1
|
Chen ZX, Jia WN, Jiang YX. Genotype-phenotype correlations of marfan syndrome and related fibrillinopathies: Phenomenon and molecular relevance. Front Genet 2022; 13:943083. [PMID: 36176293 PMCID: PMC9514320 DOI: 10.3389/fgene.2022.943083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
Marfan syndrome (MFS, OMIM: 154700) is a heritable multisystemic disease characterized by a wide range of clinical manifestations. The underlying molecular defect is caused by variants in the FBN1. Meanwhile, FBN1 variants are also detected in a spectrum of connective tissue disorders collectively termed as ‘type I fibrillinopathies’. A multitude of FBN1 variants is reported and most of them are unique in each pedigree. Although MFS is being considered a monogenic disorder, it is speculated that the allelic heterogeneity of FBN1 variants contributes to various manifestations, distinct prognoses, and differential responses to the therapies in affected patients. Significant progress in the genotype–phenotype correlations of MFS have emerged in the last 20 years, though, some of the associations were still in debate. This review aims to update the recent advances in the genotype-phenotype correlations of MFS and related fibrillinopathies. The molecular bases and pathological mechanisms are summarized for better support of the observed correlations. Other factors contributing to the phenotype heterogeneity and future research directions were also discussed. Dissecting the genotype-phenotype correlation of FBN1 variants and related disorders will provide valuable information in risk stratification, prognosis, and choice of therapy.
Collapse
Affiliation(s)
- Ze-Xu Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Wan-Nan Jia
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| | - Yong-Xiang Jiang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.,NHC Key Laboratory of Myopia (Fudan University); Key Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Shanghai, China
| |
Collapse
|
2
|
Deleeuw V, De Clercq A, De Backer J, Sips P. An Overview of Investigational and Experimental Drug Treatment Strategies for Marfan Syndrome. J Exp Pharmacol 2021; 13:755-779. [PMID: 34408505 PMCID: PMC8366784 DOI: 10.2147/jep.s265271] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 07/19/2021] [Indexed: 12/26/2022] Open
Abstract
Marfan syndrome (MFS) is a heritable connective tissue disorder caused by pathogenic variants in the gene coding for the extracellular matrix protein fibrillin-1. While the disease affects multiple organ systems, the most life-threatening manifestations are aortic aneurysms leading to dissection and rupture. Other cardiovascular complications, including mitral valve prolapse, primary cardiomyopathy, and arrhythmia, also occur more frequently in patients with MFS. The standard medical care relies on cardiovascular imaging at regular intervals, along with pharmacological treatment with β-adrenergic receptor blockers aimed at reducing the aortic growth rate. When aortic dilatation reaches a threshold associated with increased risk of dissection, prophylactic surgical aortic replacement is performed. Although current clinical management has significantly improved the life expectancy of patients with MFS, no cure is available and fatal complications still occur, underscoring the need for new treatment options. In recent years, preclinical studies have identified a number of potentially promising therapeutic targets. Nevertheless, the translation of these results into clinical practice has remained challenging. In this review, we present an overview of the currently available knowledge regarding the underlying pathophysiological processes associated with MFS cardiovascular pathology. We then summarize the treatment options that have been developed based on this knowledge and are currently in different stages of preclinical or clinical development, provide a critical review of the limitations of current studies and highlight potential opportunities for future research.
Collapse
Affiliation(s)
- Violette Deleeuw
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Adelbert De Clercq
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| | - Julie De Backer
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University Hospital, Ghent, 9000, Belgium
| | - Patrick Sips
- Center for Medical Genetics, Department of Biomolecular Medicine, Ghent University, Ghent, 9000, Belgium
| |
Collapse
|
3
|
Burger J, Bogunovic N, de Wagenaar NP, Liu H, Vliet N, IJpma A, Maugeri A, Micha D, Verhagen HJM, Ten Hagen TLM, Majoor-Krakauer D, Pluijm I, Essers J, Yeung KK. Molecular phenotyping and functional assessment of smooth muscle like-cells with pathogenic variants in aneurysm genes ACTA2, MYH11, SMAD3 and FBN1. Hum Mol Genet 2021; 30:2286-2299. [PMID: 34244757 PMCID: PMC8600030 DOI: 10.1093/hmg/ddab190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/25/2021] [Accepted: 07/05/2021] [Indexed: 11/30/2022] Open
Abstract
Aortic aneurysms (AAs) are pathological dilatations of the aorta. Pathogenic variants in genes encoding for proteins of the contractile machinery of vascular smooth muscle cells (VSMCs), genes encoding proteins of the transforming growth factor beta signaling pathway and extracellular matrix (ECM) homeostasis play a role in the weakening of the aortic wall. These variants affect the functioning of VSMC, the predominant cell type in the aorta. Many variants have unknown clinical significance, with unknown consequences on VSMC function and AA development. Our goal was to develop functional assays that show the effects of pathogenic variants in aneurysm-related genes. We used a previously developed fibroblast transdifferentiation protocol to induce VSMC-like cells, which are used for all assays. We compared transdifferentiated VSMC-like cells of patients with a pathogenic variant in genes encoding for components of VSMC contraction (ACTA2, MYH11), transforming growth factor beta (TGFβ) signaling (SMAD3) and a dominant negative (DN) and two haploinsufficient variants in the ECM elastic laminae (FBN1) to those of healthy controls. The transdifferentiation efficiency, structural integrity of the cytoskeleton, TGFβ signaling profile, migration velocity and maximum contraction were measured. Transdifferentiation efficiency was strongly reduced in SMAD3 and FBN1 DN patients. ACTA2 and FBN1 DN cells showed a decrease in SMAD2 phosphorylation. Migration velocity was impaired for ACTA2 and MYH11 cells. ACTA2 cells showed reduced contractility. In conclusion, these assays for showing effects of pathogenic variants may be promising tools to help reclassification of variants of unknown clinical significance in AA-related genes.
Collapse
Affiliation(s)
- Joyce Burger
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Natalija Bogunovic
- Department of Surgery, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands.,Department of Clinical Genetics, MOVE Institute, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Nathalie P de Wagenaar
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Hui Liu
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nicole Vliet
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Arne IJpma
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Bioinformatics, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, MOVE Institute, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Dimitra Micha
- Department of Clinical Genetics, MOVE Institute, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| | - Hence J M Verhagen
- Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Timo L M Ten Hagen
- Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | - Ingrid Pluijm
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Pathology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jeroen Essers
- Department of Molecular Genetics, Oncode Institute, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Vascular Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.,Department of Radiation Oncology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kak K Yeung
- Department of Surgery, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands.,Department of Physiology, Institute for Cardiovascular Research, Amsterdam University Medical Centers, location VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Shin HB, Jung EH, Kang P, Lim CW, Oh KY, Cho CK, Lee YJ, Choi CI, Jang CG, Lee SY, Bae JW. ABCB1 c.2677G>T/c.3435C>T diplotype increases the early-phase oral absorption of losartan. Arch Pharm Res 2020; 43:1187-1196. [PMID: 33249530 DOI: 10.1007/s12272-020-01294-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 11/19/2020] [Indexed: 12/29/2022]
Abstract
Losartan has been shown to be a substrate of the drug-efflux transporter MDR1, encoded by the ABCB1 gene. ABCB1 c.2677G>T and c.3435C>T variants are known to be associated with reduced expression and function of P-glycoprotein (P-gp). We investigated the effects of ABCB1 diplotype on the pharmacokinetics of losartan. Thirty-eight healthy Korean volunteers with different ABCB1 diplotypes [c.2677G> T and c.3435C>T; carriers of GG/CC (n = 13), GT/CT (n = 12) and TT/TT (n = 13) diplotype] were recruited and administered a single 50 mg oral dose of losartan potassium. Losartan and its active metabolite E-3174 samples in plasma and urine were collected up to 10 and 8 h after drug administration, respectively, and the concentrations of both samples were determined by HPLC method. Significant differences were observed in Cmax of losartan and losartan plus E-3174 (Lo + E) among the three diplotype groups (both P < 0.01). However, the power of the performed test is less than the desired power (0.800). The tmax of losartan and E-3174 in three diplotype groups were also significantly different (both P < 0.01). The AUC values of Lo + E were significantly different among the three diplotype groups until 6 h after losartan administration (P < 0.01). On the contrary, AUC at the periods of 8-10 h and 10 h-infinity of Lo + E were significantly lower in the TT/TT group than in the GG/CC group. Urinary excretion of losartan until 4 h after losartan administration in the TT/TT group was higher than that of the GG/CC group. These results suggest that c.2677G>T/c.3435C>T diplotypes of ABCB1 may significantly increase the early-phase absorption of losartan, but not the total absorption.
Collapse
Affiliation(s)
- Hyo-Bin Shin
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Eui Hyun Jung
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Pureum Kang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang Woo Lim
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyung-Yul Oh
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Chang-Keun Cho
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yun Jeong Lee
- College of Pharmacy, Dankook University, Cheonan, 31116, Republic of Korea
| | - Chang-Ik Choi
- College of Pharmacy, Dongguk University-Seoul, Goyang, 10326, Republic of Korea
| | - Choon-Gon Jang
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seok-Yong Lee
- School of Pharmacy, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| | - Jung-Woo Bae
- College of Pharmacy, Keimyung University, Daegu, 42601, Republic of Korea
| |
Collapse
|
5
|
Hernándiz A, Zúñiga A, Valera F, Domingo D, Ontoria-Oviedo I, Marí JF, Román JA, Calvo I, Insa B, Gómez R, Cervera JV, Miralles M, Montero JA, Martínez-Dolz L, Sepúlveda P. Genotype FBN1/phenotype relationship in a cohort of patients with Marfan syndrome. Clin Genet 2020; 99:269-280. [PMID: 33174221 DOI: 10.1111/cge.13879] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 10/22/2020] [Accepted: 11/06/2020] [Indexed: 01/01/2023]
Abstract
Marfan syndrome (MFS) is a systemic connective tissue disorder caused by mutations in the fibrillin-1 (FBN1) gene, and cardiovascular involvement is the leading cause of mortality. We sought to examine the genotype/phenotype realtionship in 61 consecutive patients with a phenotype and genotype compatible with MFS. The FBN1 gene was analyzed by massive sequencing using a hybridization capture-based target enrichment custom panel. Forty-three different variants of FBN1 were identified, of which 17 have not been previously reported. The causal variants of MFS were grouped into mutations resulting in haploinsufficiency (HI group; 23 patients) and mutations producing a dominant-negative effect (DN group; 38 patients). Patient information was collected from electronic medical records and clinical evaluation. While no significant differences were found between the two groups, the HI group included more cases with aortic dissection and occurring at a younger age that the DN group (34.7% vs. 15.8%; p = 0.160). Irrespective of the mutation group, males presented with a higher probability of aortic involvement (4-fold higher risk than females) and aortic dissections events occurred at younger ages. Patients with DN variants carrying a cysteine substitution had a higher incidence of ectopia lentis.
Collapse
Affiliation(s)
- Amparo Hernándiz
- Unidad de Regeneración y Trasplante cardíaco, Instituto de Investigación Sanitaria La Fe, Valencia, España, Spain
| | - Angel Zúñiga
- Unidad de Genética, Hospital Universitario La Fe, Valencia, España, Spain
| | - Francisco Valera
- Servicio de Cirugía Cardiaca, Hospital Universitario La Fe, Valencia, España, Spain
| | - Diana Domingo
- Servicio de Cardiología, Hospital Universitario La Fe, Valencia, España, Spain
| | - Imelda Ontoria-Oviedo
- Unidad de Regeneración y Trasplante cardíaco, Instituto de Investigación Sanitaria La Fe, Valencia, España, Spain
| | - Jose F Marí
- Servicio de Oftalmología, Hospital Universitario La Fe, Valencia, España, Spain
| | - Jose A Román
- Servicio de Reumatología, Hospital Universitario La Fe, Valencia, España, Spain
| | - Inmaculada Calvo
- Servicio de Reumatología Pediátrica, Hospital Universitario La Fe, Valencia, España, Spain
| | - Beatriz Insa
- Servicio de Cardiología Pediátrica, Hospital Universitario La Fe, Valencia, España, Spain
| | - Rosa Gómez
- Servicio de Ginecología, Unidad de Reproducción, Servicio de Ginecología, Hospital Universitario La Fe, Valencia, España, Spain
| | - José V Cervera
- Unidad de Genética, Hospital Universitario La Fe, Valencia, España, Spain
| | - Manuel Miralles
- Servicio de Angiología y Cirugía Vascular, Hospital Universitario La Fe, Valencia, Spain
| | - Jose A Montero
- Unidad de Regeneración y Trasplante cardíaco, Instituto de Investigación Sanitaria La Fe, Valencia, España, Spain
| | - Luis Martínez-Dolz
- Servicio de Cardiología, Hospital Universitario La Fe, Valencia, España, Spain.,Instituto de Salud Carlos III, CIBERCV CB16/11/00261, Madrid, Spain
| | - Pilar Sepúlveda
- Unidad de Regeneración y Trasplante cardíaco, Instituto de Investigación Sanitaria La Fe, Valencia, España, Spain.,Instituto de Salud Carlos III, CIBERCV CB16/11/00261, Madrid, Spain
| |
Collapse
|
6
|
The Role of Genetics in Risk Stratification of Thoracic Aortic Aneurysm Dissection. HEARTS 2020. [DOI: 10.3390/hearts1020007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thoracic aortic aneurysms are prevalent in the Western population and are often caused by genetic defects. If undetected, aneurysms can dissect or rupture, which are events associated with a high mortality rate. Hitherto no cure exists other than elective surgery if aneurysm dimensions reach a certain threshold. In the past decades, genotype-phenotype associations have emerged that enable clinicians to start stratifying patients according to risk for dissection. Nonetheless, risk assessment is—to this day—confounded by the lack of full comprehension of underlying genetics and modifying genetic risk factors that complicate the yet established genotype-phenotype correlations. Further research that focuses on identifying these additional risk markers is crucial.
Collapse
|
7
|
Gelosa P, Castiglioni L, Camera M, Sironi L. Repurposing of drugs approved for cardiovascular diseases: Opportunity or mirage? Biochem Pharmacol 2020; 177:113895. [PMID: 32145263 DOI: 10.1016/j.bcp.2020.113895] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 02/27/2020] [Indexed: 02/08/2023]
Abstract
Drug repurposing is a promising way in drug discovery to identify new therapeutic uses -different from the original medical indication- for existing drugs. It has many advantages over traditional approaches to de novo drug discovery, since it can significantly reduce healthcare costs and development timeline. In this review, we discuss the possible repurposing of drugs approved for cardiovascular diseases, such as β-blockers, angiotensin converting enzyme inhibitors (ACE-Is), angiotensin II receptor blockers (ARBs), statins, aspirin, cardiac glycosides and low-molecular-weight heparins (LMWHs). Indeed, numerous experimental and epidemiological studies have reported promising anti-cancer activities for these drugs. It is worth mentioning, however, that the results of these studies are often controversial and very few data were obtained by controlled prospective clinical trials. Therefore, no final conclusion has yet been reached in this area and no final recommendations can be made. Moreover, β-blockers, ARBs and statins showed promising results in randomised controlled trials (RCTs) where pathological conditions other than cancer were considered. The results obtained have led or may lead to new indications for these drugs. For each drug or class of drugs, the potential molecular mechanisms of action justifying repurposing, results obtained in vitro and in animal models and data from epidemiological and randomized studies are described.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino IRCCS, Milan, Italy.
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy; Centro Cardiologico Monzino IRCCS, Milan, Italy
| |
Collapse
|
8
|
Margiotta-Casaluci L, Owen SF, Rand-Weaver M, Winter MJ. Testing the Translational Power of the Zebrafish: An Interspecies Analysis of Responses to Cardiovascular Drugs. Front Pharmacol 2019; 10:893. [PMID: 31474857 PMCID: PMC6707810 DOI: 10.3389/fphar.2019.00893] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/16/2019] [Indexed: 12/04/2022] Open
Abstract
The zebrafish is rapidly emerging as a promising alternative in vivo model for the detection of drug-induced cardiovascular effects. Despite its increasing popularity, the ability of this model to inform the drug development process is often limited by the uncertainties around the quantitative relevance of zebrafish responses compared with nonclinical mammalian species and ultimately humans. In this test of concept study, we provide a comparative quantitative analysis of the in vivo cardiovascular responses of zebrafish, rat, dog, and human to three model compounds (propranolol, losartan, and captopril), which act as modulators of two key systems (beta-adrenergic and renin–angiotensin systems) involved in the regulation of cardiovascular functions. We used in vivo imaging techniques to generate novel experimental data of drug-mediated cardiovascular effects in zebrafish larvae. These data were combined with a database of interspecies mammalian responses (i.e., heart rate, blood flow, vessel diameter, and stroke volume) extracted from the literature to perform a meta-analysis of effect size and direction across multiple species. In spite of the high heterogeneity of study design parameters, our analysis highlighted that zebrafish and human responses were largely comparable in >80% of drug/endpoint combinations. However, it also revealed a high intraspecies variability, which, in some cases, prevented a conclusive interpretation of the drug-induced effect. Despite the shortcomings of our study, the meta-analysis approach, combined with a suitable data visualization strategy, enabled us to observe patterns of response that would likely remain undetected with more traditional methods of qualitative comparative analysis. We propose that expanding this approach to larger datasets encompassing multiple drugs and modes of action would enable a rigorous and systematic assessment of the applicability domain of the zebrafish from both a mechanistic and phenotypic standpoint. This will increase the confidence in its application for the early detection of adverse drug reactions in any major organ system.
Collapse
Affiliation(s)
| | - Stewart F Owen
- Global Safety, Health & Environment, AstraZeneca, Alderley Park, Macclesfield, United Kingdom
| | - Mariann Rand-Weaver
- College of Health and Life Sciences, Brunel University London, London, United Kingdom
| | - Matthew J Winter
- School of Biosciences, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
9
|
Overwater E, Marsili L, Baars MJH, Baas AF, van de Beek I, Dulfer E, van Hagen JM, Hilhorst-Hofstee Y, Kempers M, Krapels IP, Menke LA, Verhagen JMA, Yeung KK, Zwijnenburg PJG, Groenink M, van Rijn P, Weiss MM, Voorhoeve E, van Tintelen JP, Houweling AC, Maugeri A. Results of next-generation sequencing gene panel diagnostics including copy-number variation analysis in 810 patients suspected of heritable thoracic aortic disorders. Hum Mutat 2018; 39:1173-1192. [PMID: 29907982 PMCID: PMC6175145 DOI: 10.1002/humu.23565] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 01/02/2023]
Abstract
Simultaneous analysis of multiple genes using next-generation sequencing (NGS) technology has become widely available. Copy-number variations (CNVs) in disease-associated genes have emerged as a cause for several hereditary disorders. CNVs are, however, not routinely detected using NGS analysis. The aim of this study was to assess the diagnostic yield and the prevalence of CNVs using our panel of Hereditary Thoracic Aortic Disease (H-TAD)-associated genes. Eight hundred ten patients suspected of H-TAD were analyzed by targeted NGS analysis of 21 H-TAD associated genes. In addition, the eXome hidden Markov model (XHMM; an algorithm to identify CNVs in targeted NGS data) was used to detect CNVs in these genes. A pathogenic or likely pathogenic variant was found in 66 of 810 patients (8.1%). Of these 66 pathogenic or likely pathogenic variants, six (9.1%) were CNVs not detectable by routine NGS analysis. These CNVs were four intragenic (multi-)exon deletions in MYLK, TGFB2, SMAD3, and PRKG1, respectively. In addition, a large duplication including NOTCH1 and a large deletion encompassing SCARF2 were detected. As confirmed by additional analyses, both CNVs indicated larger chromosomal abnormalities, which could explain the phenotype in both patients. Given the clinical relevance of the identification of a genetic cause, CNV analysis using a method such as XHMM should be incorporated into the clinical diagnostic care for H-TAD patients.
Collapse
Affiliation(s)
- Eline Overwater
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Luisa Marsili
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Medical Genetics Unit, Tor Vergata University Hospital, Rome, Italy
| | - Marieke J H Baars
- Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Annette F Baas
- Department of Medical Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Irma van de Beek
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Eelco Dulfer
- Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands
| | - Johanna M van Hagen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | | | - Marlies Kempers
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ingrid P Krapels
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Leonie A Menke
- Department of Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Judith M A Verhagen
- Department of Clinical Genetics, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Kak K Yeung
- Department of Surgery, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands.,Department of Physiology, Institute for Cardiovascular Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Petra J G Zwijnenburg
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Maarten Groenink
- Department of Cardiology and Radiology, Academic Medical Center Amsterdam, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter van Rijn
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Marjan M Weiss
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Els Voorhoeve
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - J Peter van Tintelen
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands.,Department of Clinical Genetics, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | - Arjan C Houweling
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| | - Alessandra Maugeri
- Department of Clinical Genetics, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
10
|
Ramirez F, Caescu C, Wondimu E, Galatioto J. Marfan syndrome; A connective tissue disease at the crossroads of mechanotransduction, TGFβ signaling and cell stemness. Matrix Biol 2017; 71-72:82-89. [PMID: 28782645 DOI: 10.1016/j.matbio.2017.07.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Revised: 07/27/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Mutations in fibrillin-1 cause Marfan syndrome (MFS), the most common heritable disorder of connective tissue. Fibrillin-1 assemblies (microfibrils and elastic fibers) represent a unique dual-function component of the architectural matrix. The first role is structural for they endow tissues with tensile strength and elasticity, transmit forces across them and demarcate functionally discrete areas within them. The second role is instructive in that these macroaggregates modulate a large variety of sub-cellular processes by interacting with mechanosensors, and integrin and syndecan receptors, and by modulating the bioavailability of local TGFβ signals. The multifunctional, tissue-specific nature of fibrillin-1 assemblies is reflected in the variety of clinical manifestations and disease mechanisms associated with the MFS phenotype. Characterization of mice with ubiquitous or cell type-restricted fibrillin-1 deficiency has unraveled some pathophysiological mechanisms associated with the MFS phenotype, such as altered mechanotransduction in the heart, dysregulated TGFβ signaling in the ascending aorta and perturbed stem cell fate in the bone marrow. In each case, potential druggable targets have also been identified. However, the finding that distinct disease mechanisms underlie different organ abnormalities strongly argues for developing multi-drug strategies to mitigate or even prevent both life-threatening and morbid manifestations in pediatric and adult MFS patients.
Collapse
Affiliation(s)
- Francesco Ramirez
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States.
| | - Cristina Caescu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Elisabeth Wondimu
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Josephine Galatioto
- Department of Pharmacological Sciences and Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| |
Collapse
|