1
|
Shahrear S, Islam ABMMK. Modeling of MT. P495, an mRNA-based vaccine against the phosphate-binding protein PstS1 of Mycobacterium tuberculosis. Mol Divers 2023; 27:1613-1632. [PMID: 36006502 PMCID: PMC9406248 DOI: 10.1007/s11030-022-10515-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 08/13/2022] [Indexed: 11/28/2022]
Abstract
Tuberculosis (TB) is a contagious disease that predominantly affects the lungs, but can also spread to other organs via the bloodstream. TB affects about one-fourth population of the world. With age, the effectiveness of Bacillus Calmette-Guérin (BCG), the only authorized TB vaccine, decreases. In the quest for a prophylactic and immunotherapeutic vaccine, in this study, a hypothetical mRNA vaccine is delineated, named MT. P495, implementing in silico and immunoinformatics approaches to evaluate key aspects and immunogenic epitopes across the PstS1, a highly conserved periplasmic protein of Mycobacterium tuberculosis (Mtb). PstS1 elicited the potential to generate 99.9% population coverage worldwide. The presence of T- and B-cell epitopes across the PstS1 protein were validated using several computational prediction tools. Molecular docking and dynamics simulation confirmed stable epitope-allele interaction. Immune cell response to the antigen clearance rate was verified by the in silico analysis of immune simulation. Codon optimization confirmed the efficient translation of the mRNA in the host cell. With Toll-like receptors, the vaccine exhibited stable and strong interactions. Findings suggest that the MT. P495 vaccine probably will elicit specific immune responses against Mtb. This mRNA vaccine model is a ready source for further wet-lab validation to confirm the efficacy of this proposed vaccine candidate.
Collapse
Affiliation(s)
- Sazzad Shahrear
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, 1000, Bangladesh
| | | |
Collapse
|
2
|
Poudel S, Jia L, Arick MA, Hsu CY, Thrash A, Sukumaran AT, Adhikari P, Kiess AS, Zhang L. In silico prediction and expression analysis of vaccine candidate genes of Campylobacter jejuni. Poult Sci 2023; 102:102592. [PMID: 36972674 PMCID: PMC10066559 DOI: 10.1016/j.psj.2023.102592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is the most common food-borne pathogen that causes human gastroenteritis in the United States. Consumption of contaminated poultry products is considered as the major source of human Campylobacter infection. An effective vaccine would be a promising alternative to antibiotic supplements to curb C. jejuni colonization in poultry gastrointestinal (GI) tract. However, the genetic diversity among the C. jejuni isolates makes vaccine production more challenging. Despite many attempts, an effective Campylobacter vaccine is not yet available. This study aimed to identify suitable candidates to develop a subunit vaccine against C. jejuni, which could reduce colonization in the GI tract of the poultry. In the current study, 4 C. jejuni strains were isolated from retail chicken meat and poultry litter samples and their genomes were sequenced utilizing next-generation sequencing technology. The genomic sequences of C. jejuni strains were screened to identify potential antigens utilizing the reverse vaccinology approach. In silico genome analysis predicted 3 conserved potential vaccine candidates (phospholipase A [PldA], TonB dependent vitamin B12 transporter [BtuB], and cytolethal distending toxin subunit B [CdtB]) suitable for the development of a vaccine. Furthermore, the expression of predicted genes during host-pathogen interaction was analyzed by an infection study using an avian macrophage-like immortalized cell line (HD11). The HD11 was infected with C. jejuni strains, and the RT-qPCR assay was performed to determine the expression of the predicted genes. The expression difference was analyzed using ΔΔCt methods. The results indicate that all 3 predicted genes, PldA, BtuB, and CdtB, were upregulated in 4 tested C. jejuni strains irrespective of their sources of isolation. In conclusion, in silico prediction and gene expression analysis during host-pathogen interactions identified 3 potential vaccine candidates for C. jejuni.
Collapse
Affiliation(s)
- Sabin Poudel
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Linan Jia
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Mark A Arick
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Chuan-Yu Hsu
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Adam Thrash
- Institute for Genomics, Biocomputing, and Biotechnology, Mississippi State University, Mississippi State, MS 39762, USA
| | - Anuraj T Sukumaran
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Pratima Adhikari
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA
| | - Aaron S Kiess
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Li Zhang
- Department of Poultry Science, Mississippi State University, Mississippi State, MS 39762, USA.
| |
Collapse
|
3
|
Muralidharan C, Quinteros JA, Anwar A, Wilson TB, Scott PC, Moore RJ, Van TTH. The use of filamentous hemagglutinin adhesin to detect immune responses to Campylobacter hepaticus infections in layer hens. Front Vet Sci 2022; 9:1082358. [PMID: 36619951 PMCID: PMC9811313 DOI: 10.3389/fvets.2022.1082358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Campylobacter hepaticus is the aetiological agent of Spotty Liver Disease (SLD). SLD can cause significant production loss and mortalities among layer hens at and around peak of lay. We previously developed an enzyme linked immunosorbent assay (ELISA), SLD-ELISA1, to detect C. hepaticus specific antibodies from bird sera using C. hepaticus total proteins and sera pre-absorbed with Campylobacter jejuni proteins. The high specificity achieved with SLD-ELISA1 indicated the presence of C. hepaticus specific antibodies in sera of infected birds. However, some of the reagents used in SLD-ELISA1 are time consuming to prepare and difficult to quality control. This understanding led to the search for C. hepaticus specific immunogenic proteins that could be used in recombinant forms as antibody capture antigens in immunoassay design. In this study, an immunoproteomic approach that combined bioinformatics analysis, western blotting, and LC MS/MS protein profiling was used, and a fragment of filamentous hemagglutinin adhesin (FHA), FHA1,628-1,899 with C. hepaticus specific antigenicity was identified. Recombinant FHA1,628-1,899 was used as antigen coating on ELISA plates to capture FHA1,628-1,899 specific antibodies in sera of infected birds. SLD-ELISA2, based on the purified recombinant FHA fragment, is more user-friendly and standardizable than SLD-ELISA1 for screening antibody responses to C. hepaticus exposure in hens. This study is the first report of the use of FHA from a Campylobacter species in immunoassays, and it also opens future research directions to investigate the role of FHA in C. hepaticus pathogenesis and its effectiveness as a vaccine candidate.
Collapse
Affiliation(s)
| | | | - Arif Anwar
- Scolexia Pty Ltd., Moonee Ponds, VIC, Australia
| | | | | | - Robert J. Moore
- School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC, Australia
| | - Thi Thu Hao Van
- School of Science, Royal Melbourne Institute of Technology University, Bundoora, VIC, Australia,*Correspondence: Thi Thu Hao Van ✉
| |
Collapse
|
4
|
Jain R, Jain A, Verma SK. Prediction of Epitope based Peptides for Vaccine Development from Complete Proteome of Novel Corona Virus (SARS-COV-2) Using Immunoinformatics. Int J Pept Res Ther 2021; 27:1729-1740. [PMID: 33897313 PMCID: PMC8051835 DOI: 10.1007/s10989-021-10205-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 12/19/2022]
Abstract
COVID-19 is an infectious disease caused by a newly discovered corona virus SARS-COV-2. It is the most dangerous epidemic existing currently all over the world. To date, there is no licensed vaccine and not any particular efficient therapeutic agent available to prevent or cure the disease. So development of an effective vaccine is the urgent need of the time. The proposed study aims to identify potential vaccine candidates by screening the complete proteome of SARS-COV-2 using the computational approach. From 14 protein entries in UniProtKB, 4 proteins were screened for epitope prediction based on consensus antigenicity predictions and various physico-chemical criteria like transmembrane domain, allergenicity, GRAVY value, toxicity, stability index. Comprehensive analysis of these 4 antigens revealed that spike protein (P0DTC2) and nucleoprotein (P0DTC9) show the greatest potential for experimental immunogenicity analysis. These 2 proteins have several potential CD4+ and CD8+ T-cell epitopes, as well as high probability of B-cell epitope regions as compared to well-characterized antigen the matrix protein 1 [Influenza A virus (H5N1)]. In addition, the epitope SIIAYTMSL predicted from spike protein (P0DTC2) and epitope SPRWYFYYL predicted from nucleoprotein (P0DTC9) exhibited more than 60% population coverage in the target populations Europe, North America, South Asia, Northeast Asia taken in this study. These epitopes have also been found to exhibit highly significant TCR–pMHC interactions having a joint Z value of 4.51 and 4.37 respectively. Therefore, this analysis suggests that the predicted epitopes might be suitable vaccine candidates and should be subjected to further in-vivo and in-vitro studies.
Collapse
Affiliation(s)
- Richa Jain
- Institute of Engineering and Technology, Lucknow, Uttar Pradesh India
| | - Ankit Jain
- Indian Meteorological Department, Lucknow, India
| | - Santosh Kumar Verma
- Department of Civil Engineering, National Institute of Technology, Hamirpur, India
| |
Collapse
|
5
|
Liu L, Feng J, Li Y, Liu Y, Wang Y, Hu Z, Xiong J, Zuo Q, Zhang R. Identification and evaluation of protection effect of B-cell immunodominant epitopes of campylobacter jejuni PEB1. Microb Pathog 2020; 152:104650. [PMID: 33232766 DOI: 10.1016/j.micpath.2020.104650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/15/2020] [Accepted: 11/13/2020] [Indexed: 11/29/2022]
Abstract
To provide detail data for Campylobacter jejuni (C.jejuni) vaccine research, this study performed epitope prediction analysis technology to screen the B cell immunodominant epitopes of C. jejuni adhesion protein PEB1 and evaluated the immunoprotective effect. The overlapping peptides were synthesized and B-cell immunodominant epitopes of PEB1 were identified by ELISA. BALB/c mice were immunized with the immunodominant epitopes of PEB1 conjugated with KLH plus CFA/IFA. The titers for immunodominant peptide antiserum against PEB1 were detected by ELISA. The bacterial colonization and the relative expression level of TNF-α were analyzed after the mice challenged with C. jejuni 11,168. The function of antibody induced by immunodominant PEB1 epitopes were performed by opsonophagocytic killing. The results showed that PEB155-72aa, PEB197-114aa, PEB1211-228aa were the immunodominant peptides and could induce strong B cell mediated humoral immunity response. Antiserum from the immunodominant peptides group significantly enhanced opsonize phagocytosis than CFA/IFA group (P<0.01). Both the bacterial burdens and the TNF-α expression level in the immunodominant peptides groups were significantly lower than those in the control group (P<0.01). Moreover, the immune protective effect of the three immunodominant peptides depended on the B cell immunity response in vivo study. In conclusion, three specific B cell immunodominant epitopes with good immunogenicity and immunoprotection efficacy were successfully identified, indicating that could be used in the anti- C. jejuni vaccine research and development.
Collapse
Affiliation(s)
- Luxuan Liu
- School of Medicine, Southwest Jiaotong University, Chengdu, 610083, China
| | - Jian Feng
- Department of Geriatric, ChengDu Military General Hospital, Chengdu, 610083, China
| | - Yunming Li
- Department of Information, ChengDu Military General Hospital, Chengdu, 610083, China
| | - Yugang Liu
- Department of Clinical Laboratory, ChengDu Military General Hospital, Chengdu, 610083, China
| | - Yanyan Wang
- Department of Clinical Laboratory, ChengDu Military General Hospital, Chengdu, 610083, China
| | - Zonghai Hu
- Department of Clinical Laboratory, ChengDu Military General Hospital, Chengdu, 610083, China
| | - Jie Xiong
- Department of Clinical Laboratory, ChengDu Military General Hospital, Chengdu, 610083, China
| | - Qianfei Zuo
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Rui Zhang
- Department of Clinical Laboratory, ChengDu Military General Hospital, Chengdu, 610083, China.
| |
Collapse
|
6
|
Gupta A, Rosato AJ, Cui F. Vaccine candidate designed against carcinoembryonic antigen-related cell adhesion molecules using immunoinformatics tools. J Biomol Struct Dyn 2020; 39:6084-6098. [PMID: 32720576 DOI: 10.1080/07391102.2020.1797539] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Carcinoembryonic antigen-related cell adhesion (CEACAM) molecules belong to a family of membrane glycoproteins that mediate intercellular interactions influencing cellular growth, immune cell activation, apoptosis, and tumor suppression. Several family members (CEACAM1, CEACAM5, and CEACAM6) are highly expressed in cancers, and they share a conserved N-terminal domain that serves as an attractive target for cancer immunotherapy. A multi-epitope vaccine candidate against this conserved domain has been developed using immunoinformatics tools. Specifically, several epitopes predicted to interact with MHC class I and II molecules were linked together with appropriate linkers. The tertiary structure of the vaccine is generated by homology and ab initio modeling. Molecular docking of epitopes to MHC structures have revealed that the lowest energy conformations are the epitopes bound to the antigen-binding groove of the MHC molecules. Subsequent molecular dynamics simulation has confirmed the stability of the binding conformations in solution. The predicted vaccine has relatively high antigenicity and low allergenicity, suggesting that it is an ideal candidate for further refinement and development.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Aditya Gupta
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Andrew J Rosato
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Feng Cui
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| |
Collapse
|
7
|
Sanasam BD, Kumar S. PRE-binding protein of Plasmodium falciparum is a potential candidate for vaccine design and development: An in silico evaluation of the hypothesis. Med Hypotheses 2019; 125:119-123. [DOI: 10.1016/j.mehy.2019.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/14/2018] [Accepted: 01/10/2019] [Indexed: 11/29/2022]
|
8
|
Liu J, Parrish JR, Hines J, Mansfield L, Finley RL. A proteome-wide screen of Campylobacter jejuni using protein microarrays identifies novel and conformational antigens. PLoS One 2019; 14:e0210351. [PMID: 30633767 PMCID: PMC6329530 DOI: 10.1371/journal.pone.0210351] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Campylobacter jejuni (C. jejuni) is a foodborne intestinal pathogen and major cause of gastroenteritis worldwide. C. jejuni proteins that are immunogenic have been sought for their potential use in the development of biomarkers, diagnostic assays, or subunit vaccines for humans or livestock. To identify new immunogenic C. jejuni proteins, we used a native protein microarray approach. A protein chip, with over 1400 individually purified GST-tagged C. jejuni proteins, representing over 86% of the proteome, was constructed to screen for antibody titers present in test sera raised against whole C. jejuni cells. Dual detection of GST signals was incorporated as a way of normalizing the variation of protein concentrations contributing to the antibody staining intensities. We detected strong signals to 102 C. jejuni antigens. In addition to antigens recognized by antiserum raised against C. jejuni, parallel experiments were conducted to identify antigens cross-reactive to antiserum raised against various serotypes of E. coli or Salmonella or to healthy human sera. This led to the identification of 34 antigens specifically recognized by the C. jejuni antiserum, only four of which were previously known. The chip approach also allowed identification of conformational antigens. We demonstrate in the case of Cj1621 that antigen signals are lost to denaturing conditions commonly used in other approaches to identify immunogens. Antigens identified in this study include those possessing sequence features indicative of cell surface localization, as well as those that do not. Together, our results indicate that the unbiased chip-based screen can help reveal the full repertoire of host antibodies against microbial proteomes.
Collapse
Affiliation(s)
- Jiayou Liu
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Jodi R Parrish
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Julie Hines
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Linda Mansfield
- Department of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Russell L Finley
- Center for Molecular Medicine & Genetics, Wayne State University School of Medicine, Detroit, Michigan, United States of America.,Department of Microbiology, Immunology, and Biochemistry Wayne State University School of Medicine, Detroit, Michigan, United States of America
| |
Collapse
|