1
|
Parel PM, Berg AR, Hong CG, Florida EM, O'Hagan R, Sorokin AV, Mehta NN. Updates in the Impact of Chronic Systemic Inflammation on Vascular Inflammation by Positron Emission Tomography (PET). Curr Cardiol Rep 2022; 24:317-326. [PMID: 35171444 DOI: 10.1007/s11886-022-01651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this review, we focus on the clinical and epidemiological studies pertaining to systemic and vascular inflammation by positron emission tomography (PET) in patients with chronic inflammatory conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), and psoriasis to highlight the importance of chronic systemic inflammation on vascular inflammation by PET in these disease states. RECENT FINDINGS Recent clinical and translation advancements have demonstrated the durable relationship between chronic systemic inflammation and cardiovascular disease (CVD). In chronic inflammatory states, this relationship is robustly evident in the form of increased vascular inflammation, yet traditional risk estimates often underestimate the subclinical cardiovascular risk conferred by chronic inflammation. PET has emerged as a novel, non-invasive imaging modality capable of both quantifying the degree of systemic and vascular inflammation and detecting residual inflammation prior to cardiovascular events. We begin by demonstrating the role of inflammation in the pathogenesis of atherosclerosis, discussing how PET has been utilized to measure systemic and vascular inflammation and their effect on subclinical atherosclerosis, and finally reviewing recent applications of PET in constructing improved risk stratification for patients at high risk for stroke and CVD.
Collapse
Affiliation(s)
- Philip M Parel
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Alexander R Berg
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Christin G Hong
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Elizabeth M Florida
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Ross O'Hagan
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Alexander V Sorokin
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Nehal N Mehta
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
2
|
Yao Y, Li YM, He ZX, Civelek AC, Li XF. Likely Common Role of Hypoxia in Driving 18F-FDG Uptake in Cancer, Myocardial Ischemia, Inflammation and Infection. Cancer Biother Radiopharm 2021; 36:624-631. [PMID: 34375126 DOI: 10.1089/cbr.2020.4716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
First introduced in 1976, 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET) has become an indispensable tool for diagnosis and prognostic evaluation of tumors, heart disease, as well as other conditions, including inflammation and infection. Because 18F-FDG can accurately reflect the glucose metabolism level of organs and tissues, it is known as a "century molecule" and is currently the main agent for PET imaging. The degree of 18F-FDG uptake by cells is related to both the rate of glucose metabolism and glucose transporter expression. These, in turn, are strongly influenced by hypoxia, in which cells meet their energy needs through glycolysis, and 18F-FDG uptake increased due to hypoxia. 18F-FDG uptake is a complex process, and hypoxia may be one of the fundamental driving forces. The correct interpretation of 18F-FDG uptake in PET imaging can help clinics make treatment decisions more accurately and effectively. In this article, we review the application of 18F-FDG PET in tumors, myocardium, and inflammation. We discuss the relationship between 18F-FDG uptake and hypoxia, the possible mechanism of 18F-FDG uptake caused by hypoxia, and the associated clinical implications.
Collapse
Affiliation(s)
- Yong Yao
- Department of Nuclear Medicine, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China.,Clinical Medicine Postdoctoral Research Station, Jinan University, Guangzhou, China
| | - Ya-Ming Li
- Department of Nuclear Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Zuo-Xiang He
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - A Cahid Civelek
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Xiao-Feng Li
- Department of Nuclear Medicine, The Second Clinical Medical College (Shenzhen People's Hospital), Jinan University, Shenzhen, China.,Department of Nuclear Medicine, The First Affiliated Hospital, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
3
|
Bachi K, Mani V, Kaufman AE, Alie N, Goldstein RZ, Fayad ZA, Alia-Klein N. Imaging plaque inflammation in asymptomatic cocaine addicted individuals with simultaneous positron emission tomography/magnetic resonance imaging. World J Radiol 2019; 11:62-73. [PMID: 31205601 PMCID: PMC6556593 DOI: 10.4329/wjr.v11.i5.62] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/05/2019] [Accepted: 05/22/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chronic cocaine use is associated with stroke, coronary artery disease and myocardial infarction, resulting in severe impairments or sudden mortality. In the absence of clear cardiovascular symptoms, individuals with cocaine use disorder (iCUD) seeking addiction treatment receive mostly psychotherapy and psychiatric pharmacotherapy, with no attention to vascular disease (i.e., atherosclerosis). Little is known about the pre-clinical signs of cardiovascular risk in iCUD and early signs of vascular disease are undetected in this underserved population.
AIM To assess inflammation, plaque burden and plaque composition in iCUD aiming to detect markers of atherosclerosis and vascular disease.
METHODS The bilateral carotid arteries were imaged with positron emission tomography/magnetic resonance imaging (PET/MRI) in iCUD asymptomatic for cardiovascular disease, healthy controls, and individuals with cardiovascular risk. PET with 18F-fluorodeoxyglucose (18F-FDG) evaluated vascular inflammation and 3-D dark-blood MRI assessed plaque burden including wall area and thickness. Drug use and severity of addiction were assessed with standardized instruments.
RESULTS The majority of iCUD and controls had carotid FDG-PET signal greater than 1.6 but lower than 3, indicating the presence of mild to moderate inflammation. However, the MRI measure of wall structure was thicker in iCUD as compared to the controls and cardiovascular risk group, indicating greater carotid plaque burden. iCUD had larger wall area as compared to the healthy controls but not as compared to the cardiovascular risk group, indicating structural wall similarities between the non-control study groups. In iCUD, wall area correlated with greater cocaine withdrawal and craving.
CONCLUSION These preliminary results show markers of carotid artery disease burden in cardiovascular disease-asymptomatic iCUD. Broader trials are warranted to develop protocols for early detection of cardiovascular risk and preventive intervention in iCUD.
Collapse
Affiliation(s)
- Keren Bachi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Venkatesh Mani
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Audrey E Kaufman
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Nadia Alie
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Children's Hospital of Philadelphia, 3401 Civic Center Blvd, Philadelphia, PA 19104, United States
| | - Rita Z Goldstein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Zahi A Fayad
- Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| | - Nelly Alia-Klein
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, United States
| |
Collapse
|
4
|
Pelletier-Galarneau M, Ruddy TD. Molecular imaging of coronary inflammation. Trends Cardiovasc Med 2018; 29:191-197. [PMID: 30195945 DOI: 10.1016/j.tcm.2018.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 08/03/2018] [Accepted: 08/04/2018] [Indexed: 01/30/2023]
Abstract
Coronary inflammation is related to atherosclerotic disease and, less frequently, systemic vasculitis. Regardless of the etiology, coronary inflammation is associated with adverse cardiac events. Molecular imaging with 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET/CT) allows in vivo assessment of coronary inflammation and evaluation of response to therapy. The aim of this review is to give an update on the recent development of FDG-PET/CT, discuss the potential roles of coronary inflammation imaging, review the limitations of FDG-PET/CT imaging, and give an overview of the new tracers available for PET/CT plaque imaging.
Collapse
Affiliation(s)
- Matthieu Pelletier-Galarneau
- Department of Radiology and Nuclear Medicine, Institut de cardiologie de Montréal, Université de Montréal, Montréal, Québec, Canada; Gordon Center for Medical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Terrence D Ruddy
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin Street, Ottawa, Ontario K1Y 4W7, Canada.
| |
Collapse
|
5
|
Bover J, Górriz JL, Ureña-Torres P, Lloret MJ, Ruiz-García C, daSilva I, Chang P, Rodríguez M, Ballarín J. Detección de las calcificaciones cardiovasculares: ¿una herramienta útil para el nefrólogo? Nefrologia 2016; 36:587-596. [DOI: 10.1016/j.nefro.2016.05.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/19/2016] [Indexed: 12/12/2022] Open
|
6
|
Stegger L, Schülke C, Wenning C, Rahbar K, Kies P, Schober O, Schäfers M. Cardiac PET/MRI. CURRENT CARDIOVASCULAR IMAGING REPORTS 2013. [DOI: 10.1007/s12410-012-9189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
|
8
|
New SEP, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 2011. [PMID: 21617135 DOI: 10.1161/circr esaha.110.234146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Traditional imaging modalities such as computed tomography, although perfectly adept at identifying and quantifying advanced calcification, cannot detect the early stages of this disorder and offer limited insight into the mechanisms of mineral dysregulation. This review presents optical molecular imaging as a promising tool that simultaneously detects pathobiological processes associated with inflammation and early stages of calcification in vivo at the (sub)cellular levels. Research into treatment of cardiovascular calcification is lacking, as shown by clinical trials that have failed to demonstrate the reduction of calcific aortic stenosis. Hence, the need to elucidate the pathways that contribute to cardiovascular calcification and to develop new therapeutic strategies to prevent or reverse calcification has driven investigations into the use of molecular imaging. This review discusses studies that have used molecular imaging methods to advance knowledge of cardiovascular calcification, focusing in particular on the inflammation-dependent mechanisms of arterial and aortic valve calcification.
Collapse
Affiliation(s)
- Sophie E P New
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | |
Collapse
|
9
|
New SEP, Aikawa E. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ Res 2011; 108:1381-91. [PMID: 21617135 PMCID: PMC3139950 DOI: 10.1161/circresaha.110.234146] [Citation(s) in RCA: 235] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Accepted: 04/15/2011] [Indexed: 12/11/2022]
Abstract
Traditional imaging modalities such as computed tomography, although perfectly adept at identifying and quantifying advanced calcification, cannot detect the early stages of this disorder and offer limited insight into the mechanisms of mineral dysregulation. This review presents optical molecular imaging as a promising tool that simultaneously detects pathobiological processes associated with inflammation and early stages of calcification in vivo at the (sub)cellular levels. Research into treatment of cardiovascular calcification is lacking, as shown by clinical trials that have failed to demonstrate the reduction of calcific aortic stenosis. Hence, the need to elucidate the pathways that contribute to cardiovascular calcification and to develop new therapeutic strategies to prevent or reverse calcification has driven investigations into the use of molecular imaging. This review discusses studies that have used molecular imaging methods to advance knowledge of cardiovascular calcification, focusing in particular on the inflammation-dependent mechanisms of arterial and aortic valve calcification.
Collapse
Affiliation(s)
- Sophie E P New
- Center for Interdisciplinary Cardiovascular Sciences, Brigham and Women’s Hospital, Boston, MA 02115, USA
| | | |
Collapse
|