1
|
Nygård L, Valta M, Laine AP, Toppari J, Knip M, Veijola R, Hyöty H, Ilonen J, Lempainen J. CXADR polymorphism rs6517774 modifies islet autoimmunity characteristics and exhibits sex disparity. Front Genet 2023; 14:1248701. [PMID: 38028613 PMCID: PMC10651746 DOI: 10.3389/fgene.2023.1248701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Enteroviral infections have been linked to the development of islet autoimmunity (IA) and type 1 diabetes (T1D), and the coxsackie and adenovirus receptor (CXADR) is one of the ligands used by adenoviruses and enteroviruses for cell internalization. Two CXADR single nucleotide polymorphisms (SNPs), rs6517774 and rs2824404, were previously associated with an increased susceptibility to IA in the international TEDDY study (The Environmental Determinants of Diabetes in the Young). This study aimed to replicate the results by genotyping 2886 children enrolled in the Finnish Diabetes Prediction and Prevention study (DIPP). In our preliminary analysis of the SNPs' allelic distributions, we could not find any association with IA susceptibility. However, a stratified analysis revealed a sex disparity, since the allelic distribution of rs6517774 was different when comparing autoantibody positive females with males; a difference not seen in healthy subjects. By using HLA risk groups and sex as covariates, a Cox regression survival analysis found that the rs6517774 (A/G) SNP was associated with a lower age at seroconversion in females (Female*rs6517774-AA; HR = 1.53, p = 0.002), while introducing a protective effect in males. Accordingly, we propose that rs6517774 alters IA characteristics by modifying the age at seroconversion in a sex-dependent manner. In light of this observation, rs6517774 now joins a limited set on SNPs found to introduce sex-dependent risk effects on the age at IA initiation.
Collapse
Affiliation(s)
- Lucas Nygård
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Clinical Microbiology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Milla Valta
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Antti-Pekka Laine
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Pediatric Research Center, New Children's Hospital, Helsinki University Hospital, Helsinki, Finland
- Tampere Center for Child Health Research, Tampere University Hospital, Tampere, Finland
| | - Riitta Veijola
- Medical Research Center, Department of Pediatrics, PEDEGO Research Unit, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories Ltd., Pirkanmaa Hospital District, Tampere, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics, Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| |
Collapse
|
2
|
Chevalier P, Moreau A, Bessière F, Richard S, Chahine M, Millat G, Morel E, Paganelli F, Lesavre N, Placide L, Montestruc F, Ankou B, Puertas RD, Asatryan B, Delinière A. Identification of Cx43 variants predisposing to ventricular fibrillation in the acute phase of ST-elevation myocardial infarction. Europace 2023; 25:101-111. [PMID: 35942675 PMCID: PMC10103570 DOI: 10.1093/europace/euac128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
AIMS Ventricular fibrillation (VF) occurring in the acute phase of ST-elevation myocardial infarction (STEMI) is the leading cause of sudden cardiac death worldwide. Several studies showed that reduced connexin 43 (Cx43) expression and reduced conduction velocity increase the risk of VF in acute myocardial infarction (MI). Furthermore, genetic background might predispose individuals to primary VF (PVF). The primary objective was to evaluate the presence of GJA1 variants in STEMI patients. The secondary objective was to evaluate the arrhythmogenic impact of GJA1 variants in STEMI patients with VF. METHODS AND RESULTS The MAP-IDM prospective cohort study included 966 STEMI patients and was designed to identify genetic predisposition to VF. A total of 483 (50.0%) STEMI patients with PVF were included. The presence of GJA1 variants increased the risk of VF in STEMI patients [from 49.1 to 70.8%, P = 0.0423; odds ratio (OR): 0.40; 95% confidence interval: 0.16-0.97; P = 0.04]. The risk of PVF decreased with beta-blocker intake (from 53.5 to 44.8%, P = 0.0085), atrial fibrillation (from 50.7 to 26.4%, P = 0.0022), and with left ventricular ejection fraction >50% (from 60.2 to 41.4%, P < 0.0001). Among 16 GJA1 variants, three novel heterozygous missense variants were identified in three patients: V236I, H248R, and I327M. In vitro studies of these variants showed altered Cx43 localization and decreased cellular communication, mainly during acidosis. CONCLUSION Connexin 43 variants are associated with increased VF susceptibility in STEMI patients. Restoring Cx43 function may be a potential therapeutic target to prevent PVF in patients with acute MI. CLINICAL TRIAL REGISTRATION Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT00859300.
Collapse
Affiliation(s)
- Philippe Chevalier
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Adrien Moreau
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHU Arnaud de Villeneuve, 34295 Montpellier, France
| | - Francis Bessière
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Sylvain Richard
- PhyMedExp, INSERM U1046, CNRS UMR9214, Université de Montpellier, CHU Arnaud de Villeneuve, 34295 Montpellier, France
| | | | - Gilles Millat
- Laboratoire de Cardiogénétique moléculaire, Centre de biologie et pathologie Est, Bron, France
| | - Elodie Morel
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | | | | | - Leslie Placide
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | | | - Bénédicte Ankou
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | - Rosa Doñate Puertas
- Signaling and Cardiovascular Pathophysiology-UMR-S 1180, Inserm, Université Paris-Saclay, Paris, France
| | - Babken Asatryan
- Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Antoine Delinière
- Université de Lyon, université Lyon 1, Inserm, CNRS, INMG, Lyon F-69008, France.,Hospices Civils de Lyon, Groupement Hospitalier Est, Service de Rythmologie, Hôpital Cardiologique Louis Pradel, 59 Boulevard Pinel, 69677 Bron Cedex, France
| | | |
Collapse
|
3
|
Yu CC, Chia-Ti T, Chen PL, Wu CK, Chiu FC, Chiang FT, Chen PS, Chen CL, Lin LY, Juang JM, Ho LT, Lai LP, Yang WS, Lin JL. KCNN2 polymorphisms and cardiac tachyarrhythmias. Medicine (Baltimore) 2016; 95:e4312. [PMID: 27442679 PMCID: PMC5265796 DOI: 10.1097/md.0000000000004312] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Potassium calcium-activated channel subfamily N member 2 (KCNN2) encodes an integral membrane protein that forms small-conductance calcium-activated potassium (SK) channels. Recent studies in animal models show that SK channels are important in atrial and ventricular repolarization and arrhythmogenesis. However, the importance of SK channels in human arrhythmia remains unclear. The purpose of the present study was to test the association between genetic polymorphism of the SK2 channel and the occurrence of cardiac tachyarrhythmias in humans. We enrolled 327 Han Chinese, including 72 with clinically significant ventricular tachyarrhythmias (VTa) who had a history of aborted sudden cardiac death (SCD) or unexplained syncope, 98 with a history of atrial fibrillation (AF), and 144 normal controls. We genotyped 12 representative tag single nucleotide polymorphisms (SNPs) across a 141-kb genetic region containing the KCNN2 gene; these captured the full haplotype information. The rs13184658 and rs10076582 variants of KCNN2 were associated with VTa in both the additive and dominant models (odds ratio [OR] 2.89, 95% confidence interval [CI] = 1.505-5.545, P = 0.001; and OR 2.55, 95% CI = 1.428-4.566, P = 0.002, respectively). After adjustment for potential risk factors, the association remained significant. The population attributable risks of these 2 variants of VTa were 17.3% and 10.6%, respectively. One variant (rs13184658) showed weak but significant association with AF in a dominant model (OR 1.91, CI = 1.025-3.570], P = 0.042). There was a significant association between the KCNN2 variants and clinically significant VTa. These findings suggest an association between KCNN2 and VTa; it also appears that KCNN2 variants may be adjunctive markers for risk stratification in patients susceptible to SCD.
Collapse
Affiliation(s)
- Chih-Chieh Yu
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
| | - Tsai Chia-Ti
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
| | - Pei-Lung Chen
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
- Department of Medical Genetics, National Taiwan University Hospital
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei
| | - Cho-Kai Wu
- Department of Internal Medicine, National Taiwan University Hospital
| | - Fu-Chun Chiu
- Department of Internal Medicine, National Taiwan University Hospital, Yun-Lin Branch, Yun-Lin, Taiwan
| | - Fu-Tien Chiang
- Department of Internal Medicine, National Taiwan University Hospital
| | - Peng-Sheng Chen
- Krannert Institute of Cardiology and Division of Cardiology, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Chi-Ling Chen
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
- Graduate Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Lian-Yu Lin
- Department of Internal Medicine, National Taiwan University Hospital
| | - Jyh-Ming Juang
- Department of Internal Medicine, National Taiwan University Hospital
| | - Li-Ting Ho
- Department of Internal Medicine, National Taiwan University Hospital
| | - Ling-Ping Lai
- Department of Internal Medicine, National Taiwan University Hospital
| | - Wei-Shiung Yang
- Department of Internal Medicine, National Taiwan University Hospital
- Graduate Institute of Clinical Medicine, College of Medicine, National Taiwan University
- Graduate Institute of Medical Genomics and Proteomics, College of Medicine
- Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei
- Correspondence: Jiunn-Lee Lin, Wei-Shiung Yang, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung San South Road, Taipei City 100, Taiwan (R.O.C.) (e-mail: , )
| | - Jiunn-Lee Lin
- Department of Internal Medicine, National Taiwan University Hospital
- Correspondence: Jiunn-Lee Lin, Wei-Shiung Yang, Department of Internal Medicine, National Taiwan University Hospital, No. 7, Chung San South Road, Taipei City 100, Taiwan (R.O.C.) (e-mail: , )
| |
Collapse
|
4
|
Simkó J, Szabó Z, Barta K, Ujvárosi D, Nánási P, Lőrincz I. [Molecular and genetic background of sudden cardiac death]. Orv Hetil 2012; 153:1967-83. [PMID: 23220363 DOI: 10.1556/oh.2012.29498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Despite recent findings on the functional, structural and genetic background of sudden cardiac death, the incidence is still relatively high in the entire population. A thorough knowledge on susceptibility, as well as pathophysiology behind the development of malignant arrhythmias will help us to identify individuals at risk and prevent sudden cardiac death. This article presents a review of the current literature on the role of altered intracellular Ca2+ handling, acute myocardial ischaemia, cardiac autonomic innervation, renin-angiotensin-aldosterone system, monogenic and complex heritability in the pathogenesis of sudden cardiac death.
Collapse
Affiliation(s)
- József Simkó
- Miskolci Semmelweis Ignác Egészségügyi Központ és Egyetemi Oktatókórház Nonprofit Kft. Belgyógyászati Intézet, Kardiológiai Osztály Miskolc.
| | | | | | | | | | | |
Collapse
|