1
|
Aung Moon S, Wongsakul S, Kitazawa H, Kittiwachana S, Saengrayap R. Application of ATR-FTIR for Green Arabica Bean Shelf-Life Determination in Accelerated Storage. Foods 2024; 13:2331. [PMID: 39123523 PMCID: PMC11311548 DOI: 10.3390/foods13152331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/21/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Coffee bean oxidation is associated with enzymatic and non-enzymatic browning, the degradation of desirable aromatic compounds, the development of undesirable flavors, increased susceptibility to microbial spoilage, and volatile compound losses. This study investigated natural dry process (DP) and honey process (HP) green coffee beans stored in GrainPro® bags for 0, 5, 10, and 20 days under accelerated storage conditions at 30 °C, 40 °C, and 50 °C with relative humidity of 50%. A kinetic model was used to estimate the shelf life of the green coffee beans. DP recorded durability of 45.67, 29.9, and 24.92 days at 30 °C, 40 °C, and 50 °C, respectively, with HP 60.34, 38.07, and 19.22 days. Partial least squares (PLS) analysis was performed to build the models in order to predict the shelf life of coffee based on peroxide (PV) and thiobarbituric acid reactive substances (TBARS) values. In terms of prediction with leave-one-out cross-validation (LOOCV), PLS provided a higher accuracy for TBARS (R2 = 0.801), while PV was lower (R2 = 0.469). However, the auto-prediction showed good agreement among the observed and predicted values in both PV (R2 = 0.802) and TBARS (R2 = 0.932). Based on the variable importance of projection (VIP) scores, the ATR-FTIR peaks as 3000-2825, 2154-2150, 1780-1712, 1487-2483, 1186-1126, 1107-1097, and 1012-949 cm-1 were identified to be the most related to PV and TBARS on green coffee beans shelf life. ATR-FITR showed potential as a fast and accurate technique to evaluate the oxidation reaction that related to the loss of coffee quality during storage.
Collapse
Affiliation(s)
- Sai Aung Moon
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.A.M.); (S.W.)
| | - Sirirung Wongsakul
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.A.M.); (S.W.)
- Coffee Quality Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Integrated AriTech Ecosystems Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Hiroaki Kitazawa
- Department of Food and Nutrition, Faculty of Human Sciences and Design, Japan Women’s University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan;
| | - Sila Kittiwachana
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand;
| | - Rattapon Saengrayap
- School of Agro-Industry, Mae Fah Luang University, Chiang Rai 57100, Thailand; (S.A.M.); (S.W.)
- Coffee Quality Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
- Integrated AriTech Ecosystems Research Group, Mae Fah Luang University, Chiang Rai 57100, Thailand
| |
Collapse
|
2
|
An DS, Lee DS. Modeling moisture change of packaged dry tablet dosage forms under consumer use condition. Drug Dev Ind Pharm 2024; 50:639-645. [PMID: 39030666 DOI: 10.1080/03639045.2024.2382415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/24/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
A simple mathematical model based on product's moisture sorption isotherm and package's moisture transmission was developed to predict moisture content of dry solid tablets during consumers' use, which is useful for determination of in-use shelf life (ISL) or secondary shelf life. The moisture increase depending on amount of product remaining in the package was accounted for in the mass balance equation on the package. The model was first verified by literature data of desiccant canisters in a plastic bottle of high density polyethylene exposed to two environmental conditions (25 °C and 60% relative humidity (RH); 40 °C and 75% RH) simulating in-use of removing one canister each day. Then an experimental work was conducted on dry refresher candies in a polyethylene terephthalate bottle at 25 °C with two tablets taken out every day, which confirmed the model's capability to predict the product moisture content during in-use storage of 76% and 90% RH. Its use can provide science-based accurate determination of ISL, which may work as consumer guideline. The model is also expected to be helpful for recommending management scheme of whole product life.
Collapse
Affiliation(s)
- Duck Soon An
- Department of Pharmaceutical Engineering, Kyungnam University, Changwon, South Korea
| | - Dong Sun Lee
- Department of Pharmaceutical Engineering, Kyungnam University, Changwon, South Korea
| |
Collapse
|
3
|
Bianchi A, Taglieri I, Macaluso M, Sanmartin C, Zinnai A, Venturi F. Effect of Different Packaging Strategies on the Secondary Shelf Life of Young and Structured Red Wine. Foods 2023; 12:2719. [PMID: 37509811 PMCID: PMC10379816 DOI: 10.3390/foods12142719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
When bottled wine is opened, a completely different scenario occurs that can accelerate the oxidation of the product. This is called the secondary shelf life (SSL), which is generally shorter and less predictable than the primary shelf life (PSL). In this context, the research aim was to evaluate the changes that occur in two types of red wine during two tests to evaluate the secondary shelf life as a function of the packaging systems. The variation of Total SO2 and Free SO2 and the other chemical parameters (polyphenols, anthocyanins, proanthocyanidins, color, and volatile acidity) were used to assess the oxidation rate of the packaging samples after opening during the SSL. In both tests and for the two types of stored red wine, the polymeric cap showed the best results. The other types of closure (screw cap, natural cork, crow cap, and Tetra Brik) showed a negative trend and a reduced SSL for both red wines. Finally, the sensory results confirmed that with the polymeric cap, the SSL increases considerably compared to other capping systems. These results may be due to the technical characteristics of polymeric materials, which tend to vary slightly in shape after repeated usage.
Collapse
Affiliation(s)
- Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Application of accelerated shelf-life test (ASLT) procedure for the estimation of the shelf-life of extra virgin olive oils: A validation study. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
5
|
Secondary shelf life assessment of UHT milk and its potential for food waste reduction. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
6
|
Domestic Use Simulation and Secondary Shelf Life Assessment of Industrial Pesto alla genovese. Foods 2021; 10:foods10081948. [PMID: 34441725 PMCID: PMC8391206 DOI: 10.3390/foods10081948] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 11/25/2022] Open
Abstract
The secondary shelf life (SSL) is defined as the time after package opening during which the food product retains a required level of quality. The SSL, indicated in labels as “best if used within x days after opening”, could lead to domestic food waste if not correctly evaluated. In this context, the SSL of two brands of industrial shelf-stable pesto products (with an indicated SSL of 5 days) was studied through a domestic use simulation performed in five households under two scenarios simulating real opening and storage conditions. The quality of pesto after opening was assessed through microbiological and sensory analyses, determination of instrumental colour parameters, pH and volatiles profiling. For both pesto sauces tested, a SSL ≥ 20 days was proven. Irrespective of the intensity of use (scenarios 1 and 2), the pesto was microbiologically stable: the maximum count for total aerobic mesophilic bacteria (TMB) observed during 20 days of storage was 9.64 ± 1.7 × 102 CFU/g, starting from a commercially stable product. Colour parameters L* and ΔE did not change significantly during storage (p > 0.05), while the a* and BI values significantly changed (p < 0.05) during the first 5 days, and then stabilized during the rest of the household storage. Nevertheless, the slight colour modifications were not perceived by the sensory panel. Moreover, sensory assessors were not able to discern pesto samples stored for up to 20 days after first opening, from a just-opened reference sample, proving that the sensory appreciation of pesto was not influenced by the time after opening. The results of this study suggest the possibility to significantly extend or even omit the SSL indications for industrial pesto sauces. The objective assessment of SSL could have impressive practical outcomes both for the industry and the end user. The elongation of the SSL on the food label might increase food sustainability, thanks to the potential reduction of food wastes, thus giving added value to the commercial products. In addition, the end user could benefit the increase of the useful period for the food consumption after first opening, with significant domestic food waste reduction, reduced household stock turnover and consequent cost savings.
Collapse
|
7
|
Koutsoumanis K, Allende A, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Jacxsens L, Skjerdal T, Da Silva Felício MT, Hempen M, Messens W, Lindqvist R. Guidance on date marking and related food information: part 2 (food information). EFSA J 2021; 19:e06510. [PMID: 33897858 PMCID: PMC8061283 DOI: 10.2903/j.efsa.2021.6510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
A risk-based approach was used to develop guidance to be followed by food business operators (FBOs) when deciding on food information relating to storage conditions and/or time limits for consumption after opening a food package and thawing of frozen foods. After opening the package, contamination may occur, introducing new pathogens into the food and the intrinsic (e.g. pH and aw), extrinsic (e.g. temperature and gas atmosphere) and implicit (e.g. interactions with competing background microbiota) factors may change, affecting microbiological food safety. Setting a time limit for consumption after opening the package (secondary shelf-life) is complex in view of the many influencing factors and information gaps. A decision tree (DT) was developed to assist FBOs in deciding whether the time limit for consumption after opening, due to safety reasons, is potentially shorter than the initial 'best before' or 'use by' date of the product in its unopened package. For products where opening the package leads to a change of the type of pathogenic microorganisms present in the food and/or factors increasing their growth compared to the unopened product, a shorter time limit for consumption after opening would be appropriate. Freezing prevents the growth of pathogens, however, most pathogenic microorganisms may survive frozen storage, recover during thawing and then grow and/or produce toxins in the food, if conditions are favourable. Moreover, additional contamination may occur from hands, contact surfaces or contamination from other foods and utensils. Good practices for thawing should, from a food safety point of view, minimise growth of and contamination by pathogens between the food being thawed and other foods and/or contact surfaces, especially when removing the food from the package during thawing. Best practices for thawing foods are presented to support FBOs.
Collapse
|
8
|
Modeling the Effect of the Oxidation Status of the Ingredient Oil on Stability and Shelf Life of Low-Moisture Bakery Products: The Case Study of Crackers. Foods 2020; 9:foods9060749. [PMID: 32517073 PMCID: PMC7353518 DOI: 10.3390/foods9060749] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 11/25/2022] Open
Abstract
In packed low-moisture foods such as crackers, oxidation is generally the main cause of quality depletion during storage. It is commonly believed, but scarcely investigated, that product shelf life depends on the oxidative status of the lipid ingredients. In this study, the influence of oxidation degree of the ingredient sunflower oil on cracker oxidative stability and hence shelf life was investigated. To this aim, oil with increasing peroxide values (PVs) (5, 11, and 25 mEqO2/kgoil) was used to prepare crackers. Just after production, crackers presented similar peroxide and rancid odor intensity, probably due to the interactive pathways of oxidative and Maillard reactions. Crackers were packed and analyzed for PV and rancid odor during storage at 20, 40, and 60 °C. Rancid odor well discriminated cracker oxidative status. Relevant oxidation rates were used to develop a shelf life predictive model based on the peroxide value of the ingredient oil. It was estimated that an oil PV from 5 to 15 mEqO2/kgoil shortens cracker Shelf Life (SL) by 50%, independently of storage temperature. These results demonstrate the critical impact of ingredient quality on product performance on the market.
Collapse
|
9
|
Orfanou F, Dermesonlouoglou EK, Taoukis PS. Greek Coffee Quality Loss During Home Storage: Modeling the Effect of Temperature and Water Activity. J Food Sci 2019; 84:2983-2994. [PMID: 31518452 DOI: 10.1111/1750-3841.14756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/01/2019] [Accepted: 07/04/2019] [Indexed: 11/30/2022]
Abstract
The aim of this study was to monitor and characterize Greek coffee staling during home storage (secondary shelf life, SSL) using sensory evaluation techniques. Storage temperature (T) and product water activity (aw ) are considered as the major factors affecting SSL. Water sorption isotherms fitted to Guggenheim Anderson-de Boer model were used to predict product stability; coffee samples were stable at aw < 0.52. Coffee samples equilibrated at aw = 0.15 (the fresh sample), 0.22, 0.33, and 0.52 were stored at T = 25 °C, 35 °C, and 45 °C under simulated home storage conditions. Samples were obtained at appropriate times for each T and aw condition and sensorially evaluated. Greek coffee brews were prepared and freshly served during sensory evaluation. The use of Weibull hazard analysis provided an effective approach to SSL determination as a function of T and aw . SSL values ranged from 20 (Τ = 45 °C, aw = 0.52) to 104 days (Τ = 25 °C, aw = 0.15). Quality loss based on coffee aroma changes (aroma quality, aroma intensity, aftertaste, off-flavor) was also studied (Si , sensory scoring using 9-point magnitude scale) and kinetically modeled. Quality loss rates (ki ) were calculated and used to predict SSL values. Based on the results of both Weibull hazard analysis and sensory scoring of individual aroma characteristics, it was concluded that the lowest SSL was calculated for aw = 0.52 at T = 35 °C to 45 °C. The temperature dependence of aftertaste, aroma quality loss, and off-flavor production was not statistically significant for 0.15 < aw < 0.33 (P > 0.05); the aroma intensity was the most sensitive parameter. PRACTICAL APPLICATIONS: Secondary shelf life (SSL) represents the time after pack opening during which a food maintains an acceptable quality level. During home/catering usage, coffee is not consumed immediately after pack opening. During consumption, quality degradation reactions proceed with higher rates due to variable storage conditions mainly related to atmosphere changes in the pack, leading to the entrance of oxygen/moisture and temperature. Therefore, SSL is important, and can be used as a tool for product management during consumption reducing food waste. There is a lack of studies dealing with SSL prediction of coffee, while no studies have been carried out on Greek coffee.
Collapse
Affiliation(s)
- Foteini Orfanou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, Natl. Technical Univ. of Athens, 9, Iroon Polytechniou St., Zografou, 15772, Athens, Greece
| | - Efimia K Dermesonlouoglou
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, Natl. Technical Univ. of Athens, 9, Iroon Polytechniou St., Zografou, 15772, Athens, Greece
| | - Petros S Taoukis
- Laboratory of Food Chemistry and Technology, School of Chemical Engineering, Natl. Technical Univ. of Athens, 9, Iroon Polytechniou St., Zografou, 15772, Athens, Greece
| |
Collapse
|