1
|
Boukaew S, Petlamul W, Srinuanpan S, Nooprom K, Zhang Z. Heat stability of Trichoderma asperelloides SKRU-01 culture filtrates: Potential applications for controlling fungal spoilage and AFB 1 production in peanuts. Int J Food Microbiol 2024; 409:110477. [PMID: 37976618 DOI: 10.1016/j.ijfoodmicro.2023.110477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
This study aimed to examine the heat stability of culture filtrates of Trichoderma asperelloides SKRU-01 (culture filtrates SKRU-01) over a temperatures range (40-121 °C) and the effects on the antifungal activity against two aflatoxin-producing strains (Aspergillus parasiticus TISTR 3276 and A. flavus PSRDC-4), aflatoxin B1 (AFB1) degradation, and the role in mycotoxin control in peanuts. The impact of SKRU-01 culture age (2-12 day-old) on both pathogenic strains revealed that the culture age of 6-12 day-old cultures exhibited no significant difference (p > 0.05) of growth inhibition for strain TISTR 3276 (81.89-82.28 %) and 4-12 day-old cultures for strain PSRDC-4 (74.87-79.06 %). The heat-treated temperatures from 40 °C to 121 °C caused no significant (p > 0.05) reduction of mycelial growth for strain TISTR 3276 (82.61 % to 79.13 %) but significant (p < 0.05) deduction for strain PSRDC-4 (75.15 % to 59.17 %). Heat treatment of the culture filtrates SKRU-01 at 60-121 °C caused the reduction on spore germination inhibition (from about 68 % to 58.16 % for strain TISTR 3276 and 51.11 % for strain PSRDC-4). These results indicate that strain TISTR 3276 exhibited greater susceptibility to culture filtrates SKRU-01 compared to strain PSRDC-4. Furthermore, the culture filtrates SKRU-01 exhibited remarkable thermal stability at 121 °C, degrading AFB1 to 63.91 %. Application of heat-stable culture filtrates SKRU-01 in peanuts demonstrated that the reduction in fungal population and AFB1 production of both pathogenic strains depended significantly (p < 0.05) on the level of heat treatment. The non-treated and 40 °C treated culture filtrates SKRU-01 could reduce AFB1 production to lower than the Standard Aflatoxin Limitation (<20 μg/kg), ensuring food safety and mitigating the health risks associated with aflatoxin exposure.
Collapse
Affiliation(s)
- Sawai Boukaew
- Center of Excellence BCG for Sustainable Development, College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand.
| | - Wanida Petlamul
- Center of Excellence BCG for Sustainable Development, College of Innovation and Management, Songkhla Rajabhat University, Songkhla, 90000, Thailand
| | - Sirasit Srinuanpan
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Karistsapol Nooprom
- Faculty of Agricultural Technology, Songkhla Rajabhat University, Songkhla 90000, Thailand
| | - Zhiwei Zhang
- Institute of Materia Medica, Xinjiang University, Urumqi 830017, People's Republic of China
| |
Collapse
|
2
|
Liu M, Hu M, Zhou H, Dong Z, Chen X. High-level production of Aspergillus niger prolyl endopeptidase from agricultural residue and its application in beer brewing. Microb Cell Fact 2023; 22:93. [PMID: 37143012 PMCID: PMC10161650 DOI: 10.1186/s12934-023-02087-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Prolyl endopeptidase from Aspergillus niger (AN-PEP) is a prominent serine proteinase with various potential applications in the food and pharmaceutical industries. However, the availability of efficient and low-cost AN-PEP remains a challenge owing to its low yield and high fermentation cost. RESULTS Here, AN-PEP was recombinantly expressed in Trichoderma reesei (rAN-PEP) under the control of the cbh1 promoter and its secretion signal. After 4 days of shaking flask cultivation with the model cellulose Avicel PH101 as the sole carbon source, the extracellular prolyl endopeptidase activity reached up to 16.148 U/mL, which is the highest titer reported to date and the secretion of the enzyme is faster in T. reesei than in other eukaryotic expression systems including A. niger and Komagataella phaffii. Most importantly, when cultivated on the low-cost agricultural residue corn cob, the recombinant strain was found to secret a remarkable amount of rAN-PEP (37.125 U/mL) that is twice the activity under the pure cellulose condition. Furthermore, treatment with rAN-PEP during beer brewing lowered the content of gluten below the ELISA kit detection limit (< 10 mg/kg) and thereby, reduced turbidity, which would be beneficial for improving the non-biological stability of beer. CONCLUSION Our research provides a promising approach for industrial production of AN-PEP and other enzymes (proteins) from renewable lignocellulosic biomass, which provides a new idea with relevant researchers for the utilization of agricultural residues.
Collapse
Affiliation(s)
- Minglu Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Hu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Hui Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Xiuzhen Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
3
|
Biodegradation of Aflatoxin B1 in Maize Grains and Suppression of Its Biosynthesis-Related Genes Using Endophytic Trichoderma harzianum AYM3. J Fungi (Basel) 2023; 9:jof9020209. [PMID: 36836323 PMCID: PMC9964583 DOI: 10.3390/jof9020209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/27/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Aflatoxin B1 is one of the most deleterious types of mycotoxins. The application of an endophytic fungus for biodegradation or biosuppression of AFB1 production by Aspergillus flavus was investigated. About 10 endophytic fungal species, isolated from healthy maize plants, were screened for their in vitro AFs-degrading activity using coumarin medium. The highest degradation potential was recorded for Trichoderma sp. (76.8%). This endophyte was identified using the rDNA-ITS sequence as Trichoderma harzianum AYM3 and assigned an accession no. of ON203053. It caused a 65% inhibition in the growth of A. flavus AYM2 in vitro. HPLC analysis revealed that T. harzianum AYM3 had a biodegradation potential against AFB1. Co-culturing of T. harazianum AYM3 and A. flavus AYM2 on maize grains led to a significant suppression (67%) in AFB1 production. GC-MS analysis identified two AFB1-suppressing compounds, acetic acid and n-propyl acetate. Investigating effect on the transcriptional expression of five AFB1 biosynthesis-related genes in A. flavus AYM2 revealed the downregulating effects of T. harzianum AYM3 metabolites on expression of aflP and aflS genes. Using HepaRG cell line, the cytotoxicity assay indicated that T. harazianum AYM3 metabolites were safe. Based on these results, it can be concluded that T. harzianum AYM3 may be used to suppress AFB1 production in maize grains.
Collapse
|
4
|
Yue X, Ren X, Fu J, Wei N, Altomare C, Haidukowski M, Logrieco AF, Zhang Q, Li P. Characterization and mechanism of aflatoxin degradation by a novel strain of Trichoderma reesei CGMCC3.5218. Front Microbiol 2022; 13:1003039. [PMID: 36312918 PMCID: PMC9611206 DOI: 10.3389/fmicb.2022.1003039] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/21/2022] [Indexed: 11/27/2022] Open
Abstract
Aflatoxins, which are produced mainly by Aspergillus flavus and A. parasiticus, are recognized as the most toxic mycotoxins, which are strongly carcinogenic and pose a serious threat to human and animal health. Therefore, strategies to degrade or eliminate aflatoxins in agro-products are urgently needed. We investigated 65 Trichoderma isolates belonging to 23 species for their aflatoxin B1 (AFB1)-degrading capabilities. Trichoderma reesei CGMCC3.5218 had the best performance, and degraded 100% of 50 ng/kg AFB1 within 3 days and 87.6% of 10 μg/kg AFB1 within 5 days in a liquid-medium system. CGMCC3.5218 degraded more than 85.0% of total aflatoxins (aflatoxin B1, B2, G1, and G2) at 108.2–2323.5 ng/kg in artificially and naturally contaminated peanut, maize, and feed within 7 days. Box–Behnken design and response surface methodology showed that the optimal degradation conditions for CGMCC3.5218 were pH 6.7 and 31.3°C for 5.1 days in liquid medium. Possible functional detoxification components were analyzed, indicating that the culture supernatant of CGMCC3.5218 could efficiently degrade AFB1 (500 ng/kg) with a ratio of 91.8%, compared with 19.5 and 8.9% by intracellular components and mycelial adsorption, respectively. The aflatoxin-degrading activity of the fermentation supernatant was sensitive to proteinase K and proteinase K plus sodium dodecyl sulfonate, but was stable at high temperatures, suggesting that thermostable enzymes or proteins in the fermentation supernatant played a major role in AFB1 degradation. Furthermore, toxicological experiments by a micronucleus assay in mouse bone marrow erythrocytes and by intraperitoneal injection and skin irritation tests in mice proved that the degradation products by CGMCC3.5218 were nontoxic. To the best of our knowledge, this is the first comprehensive study on Trichoderma aflatoxin detoxification, and the candidate strain T. reesei CGMCC3.5218 has high efficient and environment-friendly characteristics, and qualifies as a potential biological detoxifier for application in aflatoxin removal from contaminated feeds.
Collapse
Affiliation(s)
- Xiaofeng Yue
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Xianfeng Ren
- Institute of Quality Standard and Testing Technology for Agro-products, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jiayun Fu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
| | - Na Wei
- Institutions of Agricultural Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Claudio Altomare
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
- *Correspondence: Claudio Altomare,
| | - Miriam Haidukowski
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Antonio F. Logrieco
- Institute of Sciences of Food Production, National Research Council, Bari, Italy
| | - Qi Zhang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Hubei Hongshan Lab, Wuhan, China
- Qi Zhang,
| | - Peiwu Li
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, China
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, China
- Peiwu Li,
| |
Collapse
|
5
|
Abstract
This study determined the composition of fungal communities and characterized the enriched fungal species in raw and roasted malts via the third-generation PacBio-based full-length single-molecule real-time (SMRT) sequencing of the full-length amplicon of the internal transcribed spacer (ITS) region. In total, one kingdom, six phyla, 23 classes, 56 orders, 120 families, 188 genera, 333 species, and 780 operational taxonomic units (OTUs) were detected with satisfactory sequencing depth and sample size. Wickerhamomyces (56%), Cyberlindnera (15%), Dipodascus (12%), and Candida (6.1%) were characterized as the dominant genera in the raw malts, and Aspergillus (35%), Dipodascus (21%), Wickerhamomyces (11%), and Candida (3.5%) in the roasted malts. Aspergillus proliferans, Aspergillus penicillioides, and Wickerhamomyces anomalus represented the crucial biomarkers causing intergroup differences. Correlation analysis regarding environmental factors indicated that the water activity (aw) of the samples affected the composition of the fungal communities in the malts. In practice, special attention should be paid to the mycotoxin-producing fungi, as well as other fungal genera that are inversely correlated with their growth, to ensure the safe use of malt and its end products. IMPORTANCE Fungal contamination and secondary metabolite accumulation in agricultural products represent a global food safety challenge. Although high-throughput sequencing (HTS) is beneficial for explaining fungal communities, it presents disadvantages, such as short reads, species-level resolution, and uncertain identification. This work represents the first attempt to characterize the fungal community diversity, with a particular focus on mycotoxin-producing fungi, in malt via the third-generation PacBio-based full-length SMRT sequencing of the ITS region, aiming to explore and compare the differences between the fungal communities of raw and roasted malts. The research is beneficial for developing effective biological control and conservation measures, including improving the roasting conditions, monitoring the environmental humidity and aw, and effectively eliminating and degrading fungi in the industry chain according to the diverse fungal communities determined, for the safe use of malts and their end products, such as beers. In addition, the third-generation SMRT sequencing technology allows highly efficient analysis of fungal community diversity in complex matrices, yielding fast, high-resolution long reads at the species level. It can be extended to different research fields, updating modern molecular methodology and bioinformatics databases.
Collapse
|
6
|
Dini I, Alborino V, Lanzuise S, Lombardi N, Marra R, Balestrieri A, Ritieni A, Woo SL, Vinale F. Trichoderma Enzymes for Degradation of Aflatoxin B1 and Ochratoxin A. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123959. [PMID: 35745082 PMCID: PMC9231114 DOI: 10.3390/molecules27123959] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/14/2022] [Accepted: 06/18/2022] [Indexed: 11/25/2022]
Abstract
The contamination of agricultural products with mycotoxins causes risks to animal and human health and severe economic losses. Mycotoxicoses can be reduced by preventing fungal infection using chemical and biological approaches. The chemical strategies can release toxic molecules; therefore, strategies for biological control are being evaluated, such as using nontoxic fungi and their metabolites. This work evaluated the effect of exoenzymes produced by the beneficial fungus Trichoderma afroharzianum strain T22 in degrading Aflatoxin B1 (AFB1) and Ochratoxin A (OTA). The ability of Trichoderma to produce hydrolases was stimulated by using different inducing substrates. The highest AFB1 and OTA degradation activity was obtained using a medium containing lyophilized mushrooms and crude fiber. The T. afroharzianum T22’s ability to reduce mycotoxins may be attributed to peroxidase enzymes. This study showed that T.afroharzianum strain T22 or its peroxidase supplementation could represent a sustainable strategy for the degradation of AFB1 and OTA in feed and food products.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
- Correspondence: (I.D.); (F.V.)
| | - Vittoria Alborino
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
| | - Stefania Lanzuise
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
| | - Nadia Lombardi
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Roberta Marra
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy; (V.A.); (S.L.); (N.L.); (R.M.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Anna Balestrieri
- Department of Animal Health, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via della Salute 2, 80055 Portici, Italy;
| | - Alberto Ritieni
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
| | - Sheridan L. Woo
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Naples, Italy; (A.R.); (S.L.W.)
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| | - Francesco Vinale
- BAT Center—Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80138 Naples, Italy
- Correspondence: (I.D.); (F.V.)
| |
Collapse
|
7
|
Nahle S, El Khoury A, Savvaidis I, Chokr A, Louka N, Atoui A. Detoxification approaches of mycotoxins: by microorganisms, biofilms and enzymes. INTERNATIONAL JOURNAL OF FOOD CONTAMINATION 2022. [DOI: 10.1186/s40550-022-00089-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
AbstractMycotoxins are generally found in food, feed, dairy products, and beverages, subsequently presenting serious human and animal health problems. Not surprisingly, mycotoxin contamination has been a worldwide concern for many research studies. In this regard, many biological, chemical, and physical approaches were investigated to reduce and/or remove contamination from food and feed products. Biological detoxification processes seem to be the most promising approaches for mycotoxins removal from food. The current review details the newest progress in biological detoxification (adsorption and metabolization) through microorganisms, their biofilms, and enzymatic degradation, finally describing the detoxification mechanism of many mycotoxins by some microorganisms. This review also reports the possible usage of microorganisms as mycotoxins’ binders in various food commodities, which may help produce mycotoxins-free food and feed.
Collapse
|
8
|
Biocontrol Methods in Avoidance and Downsizing of Mycotoxin Contamination of Food Crops. Processes (Basel) 2022. [DOI: 10.3390/pr10040655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
By increasing the resistance of seeds against abiotic and biotic stress, the possibility of cereal mold contamination and hence the occurrence of secondary mold metabolites mycotoxins decreases. The use of biological methods of seed treatment represents a complementary strategy, which can be implemented as an environmental-friendlier approach to increase the agricultural sustainability. Whereas the use of resistant cultivars helps to reduce mold growth and mycotoxin contamination at the very beginning of the production chain, biological detoxification of cereals provides additional weapons against fungal pathogens in the later stage. Most efficient techniques can be selected and combined on an industrial scale to reduce losses and boost crop yields and agriculture sustainability, increasing at the same time food and feed safety. This paper strives to emphasize the possibility of implementation of biocontrol methods in the production of resistant seeds and the prevention and reduction in cereal mycotoxin contamination.
Collapse
|
9
|
Gómez-Salazar JA, Ruiz-Hernández K, Martínez-Miranda MM, Castro-Ríos K. Postharvest strategies for decontamination of aflatoxins in cereals. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.2013254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Julián Andrés Gómez-Salazar
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | - Karla Ruiz-Hernández
- Posgrado En Biociencias, Departamento De Alimentos, División De Ciencias De La Vida, Campus Irapuato-Salamanca, Universidad de Guanajuato, Irapuato, Guanajuato, México
| | | | - Katherin Castro-Ríos
- Grupo de Cromatografía Y Técnicas Afines, Universidad de Caldas, Manizales, Colombia
- Instituto de Investigación En Microbiología Y Biotecnología Agroindustrial, Universidad Católica de Manizales, Manizales, Colombia
| |
Collapse
|
10
|
Long N, Liu J, Liao X, Jia B, Liu J, Zhou L, Shi L, Kong W. Fungal communities in Nelumbinis semen characterized by high-throughput sequencing. Int J Food Microbiol 2021; 359:109428. [PMID: 34655921 DOI: 10.1016/j.ijfoodmicro.2021.109428] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 09/15/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
For a long period, Nelumbinis semen has been widely used as a medicinal and edible product. However, it is susceptible to contamination with toxigenic fungi and aflatoxins during the growth, collection, transportation, and storage processes, causing serious health threats to humans and huge economic losses. Effectively monitoring the fungal communities is of great importance to avoid aflatoxins contamination in Nelumbinis semen. High-throughput sequencing (HTS) is a new technology to evaluate fungal communities so as to overcome the limitations of the traditional cultural ways. In this study, the ITS2 based Illumina-MiSeq platform was developed to evaluate the fungal communities in normal and moldy Nelumbinis semen by using the HTS technology. Two different primer pairs were introduced to compare their performance in amplifying the target gene. The primer pair that produced more reads was selected to analyze the results. In all the nine tested Nelumbinis semen samples, 2 phyla, 5 classes, 6 orders, 8 families, 9 genera and 4 species were detected. A total of 9 genera were spotted, of which, Aspergillus (0.04%-72.93%) and Rhizopus (0.002%-48.12%) were the most dominant. ANOISM analysis showed no significant differences in the normal and moldy groups. The use of HTS technology can detect the fungal communities in complex Nelumbinis semen samples, providing an early warning for toxigenic fungi and aflatoxins contamination to warrant their quality and safety.
Collapse
Affiliation(s)
- Nan Long
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jinxin Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China; Hebei Key Laboratory of Study and Exploitation of Chinese Medicine, Chengde Medical College, Chengde 067000, China
| | - Xiaofang Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Boyu Jia
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Jiali Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Lidong Zhou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China
| | - Linchun Shi
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| | - Weijun Kong
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100193, China.
| |
Collapse
|
11
|
Piotrowska M. Microbiological Decontamination of Mycotoxins: Opportunities and Limitations. Toxins (Basel) 2021; 13:toxins13110819. [PMID: 34822603 PMCID: PMC8619243 DOI: 10.3390/toxins13110819] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 02/07/2023] Open
Abstract
The contamination of food and feeds with mycotoxins poses a global health risk to humans and animals, with major economic consequences. Good agricultural and manufacturing practices can help control mycotoxin contamination. Since these actions are not always effective, several methods of decontamination have also been developed, including physical, chemical, and biological methods. Biological decontamination using microorganisms has revealed new opportunities. However, these biological methods require legal regulations and more research before they can be used in food production. Currently, only selected biological methods are acceptable for the decontamination of feed. This review discusses the literature on the use of microorganisms to remove mycotoxins and presents their possible mechanisms of action. Special attention is given to Saccharomyces cerevisiae yeast and lactic acid bacteria, and the use of yeast cell wall derivatives.
Collapse
Affiliation(s)
- Małgorzata Piotrowska
- Faculty of Biotechnology and Food Sciences, Institute of Fermentation Technology and Microbiology, Lodz University of Technology, Wólczańska 171/173, 90-530 Lodz, Poland
| |
Collapse
|
12
|
Valorization of the green seaweed Ulva rigida for production of fungal biomass protein using a hypercellulolytic terrestrial fungus. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
13
|
Nešić K, Habschied K, Mastanjević K. Possibilities for the Biological Control of Mycotoxins in Food and Feed. Toxins (Basel) 2021; 13:198. [PMID: 33801997 PMCID: PMC8001018 DOI: 10.3390/toxins13030198] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 12/14/2022] Open
Abstract
Seeking useful biological agents for mycotoxin detoxification has achieved success in the last twenty years thanks to the participation of many multidisciplinary teams. We have recently witnessed discoveries in the fields of bacterial genetics (inclusive of next-generation sequencing), protein encoding, and bioinformatics that have helped to shape the latest perception of how microorganisms/mycotoxins/environmental factors intertwine and interact, so the road is opened for new breakthroughs. Analysis of literature data related to the biological control of mycotoxins indicates the ability of yeast, bacteria, fungi and enzymes to degrade or adsorb mycotoxins, which increases the safety and quality of susceptible crops, animal feed and, ultimately, food of animal origin (milk, meat and eggs) by preventing the presence of residues. Microbial detoxification (transformation and adsorption) is becoming a trustworthy strategy that leaves no or less toxic compounds and contributes to food security. This review summarizes the data and highlights the importance and prospects of these methods.
Collapse
Affiliation(s)
- Ksenija Nešić
- Institute of Veterinary Medicine of Serbia, Food and Feed Department, Autoput 3, 11070 Beograd, Serbia
| | - Kristina Habschied
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| | - Krešimir Mastanjević
- Faculty of Food Technology Osijek, Josip Juraj Strossmayer University of Osijek, F. Kuhača 20, 31000 Osijek, Croatia;
| |
Collapse
|
14
|
Wei H, Wu M, Fan A, Su H. Recombinant protein production in the filamentous fungus Trichoderma. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
15
|
Suresh G, Cabezudo I, Pulicharla R, Cuprys A, Rouissi T, Brar SK. Biodegradation of aflatoxin B 1 with cell-free extracts of Trametes versicolor and Bacillus subtilis. Res Vet Sci 2020; 133:85-91. [PMID: 32957062 DOI: 10.1016/j.rvsc.2020.09.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 09/09/2020] [Accepted: 09/10/2020] [Indexed: 10/23/2022]
Abstract
Aflatoxin B1 (AFB1) is one of the most common contaminants of poultry feed and has been linked to adverse effects on animal health and productivity. In this study, the degradation of AFB1 was studied with cell-free extracts (CFE) of Trametes versicolor and Bacillus subtilis using High-Performance Liquid chromatography (HPLC). CFE from B. subtilis and T. versicolor gave 60% and 34% of AFB1 degradation respectively, while heat-inactivated extracts showed no degradation. By-products obtained at the end of AFB1 degradation were analyzed by Liquid Chromatography with tandem mass spectrometry (LC-MS/MS). After 96 h of incubation, by-products with lower m/z values were obtained with CFE from B. subtilis as compared to that from T. versicolor, indicating a higher degradation efficiency of the former. Additionally, the detection of a by-product which could correspond to AFB1-8,9 dihydrodiol - a less toxic derivative of AFB1 - after 72 and 96 h of incubation with CFE from B. subtilis, could indicate the simultaneous detoxification along with degradation of AFB1 by B. subtilis CFE.
Collapse
Affiliation(s)
- Gayatri Suresh
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Ignacio Cabezudo
- Instituto de Procesos Biotecnologicos y Quimicos de Rosario y Farmacognosia, Facultad de Ciencias, Bioquimicas y Farmaceuticas, S2002LRK, Rosario, Santa Fe, Argentina
| | - Rama Pulicharla
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Agnieszka Cuprys
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Tarek Rouissi
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada
| | - Satinder Kaur Brar
- Institut national de la recherche scientifique, Centre - Eau Terre Environnement, 490, Rue de la Couronne, Québec, QC G1K 9A9, Canada; Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada.
| |
Collapse
|
16
|
Söylemez T, Yamaç M, Yıldız Z. Statistical optimization of cultural variables for enzymatic degradation of aflatoxin B 1 by Panus neostrigosus. Toxicon 2020; 186:141-150. [PMID: 32795459 DOI: 10.1016/j.toxicon.2020.08.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 07/07/2020] [Accepted: 08/04/2020] [Indexed: 02/06/2023]
Abstract
The aim of this study is to determine the best aflatoxin B1 degradation conditions which was optimized using a combination of the Plackett-Burman and Box-Behnken methods with Panus neostrigosus culture filtrate. Panus neostrigosus was grown in a modified Kirk Broth medium to determine optimal degradation conditions. As a result, aflatoxin B1 was degraded under varying culture conditions. The Plackett-Burman method was designed after sixteen different experiments with fifteen variables. The three most effective variables (Sucrose, yeast extract, wheat bran) were chosen for the Box-Behnken methodology. The aflatoxin B1 degradation rate was 49% in just 1 h exposure to culture filtrate which was obtained under optimal growth conditions; (g-ml/L) sucrose 10, yeast extract 3, wheat bran 3, soytone 5, KH2PO4 2, MgSO4.7H2O 0.5, CaCl2.H2O 0.1, ammonium tartrate 2, trace element solution 10; 28 °C of incubation temperature, medium pH 5, 7.5% inoculum rate, 125 rpm of agitation speed, and a twelve-day incubation period. The SDS-PAGE studies show that the enzyme responsible for AFB1 degradation has 38 kDa molecular weight and has no laccase or MnP activity. To the best of our knowledge, this is the first report for AFB1 degradation by Panus neostrigosus.
Collapse
Affiliation(s)
- Tuncay Söylemez
- Savaş Kubaş Anatolian High School, 26050, Eskişehir, Turkey.
| | - Mustafa Yamaç
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Biology, 26480, Eskisehir, Turkey
| | - Zeki Yıldız
- Eskisehir Osmangazi University, Faculty of Science and Letters, Department of Statistics, 26480, Eskisehir, Turkey
| |
Collapse
|
17
|
Abdi M, Asadi A, Maleki F, Kouhsari E, Fattahi A, Ohadi E, Lotfali E, Ahmadi A, Ghafouri Z. Microbiological Detoxification of Mycotoxins: Focus on Mechanisms and Advances. Infect Disord Drug Targets 2020; 21:339-357. [PMID: 32543365 DOI: 10.2174/1871526520666200616145150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/10/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Some fungal species of the genera Aspergillus, Penicillium, and Fusarium secretes toxic metabolites known as mycotoxins, have become a global concern that is toxic to different species of animals and humans. Biological mycotoxins detoxification has been studied by researchers around the world as a new strategy for mycotoxin removal. Bacteria, fungi, yeast, molds, and protozoa are the main living organisms appropriate for the mycotoxin detoxification. Enzymatic and degradation sorptions are the main mechanisms involved in microbiological detoxification of mycotoxins. Regardless of the method used, proper management tools that consist of before-harvest prevention and after-harvest detoxification are required. Here, in this review, we focus on the microbiological detoxification and mechanisms involved in the decontamination of mycotoxins.
Collapse
Affiliation(s)
- Milad Abdi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farajolah Maleki
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ilam University of Medical sciences, Ilam, Iran
| | - Ebrahim Kouhsari
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Azam Fattahi
- Center for Research and Training in Skin Disease and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ensieh Lotfali
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alireza Ahmadi
- Laboratory Sciences Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Zahra Ghafouri
- Department of Biochemistry, Biophysics and Genetics, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Fouché T, Claassens S, Maboeta M. Aflatoxins in the soil ecosystem: an overview of its occurrence, fate, effects and future perspectives. Mycotoxin Res 2020; 36:303-309. [PMID: 32270463 DOI: 10.1007/s12550-020-00393-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/19/2020] [Accepted: 03/26/2020] [Indexed: 11/24/2022]
Abstract
Aflatoxins are secondary metabolites produced by specific strains of fungi, especially Aspergillus spp. These natural toxins are mainly found in soil, decaying vegetation and food storage systems and are particularly abundant during drought stress. Aflatoxin contamination is one of the most important threats to food safety and human health due to its toxic, mutagenic and carcinogenic properties. Therefore, most research focuses on post-harvest contamination of aflatoxins in feed and food commodities but very limited information is available about aflatoxin contamination and its toxicological consequences in the soil ecosystem. Current regulations provide minimal options for the disposal of aflatoxin-contaminated crops, amongst which is the incorporation of residues into the soil for natural degradation. This form of mycotoxin loading into the soil could potentially change its physicochemical characteristics and biotic parameters. Recent studies suggest that as climate conditions change, the occurrence and geographical distribution of aflatoxins might increase, posing significant health risks to the soil ecosystem, food crop production and human health. This review will focus on studies that look at the environmental and toxicological consequences of aflatoxin contamination with the aim of clarifying the risk that aflatoxin contamination poses to soil ecosystems. Many aspects of aflatoxin occurrence, degradation and the effects of its transformation products in the soil environment are still unknown and remain an important area of research for soil health and productivity. A climatic approach, in terms of changes in soil moisture and air temperature, is important for future risk assessments of aflatoxin contamination.
Collapse
Affiliation(s)
- Tanya Fouché
- Department of Environmental Science, University of South Africa, Private Bag X6, Florida, 1710, South Africa.
| | - Sarina Claassens
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Mark Maboeta
- Unit for Environmental Sciences and Management, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| |
Collapse
|
19
|
Afshar P, Shokrzadeh M, Raeisi SN, Ghorbani-HasanSaraei A, Nasiraii LR. Aflatoxins biodetoxification strategies based on probiotic bacteria. Toxicon 2020; 178:50-58. [DOI: 10.1016/j.toxicon.2020.02.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/03/2020] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
|
20
|
Assessment of microbial quality and health risks associated with traditional rice wine starter Xaj-pitha of Assam, India: a step towards defined and controlled fermentation. 3 Biotech 2020; 10:64. [PMID: 32030333 DOI: 10.1007/s13205-020-2059-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 01/06/2020] [Indexed: 12/13/2022] Open
Abstract
This study reports the microbial quality of ethnic starter culture Xaj-pitha used for rice wine fermentation in Assam. Here, we collected 60 Xaj-pitha samples belonging to Ahom community of the state and enumerated the microorganisms using spread plate technique. Illumina-based whole genome shotgun sequencing detected the presence of microbial contaminants like Acidovorax, Herbaspirillum, Methylobacterium, Pantoea, Pseudomonas, Stenotrophomonas, Staphylococcus, Micrococcus, Acinetobacter, etc. Presence of major health hazards associated with spontaneous rice wine fermentation necessitated method optimization through the development of a defined mixed starter culture. For this, functionally important α-amylase producers viz., Penicillium sp. ABTSJ23, Rhizopus oryzae ABTSJ63, Mucor guilliermondii ABTSJ72 and Amylomyces rouxii ABTSJ82 and eight yeasts viz., Saccharomyces cerevisiae ABTY1J, ABTY1S, ADJ5 & ADJ1, Wickerhamomyces anomalus ADJ2, Saccharomycopsis malanga ADJ3, Saccharomycopsis fibuligera ADJ4 and Saccharomycopsis malanga ADJ6 were retrieved using appropriate media. All the mould cultures tested negative for aflotoxins production. Among the yeasts, Saccharomyces cerevisiae ABTY1S and ADJ1 decarboxylated lysine HCl and tyramine HCl, respectively, indicating their biogenic amine production ability. For defined mixed starter culture, Amylomyces rouxii ABT82 with α-amylase (5.92 U/ml) and glucoamylase (7.50 U/ml) activities was selected as fungal partner; while Saccharomycopsis fibuligera ADJ4 and Saccharomyces cerevisiae ABT-Y1J with high ethanol production (up to 10.11% and 9.88% v/v, respectively) were selected as yeast partners. The mixed culture was able to produce high amount of glucose, ethanol and liquid (glucose 10.91% w/v; ethanol 7.5% w/v; liquid 51.0% w/v). Therefore, this study demonstrated the efficiency of mixed starter cultures for safe and controlled rice wine production.
Collapse
|
21
|
Sun X, Su X. Harnessing the knowledge of protein secretion for enhanced protein production in filamentous fungi. World J Microbiol Biotechnol 2019; 35:54. [PMID: 30900052 DOI: 10.1007/s11274-019-2630-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 03/08/2019] [Indexed: 12/19/2022]
Abstract
Filamentous fungi are important microorganisms used in industrial production of proteins and enzymes. Among these organisms, Trichoderma reesei, Aspergilli, and more recently Myceliophthora thermophile are the most widely used and promising ones which have powerful protein secretion capability. In recent years, there have been tremendous achievements in understanding the molecular mechanisms of the secretory pathways in filamentous fungi. The acquired pieces of knowledge can be harnessed to enhance protein production in filamentous fungi with assistance of state-of-the-art genetic engineering techniques.
Collapse
Affiliation(s)
- Xianhua Sun
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081, China.
| |
Collapse
|
22
|
Song J, Zhang S, Xie Y, Li Q. Purification and characteristics of an aflatoxin B1 degradation enzyme isolated from Pseudomonas aeruginosa. FEMS Microbiol Lett 2019; 366:5315752. [DOI: 10.1093/femsle/fnz034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/08/2019] [Indexed: 11/14/2022] Open
Affiliation(s)
- Juanjuan Song
- School of Food Science and Technology, Henan University of Technology, 100# Lianhua Street, High-tech Industrial Development Zone, Zhengzhou 450001, Henan, People's Republic of China
| | - Shujie Zhang
- College of Life Science, Henan Normal University, 46# Jianshe East Road, Muye Zone, Xinxiang 453007, Henan, People's Republic of China
| | - Yanli Xie
- School of Food Science and Technology, Henan University of Technology, 100# Lianhua Street, High-tech Industrial Development Zone, Zhengzhou 450001, Henan, People's Republic of China
| | - Qian Li
- School of Food Science and Technology, Henan University of Technology, 100# Lianhua Street, High-tech Industrial Development Zone, Zhengzhou 450001, Henan, People's Republic of China
| |
Collapse
|
23
|
Shanakhat H, Sorrentino A, Raiola A, Romano A, Masi P, Cavella S. Current methods for mycotoxins analysis and innovative strategies for their reduction in cereals: an overview. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:4003-4013. [PMID: 29412472 DOI: 10.1002/jsfa.8933] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 01/30/2018] [Indexed: 06/08/2023]
Abstract
Mycotoxins are secondary metabolites produced by moulds in food that are considered a substantial issue in the context of food safety, due to their acute and chronic toxic effects on animals and humans. Therefore, new accurate methods for their identification and quantification are constantly developed in order to increase the performance of extraction, improve the accuracy of identification and reduce the limit of detection. At the same time, several industrial practices have shown the ability to reduce the level of mycotoxin contamination in food. In particular, a decrease in the amount of mycotoxins could result from standard processes naturally used for food processing or by procedures strategically introduced during processing, with the specific aim of reducing the amount of mycotoxins. In this review, the current methods adopted for accurate analyses of mycotoxins in cereals (aflatoxins, ochratoxins, trichothecenes, fumonisins) are discussed. In addition, both conventional and innovative strategies adopted to obtain safer finished products from common cereals intended for human consumption will be explored and analysed. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hina Shanakhat
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
| | - Angela Sorrentino
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Assunta Raiola
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Annalisa Romano
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Paolo Masi
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| | - Silvana Cavella
- Department of Agricultural Sciences, University of Naples Federico II, Naples, Italy
- Centre for Food Innovation and Development in the Food Industry, University of Naples Federico II, Naples, Italy
| |
Collapse
|
24
|
Mochamad L, Hermanto B. High-performance liquid chromatography ultraviolet-photodiode array detection method for aflatoxin B 1 in cattle feed supplements. Vet World 2017; 10:932-938. [PMID: 28919686 PMCID: PMC5591482 DOI: 10.14202/vetworld.2017.932-938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 07/12/2017] [Indexed: 11/16/2022] Open
Abstract
AIM The objective of the current study is to determine the concentration of aflatoxin B1 using high-performance liquid chromatography (HPLC) with a photodiode array (PDA) detector. MATERIALS AND METHODS Aflatoxin B1 certified reference grade from Trilogy Analytical Laboratory dissolved acetonitrile (ACN) at 10 µg/mL was using standard assessment. HPLC instruments such as ultraviolet-PDA detector used a Shimadzu LC-6AD pump with DGU-20A5 degasser, communication module-20A, and PDA detector SPD-M20A with FRC-10A fraction collector. The HPLC was set isocratic method at 354 nm with a reverse-phase ODS C18 column (LiChrospher® 100 RP-18; diameter, 5 µm) under a 20°C controlled column chamber. Rheodyne® sample loops were performed in 20 µL capacities. The mobile phase was performed at fraction 63:26:11 H2O: methanol:ACN at pH 6.8. A total of 1 kg of feed contained 10% bread crumbs and 30% concentrated, 40% forage, and 20% soybean dregs were using commercials samples. Samples were extracted by ACN and separated with solid phase extraction ODS 1 mL than elution with mobile phase to collect at drying samples performed. The samples were ready to use after added 1 mL mobile phase than injected into the system of HPLC. RESULTS We found that the retention time of aflatoxin B1 was approximately 10.858 min. Linearity of 0.01-0.08 µg/mL aflatoxin B1 dissolved in mobile phase was obtained at R2=0.9. These results demonstrate that these methods can be used to analyze aflatoxin B1 and gain 89-99% recovery. The limit of detection of this assay was obtained at 3.5 × 10-6 µg/mL. CONCLUSION This method was easy to apply and suitable to analyzing at small concentrations of aflatoxin B1 in formulated product of feed cattle.
Collapse
Affiliation(s)
- Lazuardi Mochamad
- Department of Basic Science, Veterinary Pharmacy Subdivision, Faculty of Veterinary Medicine, Airlangga University, Surabaya, Indonesia
| | - Bambang Hermanto
- Department of Pharmacology, Medical Faculty Airlangga University, Prof. Dr. Moestopo 47, Pacar Kembang, Surabaya, Indonesia
| |
Collapse
|
25
|
Kim S, Lee H, Lee S, Lee J, Ha J, Choi Y, Yoon Y, Choi KH. Invited review: Microbe-mediated aflatoxin decontamination of dairy products and feeds. J Dairy Sci 2017; 100:871-880. [DOI: 10.3168/jds.2016-11264] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 09/09/2016] [Indexed: 11/19/2022]
|
26
|
Telles AC, Kupski L, Furlong EB. Phenolic compound in beans as protection against mycotoxins. Food Chem 2017; 214:293-299. [DOI: 10.1016/j.foodchem.2016.07.079] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 06/06/2016] [Accepted: 07/11/2016] [Indexed: 01/10/2023]
|
27
|
Wang Y, Zhao C, Zhang D, Zhao M, Zheng D, Lyu Y, Cheng W, Guo P, Cui Z. Effective degradation of aflatoxin B 1 using a novel thermophilic microbial consortium TADC7. BIORESOURCE TECHNOLOGY 2017; 224:166-173. [PMID: 27866802 DOI: 10.1016/j.biortech.2016.11.033] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/06/2016] [Accepted: 11/07/2016] [Indexed: 06/06/2023]
Abstract
We constructed a novel thermophilic microbial consortium, TADC7, with stable and efficient aflatoxin B1 (AFB1) degradation activity. The microbial consortium degraded more than 95% of the toxin within 72h when cultured with AFB1, and the optimum temperature was 55-60°C. TADC7 tolerated high doses of AFB1, with no inhibitory effects up to 5000μgL-1 AFB1; moreover, the degradation kinetics fit well with the Monod model. The proteins or enzymes in the TADC7 cell-free supernatant played a major role in AFB1 degradation. AFB1 degradation by the cell-free supernatant was stable up to 90°C, with an optimal pH of 8-10. We performed 16S rRNA sequencing to determine TADC7 community structure dynamics; the results indicated that Geobacillus and Tepidimicrobium played major roles in AFB1 degradation.
Collapse
Affiliation(s)
- Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Chunxia Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Dongdong Zhang
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Mingming Zhao
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Dan Zheng
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Yucai Lyu
- College of Biology and Pharmacy, Three Gorges University, Yichang 443002, China
| | - Wei Cheng
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
28
|
Microbial degradation of aflatoxin B1: Current status and future advances. Int J Food Microbiol 2016; 237:1-9. [DOI: 10.1016/j.ijfoodmicro.2016.07.028] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 07/12/2016] [Accepted: 07/23/2016] [Indexed: 02/07/2023]
|
29
|
Karlovsky P, Suman M, Berthiller F, De Meester J, Eisenbrand G, Perrin I, Oswald IP, Speijers G, Chiodini A, Recker T, Dussort P. Impact of food processing and detoxification treatments on mycotoxin contamination. Mycotoxin Res 2016; 32:179-205. [PMID: 27554261 PMCID: PMC5063913 DOI: 10.1007/s12550-016-0257-7] [Citation(s) in RCA: 344] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 11/15/2022]
Abstract
Mycotoxins are fungal metabolites commonly occurring in food, which pose a health risk to the consumer. Maximum levels for major mycotoxins allowed in food have been established worldwide. Good agricultural practices, plant disease management, and adequate storage conditions limit mycotoxin levels in the food chain yet do not eliminate mycotoxins completely. Food processing can further reduce mycotoxin levels by physical removal and decontamination by chemical or enzymatic transformation of mycotoxins into less toxic products. Physical removal of mycotoxins is very efficient: manual sorting of grains, nuts, and fruits by farmers as well as automatic sorting by the industry significantly lowers the mean mycotoxin content. Further processing such as milling, steeping, and extrusion can also reduce mycotoxin content. Mycotoxins can be detoxified chemically by reacting with food components and technical aids; these reactions are facilitated by high temperature and alkaline or acidic conditions. Detoxification of mycotoxins can also be achieved enzymatically. Some enzymes able to transform mycotoxins naturally occur in food commodities or are produced during fermentation but more efficient detoxification can be achieved by deliberate introduction of purified enzymes. We recommend integrating evaluation of processing technologies for their impact on mycotoxins into risk management. Processing steps proven to mitigate mycotoxin contamination should be used whenever necessary. Development of detoxification technologies for high-risk commodities should be a priority for research. While physical techniques currently offer the most efficient post-harvest reduction of mycotoxin content in food, biotechnology possesses the largest potential for future developments.
Collapse
Affiliation(s)
- Petr Karlovsky
- Molecular Phytopathology and Mycotoxin Research, Georg-August-University Göttingen, Grisebachstrasse6, 37077, Göttingen, Germany
| | - Michele Suman
- Barilla G. R. F.lli SpA, Advanced Laboratory Research, via Mantova 166, 43122, Parma, Italy
| | - Franz Berthiller
- Christian Doppler Laboratory for Mycotoxin Metabolism, Department IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz-Straße 20, 3430, Tulln, Austria
| | - Johan De Meester
- Cargill R&D Center Europe, Havenstraat 84, B-1800, Vilvoorde, Belgium
| | - Gerhard Eisenbrand
- Department of Chemistry, Division of Food Chemistry and Toxicology, Germany (retired), University of Kaiserslautern, P.O.Box 3049, 67653, Kaiserslautern, Germany
| | - Irène Perrin
- Nestlé Research Center, Vers-chez-les-Blanc, PO Box 44, 1000, Lausanne 26, Switzerland
| | - Isabelle P Oswald
- INRA, UMR 1331 ToxAlim, Research Center in Food Toxicology, 180 chemin de Tournefeuille, BP93173, 31027, Toulouse, France
- Université de Toulouse, INP, UMR1331, Toxalim, Toulouse, France
| | - Gerrit Speijers
- General Health Effects Toxicology Safety Food (GETS), Winterkoning 7, 34353 RN, Nieuwegein, The Netherlands
| | - Alessandro Chiodini
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Tobias Recker
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium
| | - Pierre Dussort
- International Life Sciences Institute-ILSI Europe, Avenue E. Mounier 83, Box 6, 1200, Brussels, Belgium.
| |
Collapse
|
30
|
|