hybrid imaging. However, as with other cutting-edge technologies, the practical application of the latest equipment and techniques in nuclear cardiology faces challenges stemming from their high costs of equipment and examinations and limited accessibility, which continue to remain significant barriers in nuclear medicine.
Collapse
Affiliation(s)
- Kwan Hyeong Jo
- Department of Nuclear Medicine, Korea University Guro Hospital, Seoul, Korea
| | - Won Jun Kang
- Department of Nuclear Medicine, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Wells RG, Small GR, Ruddy TD. Myocardial blood flow quantification with SPECT. J Med Imaging Radiat Sci 2024; 55:S51-S58. [PMID: 38553299 DOI: 10.1016/j.jmir.2024.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 05/29/2024]
Abstract
INTRODUCTION The addition of absolute myocardial blood flow (MBF) data improves the diagnostic and prognostic accuracy of relative perfusion imaging with nuclear medicine. Cardiac-specific gamma cameras allow measurement of MBF with SPECT. METHODS This paper reviews the evidence supporting the use of SPECT to measure myocardial blood flow (MBF). Studies have evaluated SPECT MBF in large animal models and compared it in humans with invasive angiographic measurements and against the clinical standard of PET MBF. The repeatability of SPECT MBF has been determined in both single-site and multi-center trials. RESULTS SPECT MBF has excellent correlation with microspheres in an animal model, with the number of stenoses and fractional flow reserve, and with PET-derived MBF. The inter-user coefficient of variability is ∼20% while the COV of test-retest MBF is ∼30%. SPECT MBF improves the sensitivity and specificity of the detection of multi-vessel disease over relative perfusion imaging and provides incremental value in predicting adverse cardiac events. CONCLUSION SPECT MBF is a promising technique for providing clinically valuable information in the assessment of coronary artery disease.
Collapse
Affiliation(s)
- R Glenn Wells
- Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - Gary R Small
- Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Terrence D Ruddy
- Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
3
|
Moody JB, Poitrasson-Rivière A, Renaud JM, Hagio T, Alahdab F, Al-Mallah MH, Vanderver MD, Ficaro EP, Murthy VL. Self-supervised deep representation learning of a foundation transformer model enabling efficient ECG-based assessment of cardiac and coronary function with limited labels. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.10.25.23297552. [PMID: 37961713 PMCID: PMC10635192 DOI: 10.1101/2023.10.25.23297552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Background: Although deep learning methods have shown great promise for identification of structural and functional cardiac abnormalities using electrocardiographic data, these methods are data hungry, posing a challenge for critically important tasks where ground truth labels are relatively scarce. Impaired coronary microvascular and vasomotor function is difficult to identify with standard clinical methods of cardiovascular testing such as coronary angiography and noninvasive single photon emission tomography (SPECT) myocardial perfusion imaging (MPI). Gold standard data from positron emission tomography (PET) are gaining emphasis in clinical guidelines but are expensive and only available in relatively limited centers. We hypothesized that signals embedded within resting and stress electrocardiograms (ECGs) identify individuals with microvascular and vasomotor dysfunction. Methods: We developed and pretrained a self-supervised foundation vision transformer model using a large database of unlabeled ECG waveforms (N=800,035). We then fine-tuned the foundation model for two clinical tasks: the difficult problem of identifying patients with impaired myocardial flow reserve (AI-MFR), and the relatively easier problem of detecting impaired LVEF (AI-LVEF). A second ECG database was labeled with task-specific annotations derived from quantitative PET MPI (N=4167). Diagnostic accuracy of AI predictions was tested in a holdout set of patients undergoing PET MPI (N=1031). Prognostic evaluation was performed in the PET holdout cohort, as well as independent cohorts of patients undergoing pharmacologic or exercise stress SPECT MPI (N=6635). Results: The diagnostic accuracy of AI-MFR with SSL pretraining increased significantly compared to de novo supervised training (AUROC, sensitivity, specificity: 0.758, 70.1%, 69.4% vs. 0.632, 66.1%, 57.3%, p < 0.0001). SSL pretraining also produced a smaller increase in AI-LVEF accuracy (AUROC, sensitivity, specificity: 0.946, 89.4%, 85.9% vs. 0.918, 87.6%, 82.5%, p < 0.02). Abnormal AI-MFR was found to be significantly associated with mortality risk in all three test cohorts (Hazard Ratio (HR) 2.61 [95% CI 1.83, 3.71], p < 0.0001, PET cohort; HR 2.30 [2.03, 2.61], p < 0.0001, pharmacologic stress SPECT cohort; HR 3.76 [2.36, 5.99], p < 0.0001, exercise stress SPECT cohort). Conclusion: SSL pretraining of a vision transformer foundation model enabled identification of signals predictive of impaired MFR, a hallmark of microvascular and vasomotor dysfunction, and impaired LV function in resting and stress ECG waveforms. These signals are powerful predictors of prognosis in patients undergoing routine noninvasive stress testing and could enable more efficient diagnosis and management of these common conditions.
Collapse
|
4
|
Wang J, Chen Y, Chu H, Pang Z, Hsu B, Li J. Feasibility of myocardial blood flow quantification to detect flow-limited coronary artery disease with a one-day rest/stress continuous rapid imaging protocol on cardiac-dedicated cadmium zinc telluride single photon emission computed tomography. J Nucl Cardiol 2024; 34:101825. [PMID: 38387736 DOI: 10.1016/j.nuclcard.2024.101825] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 01/25/2024] [Accepted: 02/11/2024] [Indexed: 02/24/2024]
Abstract
BACKGROUND It is clinically needed to explore a more efficient imaging protocol for single photon emission computed tomography (SPECT) myocardial blood flow (MBF) quantitation derived from cadmium zinc telluride (CZT) SPECT camera for the routine clinical utilization. METHODS One hundred and twenty patients with matched clinical characteristics and angiographic findings who completed one-day rest/stress SPECT imaging with either the intermittently sequential imaging (ISI) protocol (two dynamic and two electrocardiography (ECG)-gated scans) or the continuous rapid imaging (CRI) protocol (two dynamic/ECG-gated scans) were included. MBF quantitation adopted residual activity correction (RAC) to correct for rest residual activity (RRA) in the stress dynamic SPECT scan for the detection of flow-limited coronary artery disease. RESULTS The CRI protocol reduced about 6.2 times shorter than the ISI protocol (25.5 min vs 157.6 min), but slightly higher than the RRA (26.7% ± 3.6% vs 22.3% ± 4.9%). With RAC, both protocols demonstrated close stress MBF (2.18 ± 1.13 vs 2.05 ± 1.10, P > 0.05) and myocardial flow reserve (MFR) (2.42 ± 1.05 vs 2.48 ± 1.11, P > 0.05) to deliver comparable diagnostic performance (sensitivity = 82.1%-92.3%, specificity = 81.2%-91.2%). Myocardial perfusion and left ventricular function overall showed no significant difference (all P > 0.26). CONCLUSION One-day rest/stress SPECT with the CRI protocol and rest RAC is feasible to warrant the diagnostic performance of MBF quantitation with a shortened examination time and enhanced patient comfort. Further evaluation on the impact of extracardiac activity to regional MBF and perfusion pattern is required. Additional evaluation is needed in a patient population that is typical of those referred for SPECT MPI, including those with known or suspected coronary microvascular disease.
Collapse
Affiliation(s)
- Jiao Wang
- Nuclear Medicine Department, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Yue Chen
- Nuclear Medicine Department, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Hongxin Chu
- Nuclear Medicine Department, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Zekun Pang
- Nuclear Medicine Department, TEDA International Cardiovascular Hospital, Tianjin, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA.
| | - Jianming Li
- Nuclear Medicine Department, TEDA International Cardiovascular Hospital, Tianjin, China.
| |
Collapse
|
5
|
Ruddy TD, Wells RG. Shortening the acquisition times of CZT SPECT imaging for measurement of myocardial blood flow. J Nucl Cardiol 2024; 34:101847. [PMID: 38467185 DOI: 10.1016/j.nuclcard.2024.101847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Affiliation(s)
- Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.
| | - R Glenn Wells
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
6
|
Mochula A, Maltseva A, Kopeva K, Grakova E, Mochula O, Zavadovsky K. The Influence of Kinetic Models and Attenuation Correction on Cadmium-Zinc-Telluride Single-Photon Emission Computed Tomography (CZT SPECT)-Derived Myocardial Blood Flow and Reserve: Correlation with Invasive Angiography Data. J Clin Med 2024; 13:1271. [PMID: 38592092 PMCID: PMC10932033 DOI: 10.3390/jcm13051271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 04/10/2024] Open
Abstract
(1) Background: The objective of this study was to determine the optimal post-processing model for dynamic cadmium-zinc-telluride single-photon emission computed tomography (CZT-SPECT). (2) Methods: A total of 235 patients who underwent diagnostic invasive coronary angiography within three months of the SPECT and those who had coronary computed tomography angiography (CCTA) before SPECT (within 3 months) were enrolled in this study. Each SPECT study was processed to obtain global and regional stress myocardial blood flow (sMBF), rest-MBF (rMBF), myocardial flow reserve (MFR) and flow difference (FD) estimates obtained with 1-tissue-compartment (1TCM) and net retention (NR) modes, both with and without attenuation correction. (3) Results: The use of AC led to significantly higher sMBF, rMBF and DF values obtained by 1TCM compared those values derived by 1TCM with NAC; the lowest values of stress MBF and rest MBF were obtained by 1TCM_NAC. The resting flow, MFR and DF were significantly (p < 0.005) higher in the AC model than in NAC. All quantitative variables were significantly (p < 0.05) higher in NR_NAC than in the 1TC_NAC model. Finally, sMBF, rMBF and FD showed significantly (p < 0.05) higher values by using 1TMC_AC compared to NR_AC. (4) Conclusions: We suggested that 1-compartment and net retention models correctly reflect coronary microcirculation and can be used for clinical practice for evaluating quantitative myocardial perfusion by dynamic SPECT. Attenuation correction is an important step in post-processing dynamic SPECT data, which increases the consistency and diagnostic accuracy of models.
Collapse
Affiliation(s)
- Andrey Mochula
- Nuclear Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (A.M.); (A.M.); (K.Z.)
| | - Alina Maltseva
- Nuclear Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (A.M.); (A.M.); (K.Z.)
| | - Kristina Kopeva
- Department of Myocardial Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia;
| | - Elena Grakova
- Department of Myocardial Pathology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia;
| | - Olga Mochula
- Department of Radiology and Tomography, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia;
| | - Konstantin Zavadovsky
- Nuclear Department, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk 634012, Russia; (A.M.); (A.M.); (K.Z.)
| |
Collapse
|
7
|
Mallet F, Poitrasson-Rivière A, Mariano-Goulart D, Agostini D, Manrique A. Measuring myocardial blood flow using dynamic myocardial perfusion SPECT: artifacts and pitfalls. J Nucl Cardiol 2023; 30:2006-2017. [PMID: 36598748 DOI: 10.1007/s12350-022-03165-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/09/2022] [Indexed: 01/05/2023]
Abstract
Dynamic acquisition allows absolute quantification of myocardial perfusion and flow reserve, offering an alternative to overcome the potential limits of relative quantification, especially in patients with balanced multivessel coronary artery disease. SPECT myocardial perfusion is widely available, at lower cost than PET. Dynamic cardiac SPECT is now feasible and has the potential to be the next step of comprehensive perfusion imaging. In order to help nuclear cardiologists potentially interested in using dynamic perfusion SPECT, we sought to review the different steps of acquisition, processing, and reporting of dynamic SPECT studies in order to enlighten the potentially critical pitfalls and artifacts. Both patient-related and technical artifacts are discussed. Key parameters of the acquisition include pharmacological stress, radiopharmaceuticals, and injection device. When it comes to image processing, attention must be paid to image-derived input function, patient motion, and extra-cardiac activity. This review also mentions compartment models, cameras, and attenuation correction. Finally, published data enlighten some facets of dynamic cardiac SPECT while several issues remain. Harmonizing acquisition and quality control procedures will likely improve its performance and clinical strength.
Collapse
Affiliation(s)
- Florian Mallet
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, 14000, Caen, France
- Department of Nuclear Medicine, Jean Perrin Cancer Center, Clermont-Ferrand, France
| | | | - Denis Mariano-Goulart
- Department of Nuclear Medicine, CHU of Montpellier, PhyMedExp, University of Montpellier, INSERM, CNRS, Montpellier, France
| | - Denis Agostini
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, 14000, Caen, France
| | - Alain Manrique
- Department of Nuclear Medicine, CHU de Caen Normandie, Normandie Univ, UNICAEN UR 4650 PSIR, 14000, Caen, France.
- GIP Cyceron, Campus Jules Horowitz, Boulevard Henri Becquerel, BP 5229, 14074, Caen, France.
| |
Collapse
|
8
|
Djaïleb L, De Leiris N, Canu M, Sy OP, Seiller A, Leenhardt J, Charlon C, Faure M, Caillard J, Broisat A, Borel AL, Lablanche S, Betry C, Ghezzi C, Vanzetto G, Fagret D, Riou LM, Barone-Rochette G. Regional CZT myocardial perfusion reserve for the detection of territories with simultaneously impaired CFR and IMR in patients without obstructive coronary artery disease: a pilot study. J Nucl Cardiol 2023; 30:1656-1667. [PMID: 36813934 DOI: 10.1007/s12350-023-03206-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/24/2023]
Abstract
OBJECTIVES To assess the diagnostic performances of CZT myocardial perfusion reserve (MPR) for the detection of territories with simultaneous impaired coronary flow reserve (CFR) and index of microcirculatory resistance (IMR) in patients without obstructive coronary artery disease. METHODS Patients were prospectively included before being referred for coronary angiography. All patients underwent CZT MPR before invasive coronary angiography (ICA) and coronary physiology assessment. Rest and dipyridamole-induced stress myocardial blood flow (MBF) and MPR were quantified using 99mTc-SestaMIBI and a CZT camera. Fractional flow reserve (FFR), Thermodilution CFR, and IMR were assessed during ICA. RESULTS Between December 2016 and July 2019, 36 patients were included. 25/36 patients presented no obstructive coronary artery disease. A complete functional assessment was performed in 32 arteries. No territory presented a significant ischemia on CZT myocardial perfusion imaging. A moderate yet significant correlation was observed between regional CZT MPR and CFR (r = 0.4, P = .03). Sensitivity, specificity, positive and negative predictive value, and accuracy of regional CZT MPR versus the composite invasive criterion (impaired CFR and IMR) were 87 [47% to 99%], 92% [73% to 99%], 78% [47% to 93%], 96% [78% to 99%], and 91% [75% to 98%], respectively. All territories with a regional CZT MPR ≤ 1.8 showed a CFR < 2. Regional CZT MPR values were significantly higher in arteries with CFR ≥ 2 and IMR < 25 (negative composite criterion, n = 14) than in those with CFR < 2 and IMR ≥ 25 (2.6 [2.1 to 3.6] versus 1.6 [1.2 to 1.8]), P < .01). CONCLUSION Regional CZT MPR presented excellent diagnostic performances for the detection of territories with simultaneously impaired CFR and IMR reflecting a very high cardiovascular risk in patients without obstructive coronary artery disease.
Collapse
Affiliation(s)
- Loïc Djaïleb
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France.
| | - Nicolas De Leiris
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Marjorie Canu
- Cardiology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Olivier Phan Sy
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Alexandre Seiller
- Clinical Investigation Center-Technological Innovation, INSERM CIC1406, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Julien Leenhardt
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Clémence Charlon
- Cardiology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Marine Faure
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Jessica Caillard
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Alexis Broisat
- INSERM, LRB, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Anne-Laure Borel
- Endocrinology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Sandrine Lablanche
- Endocrinology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Cécile Betry
- Endocrinology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | | | - Gérald Vanzetto
- Cardiology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Daniel Fagret
- Nuclear Medicine Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Laurent M Riou
- INSERM, LRB, Univ. Grenoble Alpes, 38000, Grenoble, France
| | - Gilles Barone-Rochette
- Cardiology Department, LRB, INSERM, CHU Grenoble Alpes, Univ. Grenoble Alpes, 38000, Grenoble, France
| |
Collapse
|
9
|
D'Antonio A, Assante R, Zampella E, Mannarino T, Buongiorno P, Cuocolo A, Acampa W. Myocardial blood flow evaluation with dynamic cadmium-zinc-telluride single-photon emission computed tomography: Bright and dark sides. Diagn Interv Imaging 2023; 104:323-329. [PMID: 36797156 DOI: 10.1016/j.diii.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/16/2023]
Abstract
Myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) assessment with non-invasive techniques represent an important tool to evaluate both coronary artery disease severity and extent. Currently, cardiac positron emission tomography-computed tomography (PET-CT) is the "gold standard" for the assessment of coronary function and provides accurate estimations of baseline and hyperemic MBF and MFR. Nevertheless, due to the high cost and complexity, PET-CT is not widely used in clinical practice. The introduction of cardiac-dedicated cadmium-zinc-telluride (CZT) cameras has renewed researchers' interest on MBF quantitation by single-photon emission computed tomography (SPECT). Indeed, many studies evaluated MPR and MBF measurements by dynamic CZT-SPECT in different cohorts of patients with suspected or overt coronary artery disease. As well, many others have compared the values obtained by CZT-SPECT to the ones by PET-CT, showing good correlations in detecting significant stenosis, although with different and non-standardized cut-off values. Nevertheless, the lack of standardized protocol for acquisition, reconstruction and elaboration makes more difficult to compare different studies and to further assess the real advantages of MBF quantitation by dynamic CZT-SPECT in clinical routine. Many are the issues involved in the bright and dark sides of dynamic CZT-SPECT. They include different type of CZT cameras, different execution protocols, different tracers with different myocardial extraction fraction and distribution, different software packages with different tools and algorithms, often requiring manual post-processing elaboration. This review article provides a clear summary of the state of the art on MBF and MPR evaluation by dynamic CZT-SPECT and outlines the major issues to solve to optimize this technique.
Collapse
Affiliation(s)
- Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
10
|
Fang Z, Cai W, Chen B, Li C, Zhao J, Tian Z, Chen L, Bu J, Zhao Z, Li D. Association between CZT‑SPECT myocardial blood flow and coronary stenosis: A cross‑sectional study. Exp Ther Med 2023; 26:350. [PMID: 37324508 PMCID: PMC10265712 DOI: 10.3892/etm.2023.12049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/11/2023] [Indexed: 06/17/2023] Open
Abstract
The association between the quantitative and semi-quantitative parameters of myocardial blood flow obtained using cadmium-zinc-telluride single photon emission computed tomography (CZT-SPECT) and coronary stenosis remains unclear. Therefore, the objective of the present study was to evaluate the diagnostic value of two parameters obtained using CZT-SPECT in patients with suspected or known coronary artery disease. A total of 24 consecutive patients who underwent CZT-SPECT and coronary angiography within 3 months of each other were included in the study. To evaluate the predictive ability of the regional difference score (DS), coronary flow reserve (CFR), and the combination thereof for positive coronary stenosis at the vascular level, receiver operating characteristic (ROC) curves were plotted and the area under the curves (AUCs) were calculated. Comparisons of the reclassification ability for coronary stenosis between different parameters were assessed by calculating the net reclassification index (NRI) and the integrated discrimination improvement (IDI). The 24 participants (median age: 65 years; range: 46-79 years; 79.2% male) included in this study had a total of 72 major coronary arteries. When stenosis ≥50% was defined as the criteria for positive coronary stenosis, the AUCs and the 95% confidence interval (CI) for regional DS, CFR, and the combination of the two indices were 0.653 (CI, 0.541-0.766), 0.731 (CI, 0.610-0.852) and 0.757 (CI, 0.645-0.869), respectively. Compared with single DS, the combination of DS and CFR increased the predictive ability for positive stenosis, with an NRI of 0.197-1.060 (P<0.01) and an IDI of 0.0150-0.1391 (P<0.05). When stenosis ≥75% was considered as the criteria, the AUCs were 0.760 (CI, 0.614-0.906), 0.703 (CI, 0.550-0.855), and 0.811 (CI, 0.676-0.947), respectively. Compared with DS, CFR had an IDI of -0.3392 to -02860 (P<0.05) and the combination of DS and CFR also enhanced the predictive ability, with an NRI of 0.0313-1.0758 (P<0.01). In conclusion, both regional DS and CFR had diagnostic values for coronary stenosis, but the diagnostic abilities differed in distinguishing between different degrees of stenosis, and the efficiency was improved with a combination of DS and CFR.
Collapse
Affiliation(s)
- Zhang Fang
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Wenyi Cai
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Bei Chen
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Chunxiang Li
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Jihong Zhao
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhiqiang Tian
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Limei Chen
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Ju Bu
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Zhongqiang Zhao
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Dianfu Li
- Department of Cardiology, People's Hospital of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| |
Collapse
|
11
|
Bleszynski PA, Schwartz RG. Optimizing patient centered care in the cardiac intensive care unit: Harness the safety, effectiveness, and incremental value of radionuclide perfusion, function, and molecular imaging. J Nucl Cardiol 2023; 30:570-573. [PMID: 34169474 DOI: 10.1007/s12350-021-02691-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 05/26/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Peter A Bleszynski
- Cardiology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Ronald G Schwartz
- Cardiology Division, Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA.
- Nuclear Medicine Division, Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
12
|
Wang L, Zheng Y, Zhang J, Wang M, Wu D, Wang Y, Qiu H, Hsu B, Fang W. Diagnostic value of quantitative myocardial blood flow assessment by NaI(Tl) SPECT in detecting significant stenosis: a prospective, multi-center study. J Nucl Cardiol 2023; 30:769-780. [PMID: 35971031 DOI: 10.1007/s12350-022-03085-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/20/2022] [Indexed: 10/15/2022]
Abstract
OBJECTIVES The aim of this prospective multi-center study was to investigate the diagnostic value of myocardial blood flow (MBF) quantification using NaI(Tl)-based single-photon emission computed tomography (SPECT) for determining coronary artery disease (CAD) defined by quantitative coronary angiography (QCA). BACKGROUND Absolute quantitation of MBF and myocardial flow reserve (MFR) using SPECT is clinically feasible; however, whether flow quantification using NaI(Tl) SPECT is superior to commonly performed SPECT myocardial perfusion imaging (MPI) in determining CAD has not been evaluated. METHODS Patients with suspected or known CAD underwent pharmacological stress/rest dynamic SPECT imaging and routine SPECT MPI followed by QCA. Obstructive disease was defined as ≥ 50% reduction in luminal diameter on QCA. RESULTS One hundred fifty-four patients (462 vessels) were included in the analysis. Obstructive CAD was detected in 76/154 patients (49.4%) and 112/462 vessels (24.2%). Optimal cut-off values were 1.86 mL/min/g for stress MBF and 1.95 for MFR, respectively. Stress MBF and MFR were more sensitive than MPI in both individual patients (stress MBF vs MPI: 81.6% vs 51.3%; MFR vs MPI: 72.4% vs 51.3%) and in coronary vascular regions (stress MBF vs MPI: 78.6% vs 31.3%; MFR vs MPI: 75.9% vs 31.3%; all P < .01). In receiver operating characteristic curve analysis, quantification revealed a significantly greater area under the curve than MPI at the patient (stress MBF vs MPI: 0.761 vs 0.641; MFR vs MPI: 0.770 vs 0.641) and the vessel (stress MBF vs MPI: 0.745 vs 0.613; MFR vs MPI: 0.756 vs 0.613; all P < .05) levels. Integrating quantitative SPECT measures with MPI significantly increased the area under the curve and improved the discriminatory and reclassification capacity. CONCLUSION Flow quantification using NaI(Tl) SPECT provides superior sensitivity and discriminatory capacity to MPI in detecting significant stenosis. Clinical trial registration NCT03637725.
Collapse
Affiliation(s)
- Lei Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Yumin Zheng
- Department of Nuclear Medicine, China-Japan Friendship Hospital, National Center for Respiratory Diseases, Beijing, China
| | - Jie Zhang
- Department of Nuclear Medicine, Henan Provincial People's Hospital, Central China Fuwai Hospital, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Meng Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Dayong Wu
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Yawen Wang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China
| | - Hong Qiu
- Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Beijing, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA
| | - Wei Fang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, 167 Beilishi Road, Beijing, 100037, China.
| |
Collapse
|
13
|
Mannarino T, Assante R, D'Antonio A, Zampella E, Cuocolo A, Acampa W. Radionuclide Tracers for Myocardial Perfusion Imaging and Blood Flow Quantification. Cardiol Clin 2023; 41:141-150. [PMID: 37003672 DOI: 10.1016/j.ccl.2023.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
Myocardial perfusion imaging by nuclear cardiology is widely validated for the diagnosis, risk stratification, and management of patients with suspected or known coronary artery disease. Numerous radiopharmaceuticals are available for single-photon emission computed tomography and PET modalities. Each tracer shows advantages and limitations that should be taken into account in performing an imaging examination. This review aimed to summarize the state-of-the-art radiotracers used for myocardial perfusion imaging and blood flow quantification, highlighting the new technologic advances and promising possible applications.
Collapse
Affiliation(s)
- Teresa Mannarino
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples 80131, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples 80131, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples 80131, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples 80131, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples 80131, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Via Sergio Pansini 5, Naples 80131, Italy.
| |
Collapse
|
14
|
Advances in Single-Photon Emission Computed Tomography. Cardiol Clin 2023; 41:117-127. [PMID: 37003670 DOI: 10.1016/j.ccl.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The clinical presentation of coronary artery disease (CAD) has changed during the last 20 years with less ischemia on stress testing and more nonobstructive CAD on coronary angiography. Single-photon emission computed tomography (SPECT) myocardial perfusion imaging should include the measurement of myocardial flow reserve and assessment of coronary calcium for the diagnosis of nonobstructive CAD and coronary microvascular disease. SPECT/CT systems provide reliable attenuation correction for better specificity and low-dose CT for coronary calcium evaluation. SPECT MFR measurement is accurate, well validated, and repeatable.
Collapse
|
15
|
Cuddy-Walsh SG, deKemp RA, Ruddy TD, Wells RG. Improved precision of SPECT myocardial blood flow using a net tracer retention model. Med Phys 2022; 50:2009-2021. [PMID: 36565461 DOI: 10.1002/mp.16186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Noninvasive quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR) provides incremental benefit to relative myocardial perfusion imaging (MPI) to diagnose and manage heart disease. MBF can be measured with single-photon emission computed tomography (SPECT) but the uncertainty in the measured values is high. Standardization and optimization of protocols for SPECT MBF measurements will improve the consistency of this technique. One element of the processing protocol is the choice of kinetic model used to analyze the dynamic image series. PURPOSE This study evaluates if a net tracer retention model (RET) will provide a better fit to the acquired data and greater test-retest precision than a one-compartment model (1CM) for SPECT MBF, with (+MC) and without (-MC) manual motion correction. METHODS Data from previously acquired rest-stress MBF studies (31 SPECT-PET and 30 SPECT-SPECT) were reprocessed ± MC. Rate constants (K1) were extracted using 1CM and RET, +/-MC, and compared pairwise with standard PET MBF measurements using cross-validation to obtain calibration parameters for converting SPECT rate constants to MBF and to assess the goodness-of-fit of the calibration curves. Precision (coefficient of variation of test re-test relative differences, COV) of flow measurements was computed for 1CM and RET ± MC using data from the repeated SPECT MBF studies. RESULTS Both the RET model and MC improved the goodness-of-fit of the SPECT MBF calibration curves to PET. All models produced minimal bias compared with PET (mean bias < 0.6%). The SPECT-SPECT MBF COV significantly improved from 34% (1CM+MC) to 28% (RET+MC, P = 0.008). CONCLUSION The RET+MC model provides a better calibration of SPECT to PET and blood flow measurements with better precision than the 1CM, without loss of accuracy.
Collapse
Affiliation(s)
- Sarah G Cuddy-Walsh
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| | - Robert A deKemp
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada
| | - R Glenn Wells
- Division of Cardiology, University of Ottawa Heart Institute, Ottawa, Ontario, Canada.,Division of Cardiology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
16
|
Lima RSL, Bezerra A, Andrade M, Domenico C, De Lorenzo A. Improved detection of coronary artery disease by CZT regional coronary blood flow evaluation. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:1072729. [PMID: 39354966 PMCID: PMC11440858 DOI: 10.3389/fnume.2022.1072729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 11/29/2022] [Indexed: 10/03/2024]
Abstract
Introduction CZT cameras have enabled the noninvasive quantification of myocardial flow reserve (MFR), an important physiologic measure. This study aimed to compare myocardial perfusion SPECT (MPS) with or without MFR evaluation for the detection of obstructive coronary artery disease (CAD). Methods 48 patients with CAD (>50% obstruction) detected at invasive coronary angiography or CT angiography underwent dipyridamole MPS and MFR evaluation within 30 days. A 1-day protocol (rest-stress) was used to quantify MFR. The acquisition of dynamic rest and stress images was initiated simultaneously to 99mTc sestamibi injection (370 and 1,110 MBq, respectively), both lasting for 11 min, followed by 5-min imaging. Pharmacologic stress with dipyridamole (0.56 mg/kg for 4 min) was performed with the patient positioned in the CZT camera. The images were processed and time-activity curves were generated, calculating global and regional MFR in a semiautomatic software. A global or regional MFR <2 was considered abnormal. MPS perfusion images were classified as normal or abnormal. The images were interpreted by experienced physicians blinded to the results of MFR and coronary angiography/CT. Results Mean age of the population was 61 ± 9 years, 54.2% female. Twenty patients (41.7%) had single-vessel CAD, 22 (45.8%) 2-vessel CAD and 6 (12.5%), triple-vessel CAD. Among the 82 vessels with obstruction, 48 had perfusion abnormalities in MPS and 60 had reduced MFR, while among the normal vessels, had 54 normal MPS and 52 had preserved MFR. The sensitivity of MFR (69%) was higher than that of MPS (55.2%), without significant changes in specificity (86 vs. 83.7%). Conclusions MFR in the CZT camera is more sensitive for the detection of CAD than perfusion abnormalities in MPS, especially in patients with multivessel CAD.
Collapse
Affiliation(s)
- R S L Lima
- Nuclear Medicine Department, Fonte Imagem, Rio de Janeiro, Brazil
- Cardiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A Bezerra
- Cardiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - M Andrade
- Cardiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C Domenico
- Cardiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A De Lorenzo
- Cardiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
17
|
Zavadovsky KV, Mochula AV, Maltseva AN, Shipulin VV, Sazonova SI, Gulya MO, Liga R, Gimelli A. The current status of CZT SPECT myocardial blood flow and reserve assessment: Tips and tricks. J Nucl Cardiol 2022; 29:3137-3151. [PMID: 33939162 DOI: 10.1007/s12350-021-02620-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/18/2023]
Abstract
Cardiac PET-derived measurements of myocardial blood flow (MBF) and myocardial flow reserve (MFR) are proven robust indexes of the severity of coronary artery disease (CAD). They facilitate the diagnosis of diffuse epicardial and microvascular disease and are also of prognostic significance. However, low availability and high cost have limited their wide clinical implementation. Over the last 15 years, cadmium zinc telluride (CZT)-based detectors have been implemented into SPECT imaging devices. Myocardial perfusion scintigraphy can be performed faster and with less radiation exposure as compared with standard gamma cameras. Rapid dynamic SPECT studies with higher count rates can be performed. This technological breakthrough has renewed the interest in SPECT MBF assessment in patients with CAD. Currently, two cardiac-centered CZT gamma cameras are available commercially-Discovery NM530c and D-SPECT. They differ in parameters such as collimator design, number of detectors, sensitivity, spatial resolution and image reconstruction. A number of publications have focused on the feasibility of dynamic CZT SPECT and on the correlation with cardiac PET and invasive coronary angiography measurements of fractional flow reserve. Current study reviews the present status of MBF and MFR assessment with CZT SPECT. It also aims to provide an overview of specific issues related to acquisition, processing and interpretation of quantitative studies in patients with CAD.
Collapse
Affiliation(s)
- Konstantin V Zavadovsky
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia.
- Siberian State Medical University, Tomsk, Russia.
| | - Andrew V Mochula
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Alina N Maltseva
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Vladimir V Shipulin
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Svetlana I Sazonova
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | - Marina O Gulya
- Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Kievskaya Str 111A, Tomsk, 634012, Russia
| | | | | |
Collapse
|
18
|
Renaud JM, Poitrasson-Rivière A, Hagio T, Moody JB, Arida-Moody L, Ficaro EP, Murthy VL. Myocardial flow reserve estimation with contemporary CZT-SPECT and 99mTc-tracers lacks precision for routine clinical application. J Nucl Cardiol 2022; 29:2078-2089. [PMID: 34426935 DOI: 10.1007/s12350-021-02761-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/17/2021] [Indexed: 12/22/2022]
Abstract
BACKGROUND PET myocardial flow reserve (MFR) has established diagnostic and prognostic value. Technological advances have now enabled SPECT MFR quantification. We investigated whether SPECT MFR precision is sufficient for clinical categorization of patients. METHODS Validation studies vs invasive flow measurements and PET MFR were reviewed to determine global SPECT MFR thresholds. Studies vs PET and a SPECT MFR repeatability study were used to establish imprecision in SPECT MFR measurements as the standard deviation of the difference between SPECT and PET MFR, or test-retest SPECT MFR. Simulations were used to evaluate the impact of SPECT MFR imprecision on confidence of clinically relevant categorization. RESULTS Based on validation studies, the typical PET MFR categories were used for SPECT MFR classification (< 1.5, 1.5-2.0, > 2.0). Imprecision vs PET MFR ranged from 0.556 to 0.829, and test-retest imprecision was 0.781-0.878. Simulations showed correct classification of up to only 34% of patients when 1.5 ≤ true MFR ≤ 2.0. Categorization with high confidence (> 80%) was only achieved for extreme MFR values (< 1.0 or > 2.5), with correct classification in only 15% of patients in a typical lab with MFR of 1.8 ± 0.5. CONCLUSIONS Current SPECT-derived estimates of MFR lack precision and require further optimization for clinical risk stratification.
Collapse
Affiliation(s)
- Jennifer M Renaud
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA.
| | | | - Tomoe Hagio
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Jonathan B Moody
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
| | - Liliana Arida-Moody
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| | - Edward P Ficaro
- INVIA Medical Imaging Solutions, 3025 Boardwalk Dr., Suite 200, Ann Arbor, MI, 48108, USA
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| | - Venkatesh L Murthy
- Frankel Cardiovascular Center, Division of Cardiovascular Medicine (Department of Internal Medicine) and Division of Nuclear Medicine (Department of Radiology), University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
19
|
Vançon B, Bisson A, Courtehoux M, Bernard A, Bailly M. A study protocol for an observational cohort investigating cardiac transthyretin amyloidosis flow reserve before and after Tafamidis treatment: The AMYTRE study. Front Med (Lausanne) 2022; 9:978293. [PMID: 36082269 PMCID: PMC9445832 DOI: 10.3389/fmed.2022.978293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 08/04/2022] [Indexed: 11/15/2022] Open
Abstract
Introduction Anginal symptoms and signs of ischemia have been reported in some patients with cardiac transthyretin amyloidosis (ATTR) without obstructive epicardial coronary artery disease (CAD). Few studies found that coronary microvascular dysfunction was highly prevalent in subjects with cardiac amyloidosis, even in the absence of epicardial CAD. The purpose of this study is to confirm the coronary microvascular dysfunction, and to go further with evaluation of the effect of Tafamidis on microvascular dysfunction after 24 months of treatment. Methods and analysis This study is a multicentric, prospective, observational cohort study. Adult patients with confirmed ATTR cardiomyopathy seen in the nuclear medicine departments of three large referral centers and treated with Tafamidis will be included. At baseline, patients will have a clinical and echocardiography evaluation. They will undergo a dynamic rest/stress cardiac scintigraphy with flow and reserve measurements before and 24 months after Tafamidis introduction. The primary outcome of this study will be the variation of stress and rest myocardial blood flow and flow reserve between baseline and 24 months after treatment. The effect of Tafamidis will be assessed by an intention to treat analysis. Ethics and dissemination The study has received the following approvals: Orleans Hospital Research Committee (CHRO-2021-05) and Sud-Mediterranée IV Regional Ethics Committee (21 06 02). Results will be made available to physicians, the funders, and other researchers. Clinical trial registration [https://clinicaltrials.gov/ct2/show/NCT05103943], identifier [NCT05103943].
Collapse
Affiliation(s)
- Bastien Vançon
- Nuclear Medicine Department, CHR Orleans, Orléans, France
| | - Arnaud Bisson
- Cardiology Department, CHR Orleans, Orléans, France
- Cardiology Department, CHRU Tours, Tours, France
- EA4245 T2i, Tours University, Tours, France
| | | | - Anne Bernard
- Cardiology Department, CHRU Tours, Tours, France
- EA4245 T2i, Tours University, Tours, France
| | - Matthieu Bailly
- Nuclear Medicine Department, CHR Orleans, Orléans, France
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France
- *Correspondence: Matthieu Bailly,
| |
Collapse
|
20
|
Cantoni V, Green R, D'Antonio A, Cuocolo A. Dynamic CZT-SPECT in coronary artery disease: Where are we now? J Nucl Cardiol 2022; 29:1698-1701. [PMID: 34350552 DOI: 10.1007/s12350-021-02752-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 07/09/2021] [Indexed: 11/28/2022]
Affiliation(s)
- Valeria Cantoni
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Roberta Green
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
21
|
Ferenczi P, Couffinhal T, Mamou A, Mamou Y, Ceyrat Q, Bordenave L, Coste P, Pinaquy JB. Myocardial blood flows and reserves on solid state camera: Correlations with coronary history and cardiovascular risk factors. J Nucl Cardiol 2022; 29:1671-1678. [PMID: 34036528 DOI: 10.1007/s12350-021-02659-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
OBJECTIVES Study designed to test association between stress-induced myocardial blood flow (sMBF), resting MBF (rMBF), and MBF reserve (MFR) and coronary artery disease (CAD) in a population of CAD and non-coronary patients. Secondary objectives were to confront visual analysis and dynamic analysis and to explore potential association between MBF and several cardiovascular risk factors METHODS: A total of 155 patients who underwent dynamic myocardial perfusion imaging on a CZT camera were included. sMBF, rMBF, and MFR were evaluated, and cardiovascular risk was assessed. RESULTS Significantly lower total sMBF and MFR were observed in CAD patient vs non-CAD patient. In comparison with visual analysis, lower sMBF were found in pathologic territory, lower rMBF in necrotic territory and lower MFR in necrotic ones. A significant correlation between total sMBF, rMBF and diabetes was found. CONCLUSION sMBF and MFR as assessed on CZT gamma-cameras can be used to determine the coronary state. Low total sMBF might be an independent risk factor of coronaropathy. An inverse correlation was suggested between total sMBF and rMBF with diabetes.
Collapse
Affiliation(s)
- Paul Ferenczi
- Nuclear Imaging Department, CHU de Bordeaux, 33000, Bordeaux, France.
- Nuclear imaging Department, CH de Pau, 64000, Pau, France.
| | | | - Adel Mamou
- R&D, NeuralX, 34000, Montpellier, France
| | | | - Quentin Ceyrat
- Nuclear Imaging Department, CHU de Bordeaux, 33000, Bordeaux, France
- Centre Imagerie Fonctionnelle, 33000, Bordeaux, France
| | | | - Pierre Coste
- Cardiology Department, CHU de Bordeaux, 33000, Bordeaux, France
| | | |
Collapse
|
22
|
Zavadovsky KV, Vorobyeva DA, Mochula OV, Mochula AV, Maltseva AN, Bayev AE, Gulya MO, Gimelli A, Ryabov VV. Myocardial Blood Flow and Flow Reserve in Patients With Acute Myocardial Infarction and Obstructive and Non-Obstructive Coronary Arteries: CZT SPECT Study. FRONTIERS IN NUCLEAR MEDICINE (LAUSANNE, SWITZERLAND) 2022; 2:935539. [PMID: 39354978 PMCID: PMC11440855 DOI: 10.3389/fnume.2022.935539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 05/31/2022] [Indexed: 10/03/2024]
Abstract
Background To assess single-photon emission computed tomography cadmium-zinc-telluride (SPECT CZT)-derived myocardial blood flow (MBF) flow reserve (MFR) and flow difference (FD) in patients with acute myocardial infarction (AMI) and to compare this data with serum cardiac troponin and cardiac magnetic resonance (CMR) findings. Methods A total of 31 patients with AMI underwent invasive coronary angiography (ICA), serial high-sensitivity serum cardiac troponin I (cTnI) measurement, and CZT SPECT with visual and quantitative (MBF, MFR, and FD) perfusion parameters, and contrast-enhanced CMR. All patients with AMI were divided into two groups: (1) with non-obstructive coronary arteries (MINOCA), n = 10; (2) with obstructive coronary artery disease (MICAD), n = 21. Results The values of SSS and SRS were significantly (p < 0.01) higher whereas global stress MBF, MFR significantly lower in patients with MICAD as compared to MINOCA - 5.0 (3.0; 5.0) vs. 9.0 (5.0; 13.0); 2.0 (1.0; 3.0) vs. 6.0 (3.0; 11.0); 2.02 (1.71; 2.37) vs. 0.86 (0.72; 1.02) ml/min/g; and 2.61 (2.23; 3.14) vs. 1.67 (1.1; 1.9), respectively. Stress MBF correlated with cTnI at 24 h and day 4: ρ = -0.39; p = 0.03 and ρ = -0.47; p = 0.007, respectively. FD correlated with cTnI at 24 h and day 4: ρ = -0.39; p = 0.03 and ρ = -0.46; p = 0.009. CMR analysis showed that infarct size, MVO and myocardial edema in patients with MICAD were significantly (< 0.05) higher as compared to MINOCA: 19.4 (10.4; 29.7) vs. 1.8 (0.0; 6.9); 0.1 (0.0; 0.7) vs. 0.0 (0.0; 0.0) and 19.5 (12.0;30.0) vs. 3.0 (0.0; 12.0), respectively. According to vessel-based analysis of CMR data, acute myocardial injury (defined as late gadolinium enhancement and myocardial edema) was observed more frequently in patients with MICAD compared to MINOCA: 34(37%) vs. 5(5%) p = 0.005, respectively. The values of regional stress MBF, MFR and FD were significantly decreased in LV territories characterized by myocardial injury compared to those without: 0.98 (0.73; 1.79) vs. 1.33 (0.94; 2.08) p < 0.01, 1.64 (1.0; 2.36) vs. 2.0 (1.53; 2.89) p < 0.01 and 0.33 (0.05; 0.57) vs. 0.56 (0.36; 1.32) p> 0.01, respectively. Conclusion In patients with AMI, SPECT CZT-derived flow measures were associated with the high-sensitivity troponin I as well as the extent of edema, microvascular obstruction, and infarct size detected by CMR. On the regional level, quantitative SPECT CZT measures were significantly lower in vessel territories characterized by myocardial injury.
Collapse
Affiliation(s)
- Konstantin V. Zavadovsky
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Darya A. Vorobyeva
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Olga V. Mochula
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Andrew V. Mochula
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Alina N. Maltseva
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Andrew E. Bayev
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | - Marina O. Gulya
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav V. Ryabov
- Tomsk National Research Medical Centre, Cardiology Research Institute, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
23
|
de Souza ACDAH, Harms HJ, Martell L, Bibbo C, Harrington M, Sullivan K, Hainer J, Dorbala S, Blankstein R, Taqueti VR, Foley Kijewski M, Park MA, Meretta A, Breault C, Roth N, Poitrasson-Rivière A, Soman P, Gullberg GT, Di Carli MF. Accuracy and Reproducibility of Myocardial Blood Flow Quantification by Single Photon Emission Computed Tomography Imaging in Patients With Known or Suspected Coronary Artery Disease. Circ Cardiovasc Imaging 2022; 15:e013987. [PMID: 35674051 DOI: 10.1161/circimaging.122.013987] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Single photon emission computed tomography (SPECT) has limited ability to identify multivessel and microvascular coronary artery disease. Gamma cameras with cadmium zinc telluride detectors allow the quantification of absolute myocardial blood flow (MBF) and myocardial flow reserve (MFR). However, evidence of its accuracy is limited, and of its reproducibility is lacking. We aimed to validate 99mTc-sestamibi SPECT MBF and MFR using standard and spline-fitted reconstruction algorithms compared with 13N-ammonia positron emission tomography in a cohort of patients with known or suspected coronary artery disease and to evaluate the reproducibility of this technique. METHODS Accuracy was assessed in 34 participants who underwent dynamic 99mTc-sestamibi SPECT and 13N-ammonia positron emission tomography and reproducibility in 14 participants who underwent 2 99mTc-sestamibi SPECT studies, all within 2 weeks. A rest/pharmacological stress single-day SPECT protocol was performed. SPECT images were reconstructed using a standard ordered subset expectation maximization (OSEM) algorithm with (N=21) and without (N=30) application of spline fitting. SPECT MBF was quantified using a net retention kinetic model' and MFR was derived as the stress/rest MBF ratio. RESULTS SPECT global MBF with splines showed good correlation with 13N-ammonia positron emission tomography (r=0.81, P<0.001) and MFR estimates (r=0.74, P<0.001). Correlations were substantially weaker for standard reconstruction without splines (r=0.61, P<0.001 and r=0.34, P=0.07, for MBF and MFR, respectively). Reproducibility of global MBF estimates with splines in paired SPECT scans was good (r=0.77, P<0.001), while ordered subset expectation maximization without splines led to decreased MBF (r=0.68, P<0.001) and MFR correlations (r=0.33, P=0.3). There were no significant differences in MBF or MFR between the 2 reproducibility scans independently of the reconstruction algorithm (P>0.05 for all). CONCLUSIONS MBF and MFR quantification using 99mTc-sestamibi cadmium zinc telluride SPECT with spatiotemporal spline fitting improved the correlation with 13N-ammonia positron emission tomography flow estimates and test/retest reproducibility. The use of splines may represent an important step toward the standardization of SPECT flow estimation.
Collapse
Affiliation(s)
- Ana Carolina do A H de Souza
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Hendrik J Harms
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Laurel Martell
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Courtney Bibbo
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.).,Spectrum Dynamics Medical, Caesarea, Israel (C.B., N.R.)
| | - Meagan Harrington
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Kyle Sullivan
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Jon Hainer
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Sharmila Dorbala
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Ron Blankstein
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Viviany R Taqueti
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Marie Foley Kijewski
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Mi-Ae Park
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Alejandro Meretta
- Instituto Cardiovascular de Buenos Aires, Buenos Aires, Argentina (A.M.)
| | - Christopher Breault
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| | - Nathaniel Roth
- Spectrum Dynamics Medical, Caesarea, Israel (C.B., N.R.)
| | | | - Prem Soman
- Heart and Vascular Institute, University of Pittsburgh Medical Center, Pittsburgh, PA (P.S.)
| | - Grant T Gullberg
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA (G.T.G.)
| | - Marcelo F Di Carli
- Cardiovascular Imaging Program, Departments of Medicine and Radiology, Brigham and Women's Hospital, Boston, MA (A.C.d.A.H.d.S., H.J.H., L.M., C.B., M.H., K.S., J.H., S.D., R.B., V.R.T., M.F., M.-A.P., M.F.D.C.)
| |
Collapse
|
24
|
Yamamoto A, Nagao M, Ando K, Nakao R, Matsuo Y, Sakai A, Momose M, Kaneko K, Hagiwara N, Sakai S. First Validation of Myocardial Flow Reserve Derived from Dynamic 99mTc-Sestamibi CZT-SPECT Camera Compared with 13N-Ammonia PET. Int Heart J 2022; 63:202-209. [PMID: 35354742 DOI: 10.1536/ihj.21-487] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
13N-ammonia positron emission tomography (NH3-PET) can evaluate myocardial blood flow (MBF) at rest, stress, and myocardial flow reserve (MFR) as well as the ratio of MBF at stress to that at rest. MFR is useful in predicting the prognoses of patients with various heart diseases. Cadmium-zinc-telluride single photon emission computed tomography (CZT-SPECT) enables us to acquire dynamic images of radiotracer kinetics and measure original MBF and MFR using 99mTc-sestamibi. This study aimed to investigate the utility of CZT-SPECT for quantitative assessment of MBF compared to NH3-PET. We validated the correlation of MBF and MFR between CZT-SPECT and NH3-PET. Fourteen patients using one-day rest/stress CZT-SPECT, D-SPECT followed by NH3-PET within 1 month were enrolled and analyzed prospectively. The reproducibility of the MBF and MFR obtained with these two methods was examined using Spearman's correlation coefficient and Bland-Altman plot analysis. The diagnostic value of D-SPECT for abnormal MFR defined using NH3-PET results as MFR < 2.0 was assessed using receiver-operating characteristic (ROC) analysis. The median duration between D-SPECT and NH3-PET was 20 days. Although MBF was overestimated by D-SPECT compared to NH3-PET at high value (mean difference, 0.43 [0.34-0.53]), MBF and MFR were correlated with the two modalities (MBF: r = 0.71, P < 0.0001, MFR: r = 0.60, P < 0.0001). The ROC curve analysis demonstrated a cutoff of 1.6 for detecting abnormal MFR with D-SPECT (sensitivity, 68%; specificity, 91%; AUC, 0.75). MBF and MFR obtained using D-SPECT and NH3-PET had a good correlation, suggesting that the quantitative MFR evaluation by CZT-SPECT may help understand the trend of NH3-PET MFR.
Collapse
Affiliation(s)
- Atsushi Yamamoto
- Department of Cardiology, Tokyo Women's Medical University.,Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Michinobu Nagao
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Kiyoe Ando
- Department of Cardiology, Tokyo Women's Medical University
| | - Risako Nakao
- Department of Cardiology, Tokyo Women's Medical University
| | - Yuka Matsuo
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Akiko Sakai
- Department of Cardiology, Tokyo Women's Medical University
| | - Mitsuru Momose
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | - Koichiro Kaneko
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| | | | - Shuji Sakai
- Department of Imaging Diagnosis and Nuclear Medicine, Tokyo Women's Medical University
| |
Collapse
|
25
|
Fang W, Hsu B. Myocardial blood flow quantitation with the SPECT technique: Where do we stand? J Nucl Cardiol 2022; 29:630-632. [PMID: 33025470 DOI: 10.1007/s12350-020-02373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 11/27/2022]
Affiliation(s)
- Wei Fang
- Department of Nuclear Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bailing Hsu
- Nuclear Science and Engineering Institute, University of Missouri-Columbia, Columbia, MO, USA.
| |
Collapse
|
26
|
Bailly M, Thibault F, Courtehoux M, Metrard G, Ribeiro MJ. Impact of attenuation correction for CZT-SPECT measurement of myocardial blood flow. J Nucl Cardiol 2021; 28:2560-2568. [PMID: 32080802 DOI: 10.1007/s12350-020-02075-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 02/04/2020] [Indexed: 11/26/2022]
Abstract
OBJECTIVES Most of cardiac dedicated CZT-SPECT systems are not equipped with CT, whereas PET systems are. We evaluated the impact of AC correction on CZT-SPECT myocardial blood flow (MBF) and myocardial flow reserve (MFR) measurements. METHODS 104 patients were included. SPECT data were acquired on cadmium zinc telluride (CZT)-based pinhole cardiac camera in listmode using a stress (250 ± 17 MBq)/rest (511 ± 23 MBq) 1-day Tc-99m-tetrofosmin protocol. Low-dose CT was acquired on another SPECT/CT camera in the same position. All analysis was performed using Corridor4DM. RESULTS Stress and rest MBF were significantly lower when AC was applied (P < 0.001). For regional and global MFR, there was no significant difference between AC and NAC measurements (P > 0.25 at least). Mean global LV MFR was 2.43 ± 0.87 and 2.33 ± 0.89, respectively, for NAC and AC measurements. Using a threshold of 2, 86 patients (83%) remained classified as normal and abnormal regarding global LV MFR whether AC was applied or not. Mean difference between NAC and AC values for the 18 other patients was 0.3. CONCLUSION AC correction does not significantly affect MFR measurement both in regional and global LV analyses.
Collapse
Affiliation(s)
- Matthieu Bailly
- Nuclear Medicine Department, CHR ORLEANS, 14 Avenue de l'Hôpital, 45100, Orleans, France.
| | - Frédérique Thibault
- Nuclear Medicine Department, CHR ORLEANS, 14 Avenue de l'Hôpital, 45100, Orleans, France
- Nuclear Medicine Department, CHRU TOURS, Tours, France
| | | | - Gilles Metrard
- Nuclear Medicine Department, CHR ORLEANS, 14 Avenue de l'Hôpital, 45100, Orleans, France
| | | |
Collapse
|
27
|
Acampa W, Zampella E, Assante R, Genova A, De Simini G, Mannarino T, D'Antonio A, Gaudieri V, Nappi C, Buongiorno P, Mainolfi CG, Petretta M, Cuocolo A. Quantification of myocardial perfusion reserve by CZT-SPECT: A head to head comparison with 82Rubidium PET imaging. J Nucl Cardiol 2021; 28:2827-2839. [PMID: 32383083 DOI: 10.1007/s12350-020-02129-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/28/2020] [Indexed: 12/28/2022]
Abstract
BACKGROUND We measured myocardial blood flow (MBF) and perfusion reserve (MPR) by dynamic CZT-SPECT and 82Rb-PET in patients with suspected or known coronary artery disease (CAD) and compared the accuracy of the two methods in predicting obstructive CAD. METHODS Twenty-five patients with available coronary angiography data underwent 99mTc-sestamibi CZT-SPECT and 82Rb-PET cardiac imaging. Stress and rest MBF and MPR were calculated by both methods and compared. Diagnostic accuracies of CZT-SPECT and PET were also assessed using a receiver-operator-characteristic curve. RESULTS CZT-SPECT yielded similar baseline MBF, but higher hyperemic MBF and MPR values compared to PET. There was a modest correlation between the two methods for MPR (r = 0.56, P < .01). MPR by CZT-SPECT showed a good ability in identify a reduced MPR by PET, with an area under the curve of 0.85. A MPR cut-off of 2.5 was identified by CZT-SPECT for detection of abnormal MPR by PET, with a sensitivity, specificity and accuracy of 86%, 73% and 80%. The area under the curve for the identification of obstructive CAD by regional MPR were 0.83 for CZT-SPECT and 0.84 for PET (P = .90). At CZT-SPECT, a regional MPR of 2.1 provided the best trade-off between sensitivity and specificity for identifying obstructive CAD. Diagnostic accuracy of CZT-SPECT and PET using respective cut-off values was comparable (P = .62). CONCLUSION Hyperemic MBF and MPR values obtained by CZT-SPECT are higher than those measured by 82Rb-PET imaging, with a moderate correlation between the two methods. CZT-SPECT shows good diagnostic accuracy for the identification of obstructive CAD. These findings may encourage the use of this new technique to a better risk stratification and patient management.
Collapse
Affiliation(s)
- Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Andrea Genova
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Giovanni De Simini
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Ciro Gabriele Mainolfi
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Mario Petretta
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
28
|
Giubbini R, Cerudelli E, Camoni L. Myocardial blood flow reserve and absolute myocardial blood flow for the assessment of patients with coronary artery disease with or without microvascular dysfunction. J Nucl Cardiol 2021; 28:3007-3009. [PMID: 32754895 DOI: 10.1007/s12350-020-02297-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Raffaele Giubbini
- Imaging Department and Nuclear Medicine Unit, University and Spedali Civili of Brescia, Brescia, Italy.
- Nuclear Medicine Department, Piazza Spedali Civili, 1, Brescia, Italy.
| | - Elisabetta Cerudelli
- Imaging Department and Nuclear Medicine Unit, University and Spedali Civili of Brescia, Brescia, Italy
| | - Luca Camoni
- Imaging Department and Nuclear Medicine Unit, University and Spedali Civili of Brescia, Brescia, Italy
| |
Collapse
|
29
|
Bailly M, Ribeiro MJ, Angoulvant D. Combining flow and reserve measurement during myocardial perfusion imaging: A new era for myocardial perfusion scintigraphy? Arch Cardiovasc Dis 2021; 114:818-827. [PMID: 34801410 DOI: 10.1016/j.acvd.2021.10.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/25/2022]
Abstract
Myocardial flow reserve represents the ratio of myocardial blood flow between stress and rest, giving functional information about both macrocirculation and microcirculation; it has been reported extensively in positron emission tomography, with an increase in diagnostic performance, providing important prognostic information and being a powerful tool to guide therapy. Advances in single photon emission computed tomography, with the widespread availability of "cadmium zinc telluride" single photon emission computed tomography cameras, raise the question of myocardial flow reserve use in daily clinical practice. In this article, we review the pathophysiology of myocardial blood flow and myocardial flow reserve, and the initial data available from single photon emission computed tomography myocardial blood flow and myocardial flow reserve evaluation; we also discuss potential limitations to the wider implementation of flow evaluation in single photon emission computed tomography.
Collapse
Affiliation(s)
- Matthieu Bailly
- Nuclear Medicine Department, CHR Orleans, 14, Avenue de l'Hôpital, 45100 Orleans, France; UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France.
| | - Maria Joao Ribeiro
- UMR 1253, iBrain, Université de Tours, Inserm, 37000 Tours, France; Nuclear Medicine Department, CHRU Tours, 37000 Tours, France
| | - Denis Angoulvant
- Cardiology Department, CHRU Tours, 37000 Tours, France; EA4245, T2i, Tours University, 37000 Tours, France
| |
Collapse
|
30
|
Błaszczyk M, Adamczewski Z, Płachcińska A. Capabilities of Modern Semiconductor Gamma Cameras in Radionuclide Diagnosis of Coronary Artery Disease. Diagnostics (Basel) 2021; 11:diagnostics11112130. [PMID: 34829477 PMCID: PMC8620025 DOI: 10.3390/diagnostics11112130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/16/2022] Open
Abstract
This paper presents a review of the literature concerning the clinical application of modern semiconductor (CZT) gamma cameras in the radioinuclide diagnosis of coronary artery disease. It contains information on the diagnostic efficacy of myocardial perfusion studies performed with those cameras compared with the widely used scintillation (Anger) cameras, an overview of their effectiveness in comparison with coronary angiography (also fractional flow reserve) and currently available clinical results of a myocardial flow reserve measured with a dynamic SPECT study. Introduction of this imaging modality to the measurement of a myocardial flow reserve aims to facilitate access to this type of study compared to the less available and more expensive PET method used so far.
Collapse
Affiliation(s)
- Michał Błaszczyk
- Department of Quality Control and Radiological Protection, Medical University of Łódź, Czechosłowacka 8/10 Street, 92-216 Łódź, Poland; (M.B.); (A.P.)
| | - Zbigniew Adamczewski
- Department of Nuclear Medicine, Medical University of Łódź, Czechosłowacka 8/10 Street, 92-216 Łódź, Poland
- Correspondence:
| | - Anna Płachcińska
- Department of Quality Control and Radiological Protection, Medical University of Łódź, Czechosłowacka 8/10 Street, 92-216 Łódź, Poland; (M.B.); (A.P.)
| |
Collapse
|
31
|
Zampella E, Assante R, Acampa W, Cuocolo A. Cardiac PET imaging: Lost in quantification. It's time to find the way. J Nucl Cardiol 2021; 28:1249-1251. [PMID: 32895859 DOI: 10.1007/s12350-020-02332-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/05/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy.
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Via Pansini 5, 80131, Naples, Italy
| |
Collapse
|
32
|
Pelletier-Galarneau M, Ruddy TD. A big step towards clinical implementation of myocardial blood flow quantification with CZT SPECT. J Nucl Cardiol 2021; 28:1487-1489. [PMID: 31535294 DOI: 10.1007/s12350-019-01894-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 08/28/2019] [Indexed: 11/26/2022]
Affiliation(s)
- Matthieu Pelletier-Galarneau
- Department of Medical Imaging, Montreal Heart Institute, Montreal, QC, Canada
- Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Terrence D Ruddy
- Division of Cardiology, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
33
|
Zampella E, Assante R, Gaudieri V, Nappi C, Acampa W, Cuocolo A. Myocardial perfusion reserve by using CZT: It's a long way to the top if you wanna standardize. J Nucl Cardiol 2021; 28:885-887. [PMID: 31290103 DOI: 10.1007/s12350-019-01817-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 07/02/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Emilia Zampella
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy
| | - Wanda Acampa
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy
- Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University "Federico II", Via Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
34
|
Wang J, Li S, Chen W, Chen Y, Pang Z, Li J. Diagnostic efficiency of quantification of myocardial blood flow and coronary flow reserve with CZT dynamic SPECT imaging for patients with suspected coronary artery disease: a comparative study with traditional semi-quantitative evaluation. Cardiovasc Diagn Ther 2021; 11:56-67. [PMID: 33708478 DOI: 10.21037/cdt-20-728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Myocardial blood flow (MBF) quantitation with cadmium-zinc-telluride (CZT) dynamic single-photon emission computed tomography (SPECT) is being increasingly investigated toward clinical utilization. Methods In this prospective study, forty-nine patients with suspected or known coronary artery disease (CAD) underwent a rest/adenosine triphosphate (ATP) stress dynamic and routine gated myocardial perfusion imaging (MPI) by CZT SPECT and then received coronary angiography (CAG). Quantitative diagnosis from the dynamic SPECT and a flow diagram was automatically obtained by the dedicated software and compared with the result of semi-quantitative analysis with gated MPI using the angiographic stenosis as the reference standard. Results When stenosis ≥50% was considered at the participant level, the sensitivity (SN), specificity (SP), positive predictive value (PPV), negative predictive value (NPV) and accuracy (AC) of the quantitative diagnosis were higher than semi-quantitative method as (84.4% vs. 65.6%, 88.2% vs. 70.6%, 93.1% vs. 80.8%, 75.0% vs. 52.2%, 85.7% vs. 67.3%) (all P<0.05). The receiver operating characteristic (ROC) curve analysis generated the optimal critical value as 1.86 and 1.61 mL/min/g for stress MBF (sMBF) and MFR, respectively. The diagnosis performance of the quantitative diagnosis was higher than semi-quantitative method as (78.9% vs. 68.4%, 63.3% vs. 60.0%, 57.7% vs. 52.0%, 82.6% vs. 75.0%, 69.4% vs. 63.3%) for the criteria of ≥75% stenosis on CAG (all P<0.05) with optimal critical values as 1.71 and 1.15 mL/min/g. There was no significant difference between sMBF and MFR. Conclusions The diagnostic efficiency by using the quantitative method of CZT dynamic SPECT imaging is superior to traditional semi-quantitative gated MPI for the diagnosis of CAD, which improved the diagnostic specificity and accuracy when the critical was stenosis ≥50%.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, China
| | - Shuai Li
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, China
| | - Weiqiang Chen
- Department of Cardiology, TEDA International Cardiovascular Hospital, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, China
| | - Yue Chen
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, China
| | - Zekun Pang
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, China
| | - Jianming Li
- Department of Nuclear Medicine, TEDA International Cardiovascular Hospital, Tianjin Medical University Clinical Cardiovascular Institute, Tianjin, China
| |
Collapse
|
35
|
Diagnostic analysis of new quantitative parameters of low-dose dynamic myocardial perfusion imaging with CZT SPECT in the detection of suspected or known coronary artery disease. Int J Cardiovasc Imaging 2020; 37:367-378. [PMID: 32914404 PMCID: PMC7878253 DOI: 10.1007/s10554-020-01962-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 08/03/2020] [Indexed: 12/24/2022]
Abstract
The goal of this study is to explore and evaluate the diagnostic values of myocardial blood flow (MBF), myocardial flow reserve (MFR) and relative flow reserve (RFR) obtained with low-dose dynamic CZT SPECT for patients with suspected or known coronary artery disease (CAD). Fifty-seven consecutive patients who underwent low-dose dynamic CZT SPECT and CAG were enrolled. MBF, MFR and RFR were calculated on the vessel level with dedicated quantitative software, and the difference and correlation of each parameter was compared according to the reference standard of stenosis ≥ 50% or ≥ 75% on CAG, respectively. ROC curves were made by stress MBF (sMBF), rest MBF (rMBF), MFR and RFR. The optimal cut-off values and corresponding diagnostic efficacy were obtained and compared with each other. Results indicated that when stenosis ≥ 50% or ≥ 75% on CAG was used as the reference standard at the vessel level, there was no statistically significant difference in rMBF between the negative group and the positive group (P > 0.05), and the sMBF and MFR in positive groups were significantly lower than that in the negative group (all P < 0.05). There was a moderate to significant correlation between sMBF and MFR, sMBF and RFR, MFR and RFR (all P < 0.0001). These results indicate that low-dose dynamic CZT SPECT imaging can easily obtain the sMBF, MFR and RFR, and there is a good correlation among the three parameters, which has a certain diagnostic value for patients with suspected or known CAD, and is a useful supplement to the conventional qualitative or semi-quantitative diagnostic methods.
Collapse
|
36
|
Acampa W, Assante R, Mannarino T, Zampella E, D'Antonio A, Buongiorno P, Gaudieri V, Nappi C, Giordano A, Mainolfi CG, Petretta M, Cuocolo A. Low-dose dynamic myocardial perfusion imaging by CZT-SPECT in the identification of obstructive coronary artery disease. Eur J Nucl Med Mol Imaging 2019; 47:1705-1712. [PMID: 31848673 DOI: 10.1007/s00259-019-04644-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 11/28/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND We measured myocardial blood flow (MBF) and myocardial perfusion reserve (MPR) by a dynamic low-dose CZT-SPECT protocol in patients with suspected or known coronary artery disease (CAD) and investigated the capability of dynamic data in predicting obstructive CAD. A total of 173 patients with suspected or known CAD underwent dynamic CZT-SPECT after the injection of 155 MBq and 370 MBq of 99mTc-sestamibi for rest and stress imaging, respectively. Standard rest and stress imaging were performed at the end of each dynamic scan. A total perfusion defect (TPD) < 5% were considered normal. Obstructive CAD was defined as ≥ 70% stenosis at coronary angiography. RESULTS Global MPR was lower (p < 0.05) in patients with abnormal compared with those with normal MPI (2.40 ± 0.7 vs. 2.70 ± 0.8). A weak, albeit significant correlation between TPD and MPR (r = - 0.179, p < 0.05) was found. In 91 patients with available angiographic data, hyperemic MBF (2.59 ± 1.2 vs. 3.24 ± 1.1 ml/min/g) and MPR (1.96 ± 0.7 vs. 2.74 ± 0.9) were lower (both p < 0.05) in patients with obstructive CAD (n = 21) compared with those without (n = 70). At univariable analysis, TPD, hyperemic MBF, and MPR were significant predictors of obstructive CAD, whereas only MPR was independent predictor at multivariable analysis (p < 0.05). At per vessels analysis, regional hyperemic MBF (2.59 ± 1.2 vs. 3.24 ± 1.1 ml/min/g) and regional MPR (1.96 ± 0.7 vs. 2.74 ± 0.9) were lower in the 31 vessels with obstructive CAD compared with 242 vessels without (both p < 0.05). CONCLUSIONS In patients with suspected or known CAD, MPR assessed by low-dose dynamic CZT-SPECT showed a good correlation with myocardial perfusion imaging findings and it could be useful to predict obstructive CAD.
Collapse
Affiliation(s)
- Wanda Acampa
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy.,Institute of Biostructure and Bioimaging, National Council of Research, Naples, Italy
| | - Roberta Assante
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Teresa Mannarino
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Emilia Zampella
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Adriana D'Antonio
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Pietro Buongiorno
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Valeria Gaudieri
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Carmela Nappi
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | - Alessia Giordano
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| | | | - Mario Petretta
- Department of Translational Medical Sciences, University Federico II, Naples, Italy
| | - Alberto Cuocolo
- Department of Advanced Biomedical Sciences, University Federico II, Naples, Italy
| |
Collapse
|