2
|
Piccinelli M, Cooke DC, Garcia EV. Multimodality Image Fusion for Coronary Artery Disease Detection: Concepts and Latest Developments. ACTA ACUST UNITED AC 2018; 4:74-78. [PMID: 31890460 DOI: 10.17996/anc.18-00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The debate on the role of anatomy and function in the assessment of coronary artery disease has been progressing for decades. While each imaging modality brings its own strengths and weaknesses, a multimodality image fusion approach combining an anatomical acquisition with a functional one has the potential of providing all the complementary information necessary to select the proper treatment. The technology has been available to physicians for a decade, but the recent introduction of positron emission tomography-derived absolute myocardial blood flow has further advanced the case for an image fusion diagnostic approach.
Collapse
Affiliation(s)
- Marina Piccinelli
- Department of Radiology and Imaging Science, Emory University School of Medicine, 1364 Clifton Rd, NE, Atlanta, Georgia, 30322, United States
| | - David C Cooke
- Department of Radiology and Imaging Science, Emory University School of Medicine, 1364 Clifton Rd, NE, Atlanta, Georgia, 30322, United States
| | - Ernest V Garcia
- Department of Radiology and Imaging Science, Emory University School of Medicine, 1364 Clifton Rd, NE, Atlanta, Georgia, 30322, United States
| |
Collapse
|
5
|
Biaggi P, Fernandez-Golfín C, Hahn R, Corti R. Hybrid Imaging During Transcatheter Structural Heart Interventions. CURRENT CARDIOVASCULAR IMAGING REPORTS 2015; 8:33. [PMID: 26191338 PMCID: PMC4503870 DOI: 10.1007/s12410-015-9349-6] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fusion of different imaging modalities has gained increasing popularity over the last decade. However, most fusions are done between static rather than dynamic images. In order to adequately visualize the complex three-dimensional structures of the beating heart, high-temporal and spatial image resolutions are mandatory. Currently, only the combination of transesophageal echocardiography with fluoroscopy allows real-time image fusion of high quality during structural heart disease (SHD) interventions. The use of markers as well as real-time image overlay greatly facilitates communication between SHD team members and potentially increases procedural success while reducing radiation dose and use of contrast. However, to date there is only limited evidence that fusion imaging improves safety and outcomes of SHD interventions. This review highlights the benefits of fusion imaging during SHD interventions such as transseptal puncture and closure of atrial septal defects and left atrial appendage as well as interventions on the mitral and aortic valve.
Collapse
Affiliation(s)
- Patric Biaggi
- />Heart Clinic Zurich, Witellikerstrasse 40, 8032 Zurich, Switzerland
| | | | - Rebecca Hahn
- />Columbia University Medical Center, 177 Fort Washington Avenue, New York, NY 10032 USA
| | - Roberto Corti
- />Heart Clinic Zurich, Witellikerstrasse 40, 8032 Zurich, Switzerland
| |
Collapse
|
6
|
Lamberts LE, Williams SP, Terwisscha van Scheltinga AG, Lub-de Hooge MN, Schröder CP, Gietema JA, Brouwers AH, de Vries EG. Antibody Positron Emission Tomography Imaging in Anticancer Drug Development. J Clin Oncol 2015; 33:1491-504. [DOI: 10.1200/jco.2014.57.8278] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
More than 50 monoclonal antibodies (mAbs), including several antibody–drug conjugates, are in advanced clinical development, forming an important part of the many molecularly targeted anticancer therapeutics currently in development. Drug development is a relatively slow and expensive process, limiting the number of drugs that can be brought into late-stage trials. Development decisions could benefit from quantitative biomarkers, enabling visualization of the tissue distribution of (potentially modified) therapeutic mAbs to confirm effective whole-body target expression, engagement, and modulation and to evaluate heterogeneity across lesions and patients. Such biomarkers may be realized with positron emission tomography imaging of radioactively labeled antibodies, a process called immunoPET. This approach could potentially increase the power and value of early trials by improving patient selection, optimizing dose and schedule, and rationalizing observed drug responses. In this review, we summarize the available literature and the status of clinical trials regarding the potential of immunoPET during early anticancer drug development.
Collapse
Affiliation(s)
- Laetitia E. Lamberts
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Simon P. Williams
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Anton G.T. Terwisscha van Scheltinga
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Marjolijn N. Lub-de Hooge
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Carolien P. Schröder
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Jourik A. Gietema
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Adrienne H. Brouwers
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| | - Elisabeth G.E. de Vries
- Laetitia E. Lamberts, Anton G.T. Terwisscha van Scheltinga, Marjolijn N. Lub-de Hooge, Carolien P. Schröder, Jourik A. Gietema, Adrienne H. Brouwers, and Elisabeth G.E. de Vries, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands; and Simon P. Williams, Genentech, South San Francisco, CA
| |
Collapse
|
7
|
Alexanderson-Rosas E, Guinto-Nishimura GY, Cruz-Mendoza JR, Oropeza-Aguilar M, De La Fuente-Mancera JC, Barrero-Mier AF, Monroy-Gonzalez A, Juarez-Orozco LE, Cano-Zarate R, Meave-Gonzalez A. Current and future trends in multimodality imaging of coronary artery disease. Expert Rev Cardiovasc Ther 2015; 13:715-31. [PMID: 25912725 DOI: 10.1586/14779072.2015.1039991] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Nowadays, there is a wide array of imaging studies available for the evaluation of coronary artery disease, each with its particular indications and strengths. Cardiac single photon emission tomography is mostly used to evaluate myocardial perfusion, having experienced recent marked improvements in image acquisition. Cardiac PET has its main utility in perfusion imaging, atherosclerosis and endothelial function evaluation, and viability assessment. Cardiovascular computed tomography has long been used as a reference test for non-invasive evaluation of coronary lesions and anatomic characterization. Cardiovascular magnetic resonance is currently the reference standard for non-invasive ventricular function evaluation and myocardial scarring delineation. These specific strengths have been enhanced with the advent of hybrid equipment, offering a true integration of different imaging modalities into a single, simultaneous and comprehensive study.
Collapse
Affiliation(s)
- Erick Alexanderson-Rosas
- Department of Nuclear Cardiology, Instituto Nacional de Cardiología 'Ignacio Chávez', Mexico City, Mexico
| | | | | | | | | | | | | | | | | | | |
Collapse
|